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Abstract

Estimation of white matter fiber orientation distribution function (fODF) is the essential first 

step for reliable brain tractography and connectivity analysis. Most of the existing fODF 

estimation methods rely on sub-optimal physical models of the diffusion signal or mathematical 

simplifications, which can impact the estimation accuracy. In this paper, we propose a data-driven 

method that avoids some of these pitfalls. Our proposed method is based on a multilayer 

perceptron that learns to map the diffusion-weighted measurements, interpolated onto a fixed 

spherical grid in the q space, to the target fODF. Importantly, we also propose methods for 

synthesizing reliable simulated training data. We show that the model can be effectively trained 

with simulated or real training data. Our phantom experiments show that the proposed method 

results in more accurate fODF estimation and tractography than several competing methods 

including the multi-tensor model, Bayesian estimation, spherical deconvolution, and two other 

machine learning techniques. On real data, we compare our method with other techniques in 

terms of accuracy of estimating the ground-truth fODF. The results show that our method is 

more accurate than other methods, and that it performs better than the competing methods when 

applied to under-sampled diffusion measurements. We also compare our method with the Sparse 

Fascicle Model in terms of expert ratings of the accuracy of reconstruction of several commissural, 

projection, association, and cerebellar tracts. The results show that the tracts reconstructed with 

the proposed method are rated significantly higher by three independent experts. Our study 

demonstrates the potential of data-driven methods for improving the accuracy and robustness of 

fODF estimation.
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1. Introduction

1.1. Background and motivation

Estimation of the orientation of major brain white matter fiber bundles from diffusion­

weighted magnetic resonance imaging (DW - MRI) measurements is a long-standing and 

important problem. A simple model that can account for anisotropic diffusion is the 

diffusion tensor imaging (DTI) model (Basser et al., 1994). This model is still used in 

practice because it can estimate the direction of the major fiber in each imaging voxel 

and it can quantify the degree of anisotropy. Furthermore, compared with some of the 

more elaborate models, its parameters can be estimated robustly from a smaller number of 

measurements.

Despite its advantages, the DTI model is too simplistic for representing more complex fiber 

configurations. Often, axon fibers within an imaging voxel display complex configurations 

such as bending, fanning, and crossing. In such voxels, the DTI model fails to estimate 

the true fiber configuration, which can significantly impact the accuracy of downstream 

processing steps such as tractography and connectivity analysis.

To overcome the limitations of the DTI model, many methods have been put forward in 

the past two decades. Some of these methods extend the DTI model by considering a multi­

compartment model, whereby the measured diffusion signal is assumed to be the sum of the 

diffusion signals caused by individual compartments. The most straightforward extension 

of the standard DTI model leads to the multi-tensor model, where each compartment has 

the same parameterization as that of the DTI model. The number of parameters of the multi­

tensor model grows with the number of tensors, making the model fitting more difficult and 

less robust. Some studies have introduced mathematical tricks or physical assumptions to 

reduce the number of unknown parameters or simplify the estimation of the parameters of a 

multi-tensor model (Chen et al., 2004; Tuch, 2002).

There are a wide range of parametric methods that can be regarded as variations of the 

multi-tensor model. For example, in the ball-and-sticks model each tensor has only one non­

zero eigen-value, allowing the diffusion of water molecules only in one direction (Behrens 

et al., 2003). The “ball” compartment in this model represents isotropic Gaussian diffusion 

and is a common feature of many multi-compartment models. Some studies fall between the 

simplistic stick model and the full tensor parameterization, such as the model proposed in 

Anderson (2005), where an axially-symmetric tensor is used to represent each fascicle. The 

composite hindered and restricted water diffusion (CHARMED) model includes two types 

of compartments: a compartment with restricted diffusion in the form of an impermeable 

cylinder is used to represent the intra-cellular compartment, and an anisotropic diffusion 

tensor is used to model the signal from an extra-cellular compartment (Assaf and Basser, 
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2005). Another notable mention is DIAMOND (Scherrer et al., 2016) that, unlike most 

other models, accounts for compartment heterogeneity by modeling each compartment with 

a peak-shaped matrix-variate distribution. Specifically, it assumes that each compartment 

can be modeled with a symmetric positive definite tensor that follows a matrix Gamma 

distribution. The expected value of the distribution represents the overall diffusivity of 

a compartment and the “concentration” of the distribution represents the compartment’s 

degree of heterogeneity. Parameters of multi-compartment models are usually estimated 

using non-convex optimization algorithms.

Another class of methods aim at estimating a fiber orientation distribution function (fODF). 

An fODF can be regarded as a probability distribution on the sphere, where the value of 

fODF for each direction indicates the probability that a major fiber points in that direction. 

Some of these methods such as QBall Imaging, Tuch (2004), and Diffusion Spectrum 

Imaging (DSI), Wedeen et al. (2005), first estimate an intermediate probability distribution 

called the diffusion orientation distribution function (dODF). Methods based on spherical 

deconvolution, on the other hand, directly estimate an fODF (Dell’Acqua et al., 2010; 

Tournier et al., 2004). They estimate the response function for a single fiber, and model the 

diffusion signal as the convolution of the fODF with this response function. The fODF is 

then naturally recovered using a mathematical deconvolution algorithm.

All methods discussed above have certain important limitations (Seunarine and Alexander, 

2014). Multi-compartment models are limited in their ability to model bending and 

fanning fiber configurations in a voxel, which can be very important for tractography and 

connectivity analysis. Furthermore, determination of the correct number of compartments is 

a difficult discrete optimization problem and the proper choice of a method for solving this 

problem is not clear (Jeurissen et al., 2013). On the other hand, some of the methods that 

estimate an fODF are sensitive to noise and prone to predicting false fibers, while others 

such as DSI require a very large number of measurements that can lead to unrealistic scan 

times. Some works have proposed unifying frameworks that use ideas from both parametric 

and non-parametric classes of methods in order to overcome the limitations of each class 

(Schultz et al., 2010).

In recent years, several data-driven and machine learning methods have been proposed for 

estimating various diffusion parameters from DW-MRI measurements. These methods can 

take advantage of recent advancements in machine learning and computational hardware to 

learn models that map the diffusion signal to the diffusion parameters of interest. In addition, 

because these methods are model-free, they avoid imposing sub-optimal assumptions that 

are an essential component of the methods described above (Golkov et al., 2016). Several 

recent studies have shown that machine learning methods, and in particular deep learning 

methods, have the potential to accurately estimate scalar diffusion measures from DW-MRI 

data (Aliotta et al., 2019; Gibbons et al., 2019; Golkov et al., 2016). However, estimation 

of fiber orientation that is necessary for tractography and connectivity mapping has received 

much less attention. In this paper, we propose a deep learning model for direct estimation 

of an fODF from DW-MRI measurements. We also propose methodologies for training 

this model. We develop methods that allow for synthesizing reliable training data in-silico. 
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Through extensive evaluations, we demonstrate that the model can be effectively trained 

using either real DW-MRI data or simulated data.

1.2. Related works

Here, we briefly review some of the studies that have employed machine learning techniques 

in estimating diffusion parameters from DW-MRI measurements. A successful line of work, 

pioneered by Golkov et al. (2016) have aimed at estimating scalar diffusion parameters. 

Examples of parameters that have been estimated in these studies include mean diffusivity 

(Aliotta et al., 2019), fractional anisotropy (FA) and generalized FA (Aliotta et al., 2019; 

Gibbons et al., 2019), diffusion kurtosis measures (Golkov et al., 2016), neurite orientation 

dispersion index (Gibbons et al., 2019; Golkov et al., 2016), and volume fraction of different 

compartments (Ye et al., 2019). Overall, these works have shown that deep learning methods 

have the potential to accurately estimate such scalar diffusion parameters using a fraction 

of the measurements that are typically needed by the classical data-fitting and optimization­

based methods.

Some studies have developed machine learning methods for tractography. Standard 

tractography techniques are known to produce inaccurate results, usually containing many 

false positive streamlines (Maier-Hein et al., 2017). Errors of standard tractography methods 

may be caused by many factors such as errors in local fiber orientation estimation and 

failure to include the spatial context of the streamline/bundle being tracked. Machine 

learning methods have the potential to reduce these sources of error by avoiding to rely 

on sub-optimal mathematical models of the diffusion signal and by learning to incorporate 

the local and non-local information more effectively. Some of the machine learning models 

that have been successfully applied for tractography include random forests (Neher et al., 

2017; 2015), convolutional neural networks (CNNs) (Wasserthal et al., 2018), multi-layer 

perceptrons (Jörgens et al., 2018), and different forms of recurrent neural networks such as 

gated recurrent units (Benou and Raviv, 2019). A recent review of these techniques can be 

found in Poulin et al. (2019).

More related to the work presented in this paper, however, are studies that have aimed at 

estimating the fODF or the number and orientations of major compartments in a voxel. 

Support vector regression (SVR) (Schultz, 2012) and CNNs (Koppers et al., 2017b) have 

been used for estimating the number of compartments in a voxel. Deep learning models such 

as CNNs (Koppers et al., 2017a; Koppers and Merhof, 2016; Lin et al., 2019) and multilayer 

perceptrons (MLPs) (Nath et al., 2019a; 2019b) have been used for estimating fODFs 

from diffusion signal. One study proposed a method that combined unsupervised machine 

learning with standard optimization-based methods for fODF estimation (Patel et al., 2018). 

Specifically, the authors proposed learning an fODF prior using deep autoencoders, and used 

that prior to regularize standard methods such as spherical deconvolution. Another work 

used a deep learning model to estimate the fODF in an iterative hard thresholding framework 

(Ye and Prince, 2017).

In this paper, we propose to learn a direct mapping between the diffusion measurements 

in the q-space and the target fODF. We formulate the model as a single-shell HARDI 

technique. To make the model independent of a specific gradient table and applicable to 
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scans with different diffusion gradient directions, we represent the diffusion measurement 

and the target fODF on fixed hemi-spherical grids. We use an MLP as the base model to 

learn the mapping between the diffusion signal and the fODF. Our approach is different 

from previous studies discussed above. The method of Koppers and Merhof (2016), for 

example, is based on cyclic shifting of the diffusion signal to artificially create a 2D input 

for a CNN. Nath et al. (2019b) employ an MLP, but they use histologically-determined 

fiber orientation distributions for training. Such data is hard to obtain for a large human 

cohort, risking the generalizability of the trained model due to limited availability of the 

training data. An important contribution of this work is that we propose novel methods for 

simulating reliable training data. We present methods for training the model using either 

simulated or real DW-MRI data. We compare our proposed method, trained with either 

simulated or real data, with several classical as well as machine learning-based techniques. 

Because the contribution of this work is an fODF estimation method, our evaluations and 

comparisons are mostly in terms of the accuracy of fODF estimation. Nonetheless, we also 

present evaluations in terms of the accuracy of the generated tractograms. We demonstrate 

that the proposed method has significant merits compared with other techniques in terms of 

the accuracy and robustness of fODF estimation.

2. Materials and methods

2.1. Proposed model

The method that we propose in this paper is based on learning a direct mapping between 

the diffusion measurements and the fODF. Fig. 1 shows our method schematically. We use 

the diffusion measurements in their native q space, rather than representing them in some 

basis such as spherical harmonics. Nonetheless, because the gradient tables vary across 

subjects and scans, we define a fixed hemi-spherical grid and interpolate the diffusion 

measurements onto this grid. Similarly, we consider a fixed hemi-spherical grid for fODF 

prediction. We denote these hemi-spherical grids with their sets of unit vectors Us = usi i = 1
ns

and Uf = uf
i

i = 1
nf

, respectively.

The choice of the number of vectors in Us and Uf presents a trade-off between 

computational load and angular resolution. For Us, we empirically found that approximately 

100 vectors were sufficient. Therefore, in all experiments reported in this paper we set ns 

= 100. For Uf we used nf = 362, leading to a resolution of 7.2°. In some experiments we 

increased nf up to 2500, corresponding to a resolution of 2.8°, but did not observe significant 

improvements in fODF estimation accuracy. We present a quantitative assessment of the 

effect of grid size/resolution in Section 3.

We used the Fibonacci spiral sphere method (González, 2010) to construct the spheres. 

We found this method to generate more uniformly distributed grids than other available 

methods. One way to assess how uniformly-distributed a spherical grid is would be in terms 

of the distance between neighboring points. For example, with the Fibonacci spiral sphere 

method the distance between the nearest neighbors for spheres with 100 and 362 points are 

13.7 ± 0.28 and 7.2 ± 0.09, respectively. With the latitude–longitude method (Kantsiper and 
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Weiss, 1997), on the other hand, these values are 13.8 ± 0.89 and 7.21 ± 0.24, respectively. 

Smaller standard deviations with the Fibonacci spiral method indicate a more uniform 

distribution. González (2010) used a different criterion, based on the estimation of areas on 

the sphere, to compare different spherical grids. They also found that the Fibonacci spiral 

method generated more uniform grids.

Our method assumes single-shell HARDI measurements. As mentioned above, our method 

requires interpolation of diffusion weighted measurements on Us. Consider a set of diffusion 

measurements in a voxel, s qj, b* j = 1
m , where b* is the diffusion strength (b-value) and qj 

is the unit vector indicating the gradient direction for the jth measurement. We interpolate 

the signal s that has been measured on qj j = 1
m  onto Us = usi i = 1

ns  as follows:

s usi = ∑
Ωij

wijs qj /s0,    wij ∝ 1
α usi, qj + ϵ

, (1)

where α usi, qj  is the angle between the two vectors and ϵ = 0.1 rad is introduced to avoid 

division by zero. The weights wij are normalized to sum to one. s0 is the signal measured 

with b = 0 and Ωij is the set of indices of the K closest qj to usi. Note that since we are 

considering a hemi-spherical grid in the q-space, in determining the K closest qj to usi we do 

consider the measurements that fall on the other side of the sphere. Similarly, the angles α 
are computed modulo-π; for example an α = 175 degrees translates to α = 5 degrees. We 

set K = 5, which we found to lead to good results using cross-validation experiments on 

simulated data with known ground truth.

The vector of interpolated diffusion signals, s uS
i , is used by an MLP to directly predict the 

fODF on the target grid, Uf. Our MLP has six hidden layers with {300, 300, 300, 400, 500, 

600} neurons in each layer. The input and output layers have ns and nf neurons, respectively. 

All hidden layers used a rectified linear unit, ReLU, activation.

2.2. Training data

2.2.1. Simulated data—In the experiments reported in this paper, we used simulated 

or real diffusion measurements to train our model. To generate simulated data, we first 

simulated 1–3 random tensors. The tensors were axially symmetric with axial diffusivity 

in the range λ‖ ∈ [0.0018, 0.0025] mm2s−1 and radial diffusivity in the range λ⊥ ∈ 
[0.00035, 0.00050] mm2s−1. The orientation of each tensor was randomly and independently 

initialized on the surface of the unit sphere. Picking a uniformly-distributed random point 

on the unit sphere is not possible by choosing uniformly-distributed spherical coordinates θ 
∈ [0, 2π) and ϕ ∈ [0, π], as this will result in an oversampling of the poles (i.e., parts of 

the sphere with ϕ close to either 0 or π). One correct way, used in this work, is to simulate 

three independent zero-mean Gaussian random variables x, y, and z and then form the unit 

vector u = υ/‖υ‖, where υ = [x, y, z] (Marsaglia, 1972). If more than one tensors were 

considered and the main axes of any pair of tensors were less than 30° apart, that simulation 

was discarded. A multi-tensor model was then used to simulate a signal as follows:
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s(q)/s0 = fcsf exp −bdcsf + ∑
k = 1

K
fk exp  −bqTDkq (2)

where fcsf is the occupancy fraction of the cerebrospinal fluid (CSF) compartment, dcsf = 

0.003 mm2s−1, and fk is the occupancy fraction of the kth tensor, Dk. These fractions were 

also set at random. Specifically, fcsf was uniformly randomly selected between a minimum 

of 0.0 and a maximum of 0.50, 0.40, and 0.20 for voxels with one, two, and three simulated 

tensors, respectively. The occupancy fractions of the tensors were selected such that they 

summed to 1 − fcsf, with a minimum fraction, fk, of 0.20 and 0.15 for voxels with two and 

three simulated tensors, respectively. The above computation was performed for all q in the 

gradient table.

Rician noise was added to the signal to obtain a signal-to-noise ratio (SNR) in the range 15–

30 dB. This range was selected based on the SNR values reported and used for simulation 

in previous studies (e.g., Tournier et al., 2007, Dell’Acqua et al., 2010). Here, SNR is 

defined as 10 log  signal power 
 noise power  . For each simulated voxel, we selected an SNR value from the 

uniform distribution υ [15, 30] and added Rician noise to the simulated signal to obtain the 

selected SNR. The noise distribution in MRI follows a Rician or non–central chi–square 

distribution (Canales-Rodríguez et al., 2015). These distributions are strictly valid only 

under restrictive assumptions including that the noise in different coils be uncorrelated and 

have equal variance. Nonetheless, experimental measurements have shown that the noise in 

real data closely follows these distributions (Dietrich et al., 2008; Sotiropoulos et al., 2013). 

In many prior DWI studies and software, a Rician model has been used to simulate signal 

noise (for example, Caruyer et al., 2014; Close et al., 2009; Garyfallidis et al., 2014; Hosey 

et al., 2005). The simulated noisy signal was then interpolated onto Us using Eq. (1) to form 

the simulated input.

The directions of the major axes of the tensors, i.e., the directions of the eigenvectors 

corresponding to λ∥, were then used to synthesize the simulated fODF. This was done using 

the following equation:

fODF uf
i = ∑

k
| uf

i , uk pfk*| (3)

In this equation, uk denotes the direction of the major eigenvector of the kth fascicle and 〈.,.〉 
denotes inner product. The coefficients fk* are proportional to the fractions of the tensors, 

fk, but they are scaled such that the fODF sums to one. This normalization is necessary to 

ensure that the fODF is a probability distribution.

The power p in Eq. (3) controls how smooth/pointy the synthesized fODF is. Our 

preliminary experiments showed that making the simulated fODFs too smooth by choosing a 

very small p would lead to poor tractography results. With very smooth fODFs, the number 

of false positive streamlines in tractography would increase substantially because the true 

peaks are smoothed out. On the other hand, increasing p to very large values would lead to 
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fODFs that have only a few non-zero elements. Our experiments show that training of our 

MLP with such fODFs becomes highly unstable. This is probably because two tensors that 

are only a few degrees apart would have very similar diffusion signals but the fODFs would 

be completely different. This is easy to imagine by considering the extreme case when p 
is very large. In our setting, when p ≫ 20, the synthesized fODFs would have only one 

non-zero element for each tensor and all other fODF values would be near zero. In this case, 

if a tensor is rotated by an angle on the order of the angular resolution of Uf, the diffusion 

signal would change little while the two fODFs would be as different from each other in 

terms of the ℓ2 distance as when the two tensors are at 90° angle. Therefore, increasing p to 

very large values would create ambiguous and confusing training data.

In order to decide on the proper range of values for p, we resorted to quantitative measures 

of fiber orientation dispersion. Specifically, we used the Orientation Dispersion Index (ODI) 

as proposed in the NODDI model (Zhang et al., 2012). To estimate ODI, one fits a Watson 

distribution to the fODF and computes ODI as:

ODI = 2
πarctan(1/κ), (4)

where κ is the concentration parameter of the fitted distribution. We used the procedure 

proposed by Riffert et al. (2014) to compute ODI. The range of ODI values for white matter 

is well below 0.5, typically below 0.2 for white matter voxels with fractional anisotropy 

of above 0.40 (Fukutomi et al., 2019; Zhang et al., 2012). Histological measurements have 

shown that typical white matter bundles have ODI in the range [0.08,0.13], although there 

are white matter bundles with ODI as low as 0.02 and as high as 0.40 (Schilling et al., 2016). 

Fig. 2(a) shows a plot of ODI versus p for fODFs estimated using Eq. (3). Based on this 

figure and reported values of ODI mentioned above, we decided to consider a range of p 
= [2, 18] in our simulations, resulting in ODIs in the range [0.03, 0.30]. Example fODFs 

generated with different values of p are shown in Fig. 2(b).

In our experiments with simulated data, we generated three million voxels with one, two, 

and three tensors each using the above-described method, for a total of nine million data 

points.

2.2.2. Real data—For training with real data, we used the DW-MRI data from the 

developing Human Connectome Project (dHCP) dataset (Bastiani et al., 2019). Each scan 

in this dataset includes 20 non-DW measurements (i.e., b = 0) and 280 DW measurements 

with b values of 400 (n = 64), 1000 (n = 88), and 2600 (n = 128). In the absence of an 

fODF ground truth for this dataset, we applied the Multi-Shell Multi-Tissue Constrained 

Spherical Deconvolution (MSMT-CSD) (Jeurissen et al., 2014), which is a well-known and 

widely-used technique, on the full multi-shell data to obtain a reference fODF. We used 

this fODF as reference for training our proposed method as well as for evaluation. In order 

to evaluate our proposed fODF estimation method and compare it with other single-shell 

techniques, we applied them on the measurements in either b = 1000 or b = 2600 shell and 

compared the estimated fODFs with the reference fODF estimated by MSMT-CSD using 

the full multi-shell data. We used the white matter voxels of 140 subjects, for a total of 10 
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million voxels, for training. We then tested our method and other methods on data from 

other subjects that had not been included in training.

2.3. Training

We implemented the MLP in TensorFlow under Python. The loss function used to optimize 

the MLP was the following:

loss(f) = ‖f − fg‖2 + λsLs(f), (5)

where f and fg denote the predicted and target fODFs, respectively. The regularization term 

Ls(f) encourages smoothness, and is implemented as a matrix-vector product. Specifically, 

Ls(f) penalizes the difference between the estimated fODF at each direction and the 

weighted average of the fODF at its 3 nearest neighbors. We empirically set λs = 10−4.

Model weights were initialized using the method proposed by He et al. (2015). Training 

was performed with batches of size 1000. Adam (Kingma and Ba, 2014) was used for 

optimization with an initial learning rate of 10−2, which was reduced by 0.90 after every two 

passes through the training data if the loss did not decrease on the validation set.

2.4. Evaluation criteria and compared methods

The purpose of the proposed method is fODF estimation. Therefore, in our experiments, 

when a ground truth or reference fODF was available, we evaluated the estimated fODF 

by computing the Jensen-Shannon divergence (JSD) between the estimated fODF and 

ground truth. Given two probability distributions p1 (x) and p2 (x) defined on a probability 

space X, JSD between them is defined as JSD p1 p2 = 1
2 D p1 p2 + D p2 p1 , where 

D p1 p2 = ∑x ∈ X p1(x) log  p1(x)/p2(x)  is the Kullback–Leibler divergence from p2(x) to 

p1(x) (Murphy, 2012). Several prior studies have used JSD for comparing fODFs (Chiang 

et al., 2008; Elhabian et al., 2014). We also computed the angle between the largest peak in 

the estimated and ground truth fODFs. A more general metric that takes crossing fibers into 

account is the weighted average angular error (WAAE) proposed by Schultz (2012). WAAE 

is defined as WAAE = ∑i  wi minj arccos |ui
gt, ujest| , where ugt and uest are direction vectors of 

the peaks of the ground truth and estimated fODFs and wi is the magnitude of the ith ground 

truth peak. Hence, WAAE considers all peaks and assigns larger weights to the errors in 

estimating the orientation of larger ground truth fODF peaks.

In some of our experiments we also compared different fODF estimation methods based on 

the resulting tractograms. Tractography is a less direct way of comparing fODF estimation 

methods because the tractography algorithm can mask or confound the differences between 

the fODF estimation methods. In order to have a fair comparison, we used the same fiber 

tracking algorithm with the same settings for all fODF estimation methods. Specifically, we 

used the EuDX fiber tracking algorithm (Garyfallidis, 2013). This choice is motivated by 

the fact that this algorithm has been designed to be more faithful to the voxel-wise fODF 

reconstruction results rather than correcting or enhancing the tracts by imposing global 

priors (Garyfallidis, 2013). Admittedly, this may give rise to more spurious tracks and may 
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not yield the same high-quality tractography results as those obtained with methods that 

impose global anatomical priors. However, it can better amplify the differences between 

different fODF estimation methods. Moreover, this tracking algorithm has been designed 

to work well with different fODF estimation methods and hence it is not biased towards 

or against any fODF estimation technique (Garyfallidis, 2013). Starting from a seed point, 

this algorithm predicts the next track point via Euler’s method with a step size that should 

be smaller than the voxel size. The propagation direction at the current tracking point 

is computed using trilinear interpolation of the closest peaks of the 8 neighboring voxel 

centers. If the direction of the closest fODF peak in a neighboring voxel is very different 

from the current tracking direction, that neighbor is ignored. The algorithm involves 

several stopping criteria; tracking stops if the contribution from neighboring voxels is 

below a threshold (boundary points) or if anisotropy is below a threshold (gray matter 

or cerebrospinal fluid voxels). In all of our experiments with this tractography method, we 

set the step size to half the voxel size. Moreover, the fODFs estimated by all methods are 

normalized to sum to one in each voxel.

We compared our method with the following:

• Sparse Fascicle Model (SFM) (Rokem et al., 2015).

• Constrained Spherical Deconvolution (CSD) (Tournier et al., 2007).

• Orientation Probability Density Function (OPDF) (Tristán-Vega et al. (2009), 

Tristan-Vega et al. (2010)).

• Constant Solid Angle Q-Ball model (CSA) (Aganj et al., 2010).

• Multi-tensor model fitting. For determining the number of fibers in each voxel 

we used the bootstrap method outlined by Scherrer et al. (2013).

• Bayesian model fitting proposed by Behrens et al. (2003).

• • The deep learning method proposed by Koppers and Merhof (2016). In this 

method, the diffusion signal in each voxel is first interpolated onto a pre-defined 

spherical grid using spherical harmonic interpolation. Then, this 1D signal is 

converted into a 2D signal, much like an image patch, via cyclic shifting. A CNN 

is then trained to estimate the fiber orientations from this signal. The fODF is 

estimated on a fixed grid (Koppers and Merhof, 2016). In this paper we refer to 

this model as CNN-2D because the input to the CNN is a 2D signal.

• The deep learning method proposed by Lin et al. (2019). This method exploits 

the spatial structure of fODF by including the data from neighboring voxels. 

Specifically, for estimating the fODF in a voxel, the diffusion signals from a 3 

× 3 × 3-voxel neighborhood centered on that voxel are included. The diffusion 

signal in each voxel is represented using spherical harmonic coefficients. A 

lightweight CNN with two convolutional layers and two fully-connected layers 

is used to map the input 3D patch to the spherical harmonic coefficients of the 

fODF. In the rest of this paper we refer to this model as CNN-3D because the 

input to the model are 3D patches.
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3. Results and discussion

3.1. Evaluation with phantom data

For evaluation with simulated data, we used the HARDI-2013 phantoms (Caruyer et al., 

2014). For one of the phantoms in this dataset the ground truth fiber orientations in each 

voxel were given. Most voxels contained one or two fibers, but some include more than two 

fibers. The DWI measurements consisted of 64 gradient directions at b = 3000. We trained 

our model, CNN-2D, and CNN-3D using simulated training data generated as described 

in Section 2.2.1. Our model and CNN-2D work on data from individual voxels, whereas 

CNN-3D uses data from the 3 × 3 × 3-voxel neighborhood of a voxel. Therefore, training of 

CNN-3D requires knowledge of the fODF in the neighboring voxels. For this purpose, we 

used phantoms similar to those used in Scherrer et al. (2013). We then applied these trained 

models as well as other non-machine-learning methods on the phantom data to reconstruct 

the fODF in each voxel. To compare different methods, we computed the WAAE between 

the peaks of the fODF estimated by each method with the ground truth fiber orientations. 

Note that for this phantom we cannot compute JSD because we do not have the ground truth 

fODFs, but only the fiber orientations.

Table 1 shows values of WAAE for this experiment. The proposed method, CNN-2D, and 

SFM achieved lower error than other methods. Statistical significance t-tests showed that the 

proposed method was significantly (p < 0.01) more accurate than all other methods except 

for CNN-2D and SFM. The proposed method, CNN-2D, and SFM were not statistically 

different. CNN-3D performed worse than other methods. In our opinion, this was because 

the fiber orientations in the local voxel neighborhoods were different in the training and 

test phantoms. Learning the spatial fODF patterns is a potential advantage of CNN-3D, 

but it requires that the spatial fODF patterns in the training and test data be similar. In 

this experiment, we did not have access to other phantoms that had the same spatial fODF 

structure as those in the test phantom.

Another phantom in the HARDI-2013 dataset included 20 pairs of seed and target 

tractography regions of interest (ROIs) with different numbers of seed voxels. An illustration 

is shown in Fig. 3(a). We used this phantom to compare different methods in terms of 

accuracy of tractography. For this phantom, too, the diffusion measurements consisted of 

one b = 0 scan and 64 diffusion-weighted scans at b = 3000. We trained our model, 

CNN-2D and CNN-3D using simulated data generated as explained above. We then applied 

all methods to compute the fODF in each voxel, followed by tractography using EuDX 

algorithm. For each seed-target ROI pair we computed the ratio of the number of streamlines 

that ended up in the target ROI to the number of streamlines that were launched from the 

corresponding seed ROI. We refer to this ratio as tractography accuracy.

Table 2 shows the mean, standard deviation, and the range of the computed tractography 

accuracy for different methods. Our method and SFM achieved higher average accuracy 

than the other methods. Fig. 3 shows example tracts from this phantom. Overall, we 

observed that our proposed method, SFM, CSD, and CNN-2D resulted in smaller numbers 

of prematurely-terminated fibers, and that our proposed method and SFM resulted in smaller 

numbers of diverging streamlines than the other methods. We ran paired t-tests to compare 

Karimi et al. Page 11

Neuroimage. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



our proposed method with each of the other eight methods. Paired t-tests, with seed-target 

pairs as test units, allowed us to achieve high statistical power despite the high variance in 

tractography accuracy between seed-target pairs, as shown in Table 2. The tests showed that 

the tractography accuracy achieved with our method was significantly (p < 0.01) higher than 

all other methods except for SFM.

3.2. Evaluation on real data

In the experiments reported in this section, we used DW-MRI scans from the dHCP dataset. 

To train our method, we used either real data, generated from 140 dHCP subjects, or 

simulated data. The methods of generating these training datasets have been explained in 

Section 2.2. We used the same training data to train CNN-2D and CNN-3D. We then applied 

our method and all other competing single-shell methods on data from 20 subjects from the 

dHCP dataset that had not been used in the training stage. We performed this experiment 

twice; once using the measurements in the b = 1000 shell and once using the measurements 

in the b = 2600 shell. Similar to training data, to generate ground truth fODFs on test 

subjects we applied MSMT-CSD on the full multi-shell data (b = 400, 1000, and 2600).

Table 3 shows the results of this experiment. For the machine learning methods we have 

presented two sets of results, one for models trained with simulated data and the other for 

models trained with real data. The results show a clear advantage of the machine learning 

methods, especially when they are trained with real data. This is the case for both b = 

1000 and b = 2600 shells. In terms of JSD, which is a measure of closeness of fODFs, the 

machine learning methods are much better than CSD, SFM, OPDF, and CSA, demonstrating 

that these machine learning methods can learn to predict the fODF from the training data. 

Also in terms of orientation error of the largest peak and WAAE, machine learning methods 

were better than CSD, SFM, OPDF, CSA, Multi-tensor fitting, and Bayesian model fitting. 

These differences were statistically significant (p < 0.01) for the experiment with b = 1000 

shell as well as experiment with b = 2600 shell. For statistical significance tests, we used 

paired t-tests with subjects as units. These statistical significance tests showed that our 

method was significantly better (p < 0.01) than the six non-machine-learning methods in 

terms of the three metrics shown in this table. This was the case for the model trained with 

simulated data and the model trained with real data. Compared with CNN-2D and CNN-3D, 

our model achieved significantly lower error in estimating the orientation of the largest peak 

and significantly lower WAAE (p < 0.01). Our method also achieved significantly lower JSD 

than CNN-2D.

Fig. 4 shows example fODFs predicted by the proposed method and competing techniques. 

In this figure, for each case we have shown the T2 image and corresponding color fractional 

anisotropy (CFA) image. The location of a region of interest (ROI) has been marked on 

the T2 image in order to aid in understanding the location of the displayed fODF. The size 

of each ROI is 10 × 10 voxels. We have displayed the estimated fODFs for the ROI. For 

each example, we have displayed the reference fODF (estimated using measurements in all 

three shells by MSMT-CSD), the fODF predicted by the proposed method, and the fODFs 

estimated with SFM and CNN-3D. We chose SFM because, overall, it was better than the 

other non-learning methods. We also chose CNN-3D because it was better than CNN-2D.
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A potential advantage of machine learning-based methods over non-learning methods is 

their ability to learn the mapping between under-sampled or noisy data with the desired 

output. This potential is highly desirable as it can reduce the scan times and improve 

the fODF reconstruction accuracy in applications such as fetal DW-MRI where data is 

inherently limited (Marami et al., 2017). In order to assess this potential, we compared 

different methods on subsets of 60 and 40 DWI measurements for 20 subjects in the dHCP 

dataset. We performed this experiment, separately, with the b = 1000 shell and the b = 2600 

shell. In the experiment with the b = 2600 shell, instead of all 128 measurements in that 

shell, only 60 and 40 measurements from that shell were used for each subject. For example 

to select the 60 measurements out of 128, we created a spherical grid of size 60 using the 

Fibonacci spiral sphere method and selected the measurements with the diffusion gradient 

direction that were closest to each of the points on that grid for each subject. We similarly 

selected 40 measurements out of 128 for each subject. We selected 60 and 40 measurements 

out of the 88 measurements in the b = 1000 shell in the same way.

Table 4 shows the results of this experiment. For this experiment, we dropped the multi­

tensor fitting, Bayesian model fitting, and OPFD methods because they performed worse 

than other methods in the above experiments (Table 3). The advantage of the machine 

learning methods is clear from this table. They were significantly (p < 0.01) more accurate 

than SFM, CSD, and CSA in terms of the three metrics reported in this table. This was the 

case for both b = 1000 and b = 2600 shells. Our proposed method was significantly (p < 

0.01) better than CNN-2D and CNN-3D in estimating the orientation of the largest peak and 

also in terms of WAAE. In terms of JSD, our method was significantly (p < 0.01) better than 

CNN-2D and significantly (p < 0.01) better than CNN-3D with ndata = 40.

We further evaluated our method in terms of expert quality rating of the resulting 

tractography on real human brain data. This is a less direct and more challenging evaluation 

method because of the imper-fections of the tractography algorithms (Maier-Hein et al., 

2017) and subjective nature of expert assessments (Schilling et al., 2020). We applied our 

method and SFM on the b = 1000 shell data of 20 subjects from the dHCP dataset to 

estimate fODFs in each voxel, and generated whole-brain tractograms using the EuDX 

algorithm. The tractograms were evaluated by three expert neuroanatomists (LV, CJ, and 

FM), separately and independently. Given the limited availability of the experts and the time 

required to carefully rate each tractogram in detail, in this experiment we only compared 

our method with SFM. SFM performed slightly better than CSD, CSA, and OPDF in the 

experiments reported in Tables 3 and 4 above with real data. SFM also performed better 

than other methods including the two machine learning methods (CNN-2D and CNN-3D) 

in experiments with phantom data presented in Tables 1 and 2. In particular, on the 

tractography experiment with phantom data, presented in Table 2, SFM performed better 

than all other competing methods.

The tractograms generated by our method and SFM for each subject were named 

“result_01” and “result_02” at random and were presented to the experts. The experts were 

told that the naming was random, but they were blind to the naming of the tractograms. 

The experts decided to exclude three of the subjects from evaluation. This was because 

those three brains were highly oblique with respect to the standard planes. This made it 
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less reliable to identify the tracts bilaterally and accurately assess them. On the remaining 

17 subjects, the experts evaluated each of the two tractograms for each subject separately 

by assessing the accuracy of reconstruction of eight tracts including commissural (corpus 

callosum and anterior commissure), projection (frontopontine fibers, corticospinal tract, 

and fornix), association (inferior fronto-occipital fasciculus and uncinate fasciculus), and 

cerebellar (middle cerebellar pedunculus) tracts. Each of the experts graded these eight tracts 

based on tract integrity (i.e., reconstruction of all components of the tract) and bilateral 

presence. A grade of 3 was assigned if all components of the given tract were present 

bilaterally. A grade of 2 was given if at least one component of the tract was absent, 

regardless of the side of the brain. A grade of 1 was assigned if the tract was missing in both 

hemispheres of the brain.

Tables S1–S3 in the Supplementary Materials of the paper show the detailed scores provided 

by the three experts. We used Cohen’s kappa (κ) statistic (Cohen, 1960) to assess the 

agreement between pairs of experts. This coefficient ranges between −1 and 1. Negative 

values of κ indicate accidental agreement, whereas values in the intervals 0.1 – 0.2, 0.2 

– 0.4, 0.4 – 0.6, 0.6 – 0.8, and 0.8 – 1.0 indicate slight, fair, moderate, substantial, and 

near–perfect agreement, respectively. The mean ± standard deviation, across the eight tracts, 

of κ between the three experts, evaluated pairwise, was 0.62 ± 0.13, 0.56 ± 0.16, and 0.57 ± 

0.16. This indicates moderate to substantial agreement between the experts. For each subject 

and method, we summed the scores given by each of the three experts on the eight tracts 

to obtain one total score in the range [8, 24] for the entire tractogram. Table 5 shows the 

mean and standard deviation of the total scores received by our method and SFM on the 17 

subjects from each of the three experts. As can be seen from this table, all three experts gave 

higher scores to the tractograms produced by our method compared with SFM. For statistical 

significance test, we compared our method and SFM in terms of the grades given by each 

of the three experts, separately, using the Wilcoxon signed-rank test (Berenson et al., 2012). 

At p = 0.01, the total score received by our method was significantly higher than the score 

received by SFM for all three experts. Table S4 in the Supplementary Materials shows the 

results of statistical significance tests for individual tracts. The score received by our method 

was significantly higher than SFM’s score on 6, 7, and 5 tracts for the three experts. Fig. 5 

shows example tracts reconstructed using fODFs estimated with the proposed method and 

SFM.

There are several design choices and hyper-parameters that may influence the performance 

of our proposed method. Here we address some of these aspects. One of these is the 

model size, which is determined by the number of layers (i.e., the network depth) and the 

size of each layer (i.e., the number of neurons in each layer). As mentioned in Section 

2.1, the MLP used in all of the experiments reported above had six hidden layers with 

{300, 300, 300, 400, 500, 600} neurons in each layer. This amounts to approximately 1.18 

million parameters. Table 6 shows a comparison with several different model sizes. In this 

experiment, we varied the network depth (number of layers) as well as the width (number 

of neurons in each layer). We trained each model with real data, generated as explained 

in Section 2.2.2. We then applied the model on 20 test subjects from the dHCP dataset 

and computed WAAE, JSD, and the amount of time needed to compute the fODF for the 

entire brain. The computation time depends on many factors such as the hardware. Since 
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we were only interested in comparing the relative values for different model sizes, we used 

the same NVIDIA GeForce GTX 1080 GPU for all models. One single GPU was used for 

training/testing in all experiments. The results show that models with 2 or 4 hidden layers 

are not deep enough to learn the complex mapping between the diffusion signal and the 

fODF. Increasing the depth to 10 hidden layers did not significantly improve the estimation 

accuracy compared with models with 6 hidden layers. With sufficient model depth, the effect 

of the number of neurons per layer seems to play only a minor role. This can be seen by 

comparing the three models with 6 hidden layers. They had 0.63, 1.18, and 1.82 million 

trainable parameters, but they achieved similar estimation accuracy levels.

Another design choice in our proposed method is the size of the grids in the signal and 

fODF spaces. Increasing the grid resolution may lead to a higher prediction accuracy at 

the expense of larger number of model parameters in the first and last layers. The choice 

of the grid in the q-space, Us, may affect the approximation error incurred during signal 

interpolation. The choice of the grid in the fODF space, Uf, can affect the accuracy of 

extracting the orientation of the peak(s). An alternative to representation/interpolation on 

grids is representation in spherical harmonics bases. This is the representation used by 

CNN-2D and CNN-3D. We compared these alternatives in an experiment with 20 dHCP test 

subjects. We first trained our own model, shown in Fig. 1, with finer grids in both signal 

and fODF spaces. We then trained our model by replacing the grids with representation 

in spherical harmonics. As suggested in previous works (Koppers et al., 2017a; Koppers 

and Merhof, 2016; Lin et al., 2019), we used spherical harmonics order of 4 to represent 

the diffusion signal and order of 8 to represent the fODF. In order to compute the WAAE 

and JSD, we had to convert the estimated spherical harmonic coefficients back to spatial 

coordinates. For this purpose, we used two different hemi-spherical grids with 362 and 2500 

points.

Results of this experiment are presented in Table 7. Overall, the results show only a small 

improvement in fODF estimation accuracy with increasing grid size/resolution. Increasing 

the grid resolution had a slightly larger impact when spherical harmonic representations 

were used. With the network architecture shown in Fig. 1, increasing the size of the fODF 

grid (nf) increases the number of model parameters. For example, increasing nf from 362 

to 2500 adds 1.25 million new parameters to be learned. With spherical harmonics, on the 

other hand, the size of the output layer (i.e., the number of spherical harmonics coefficients) 

remains the same regardless of nf. Therefore, one can use an arbitrarily large grid size for 

reconstructing the fODF without changing the number of model parameters. Nonetheless, 

results shown in Table 7 indicate that representing the MLP’s input and output in spherical 

harmonics bases does not improve the fODF estimation accuracy. One reason for this may 

be due to the inevitable approximation errors when the signal and fODF are projected from 

their native space onto spherical harmonics bases. The proposed method, too, includes some 

inevitable approximation error due to interpolating the diffusion signal on a fixed grid (Eq. 

(1)). However, inspecting the first five rows of Table 7 seems to indicate that the size of Us 

has a very small impact on this error.

Future studies can improve and expand this work in various directions. In terms of 

the machine learning methodology, various different deep learning architectures can 
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be investigated. Our decision to use an MLP model was motivated by the very high 

representational capacity of MLPs and their ease of implementation on GPUs, allowing 

for fast training on huge datasets and fast computation at test time. We also experimented 

with support vector regression models, but their training on large datasets was extremely 

slow. Therefore, we had to substantially reduce the amount of training data and the test 

accuracy was much lower than the MLP model. Therefore, we think that the deep learning 

models have a better potential to be successful in this application. Nonetheless, we cannot 

claim that the MLP used in this work is the best choice. Recent studies have reported very 

successful application of other deep learning models for solving various regression problems 

(Lathuilière et al., 2018; 2019; Wu et al., 2020). These models may be explored in future 

works.

Our methods of generating the training data may also be improved. In this work, we 

tried to use models that were sufficiently accurate but also easy to implement and run to 

simulate diffusion data for millions of voxels. In general, mathematical models of complex 

biophysical phe-nomena cannot be perfect (Box, 1976). Nonetheless, more realistic training 

data may lead to significantly more robust methods and more accurate models. In our work, 

in addition to the multi-tensor model shown in Eq. (2), we also used the CHARMED model 

(Assaf and Basser, 2005) that included restricted as well as hindered compartments, but 

did not achieve better results. Nonetheless, other more accurate signal generation and noise 

models may improve the accuracy of the method proposed in this work.

There are other aspects of our diffusion-weighted signal simulation approach that may need 

further exploration. For example, as we mentioned in Section 2.2.1, we did not consider 

voxels with crossing fibers closer than 30 degrees. This decision was partly motivated 

by experimental observations. Specifically, removing those simulations from our training 

data resulted in models that were more accurate at test time. In addition to this empirical 

observation, we think there are other reasons that justify this choice. Even though crossing 

fibers in the brain white matter can certainly be closer than 30 degrees, studies have shown 

that current diffusion MRI measurements and reconstruction methods may be inherently 

limited in resolving such fibers. For example, Schilling et al. (2016, 2018) evaluated 

standard reconstruction methods using histological ground truth. They found that many 

standard reconstruction methods including CSD failed to resolve fibers that were closer 

than 60 degree apart. The number of diffusion measurements in the dHCP dataset that we 

used in our work is larger than the number of measurements used in those works, but 

the inherent limitations remain. Overall, we found that including crossing fibers that are 

too close together in the training set would impose an unrealistic demand on our method. 

Nonetheless, this aspect can also be explored further in future works.

4. Conclusion

This paper presented a data-driven approach to estimating the fODF directly from DW­

MRI measurements in each voxel. The proposed method exploits the representational 

capacity of deep neural networks to learn the complex relation between the DW-MRI 

signal and the fiber orientation distribution that gives rise to that signal, without imposing 

any mathematical models or physical assumptions. We also proposed methods of training 
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the model using simulated and real data. Our experiments showed that this approach 

could lead to significantly more accurate estimation of the fODF and better tractography 

results than several competing methods including methods based on nonlinear optimization, 

Bayesian estimation, spherical deconvolution, and machine learning. These results show 

the significant potential of deep learning methods for improving the accuracy of fODF 

estimation from DW-MRI measurements.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A schematic representation of the main steps of the proposed method. The raw diffusion 

signal measured with an arbitrary gradient table is re-sampled onto a fixed hemi-spherical 

grid, Us. This will form the input to the MLP, which predicts the fODF directly on the target 

hemi-spherical grid, Uf. In this schematic, we have shown the example interpolated signal 

and the predicted fODF using their symmetric representation on the full sphere for better 

illustration.
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Fig. 2. 
(a) Plot of the Orientation Dispersion Index (ODI) versus the parameter p used to generate 

fODFs in Eq. (3). (b) Example single-fiber fODFs generated with different values of p.
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Fig. 3. 
A comparison of the tract bundles reconstructed with SFM, multi-tensor model, and the 

proposed method on the HARDI-2013 phantom. Part (a) of the figure shows how the seed 

and target ROIs are distributed in 3D. Part (b) shows a slice through the FA image of the 

phantom in gray-scale with some of the ROIs marked in color. On the right side of the 

figure, we have shown four seed-target ROI pairs and the bundles reconstructed using the 

fODFs estimated with the proposed method, SFM, and the multi-tensor method. In each of 

these four rows, the seed ROI is shown with a yellow disk and the target ROI is shown with 

a red disk. In the Reference column, the blue cylinder shows the dilated center-line of the 

true bundle connecting the seed to the target. On the bundles reconstructed with different 

methods, yellow arrows indicate streamlines diverging from the correct tract path, and red 

arrows indicate missing streamlines.
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Fig. 4. 
Illustration of the fODFs estimated by the proposed method and two competing techniques. 

For each of the six displayed cases, the top row shows the T2 image, the CFA image, and 

the reference fODF estimated with MSMT-CSD using measurements in all three shells. A 

red square on the T2 image shows the location of the ROI that is selected for displaying 

the fODFs. In the bottom row for each case we have displayed the fODFs estimated by 

SFM, CNN-3D, and our proposed method. These single-shell methods were applied on the 

measurements in either b = 1000 shell of b = 2600 shell. This has been indicated next to the 

names of these methods.
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Fig. 5. 
Examples fiber tracts dissected from the whole-brain connectomes reconstructed using 

fODFs estimated with our method (A,C,E) and with SFM (B,D,F). We note that 

tractography is only an indirect way of assessing fODF estimation methods, and since 

tractography algorithms are known to have high rates of type I errors (Maier-Hein et al., 

2017), they may not show the full range of differences between fODF estimation methods. 

Knowing this fact, we used the same fiber tracking algorithm (Garyfallidis, 2013) to evaluate 

the relative impact of our method and SFM on fiber tracking. (A,B) show the cingulum 

in red and the inferior fronto-occipital fasciculus (IFOF) in green. Compared to (A), the 

cingulum fibers were terminated early in (B) (arrowhead). (A) shows better delineation of 

the IFOF with less spurious tracts compared to (B) (arrow). (C,D) show the corticospinal 

tracts (CST) in blue. Compared to (D), our method (C) showed much better delineation of 

the CST including better delineation of CST projections into the cortex, whereas the tracts 
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were terminated immaturely in an area of crossing fibers in (D) (arrow). (E,F) show the 

forceps major (purple) and forceps minor (yellow). For both of these tracts, our method (E) 

resulted in less spurious fibers than SFM (F) (arrow).
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Table 1

WAAE for different fODF estimation methods on the HARDI-2013 phantom. The WAAE for the proposed 

method was significantly lower than all other methods except for SFM and CNN-2D.

Method WAAE (degrees)

SFM 10.0 ± 1.2

CSD 11.0 ± 2.0

OPDF 11.6 ± 2.1

CSA 11.2 ± 1.7

Multi-tensor fitting 11.3 ± 2.3

Bayesian model fitting 11.8 ± 1.0

CNN-2D 10.3 ± 1.0

CNN-3D 16.1 ± 2.2

Proposed method 9.6 ± 1.5
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Table 2

Comparison of the proposed method with several other methods in terms of the mean, standard deviation, 

and range of tractography accuracy on the 20 seed-target ROI pairs of the HARDI-2013 phantom. The 

tractography accuracy achieved by our method was significantly higher than the accuracy achieved by all other 

techniques, except for SFM.

Method accuracy

SFM 0.55 ± 0.30, [0.00, 0.93]

CSD 0.50 ± 0.23, [0.06, 0.93]

OPDF 0.48 ± 0.19, [0.03, 0.85]

CSA 0.50 ± 0.18, [0.01, 0.90]

Multi-tensor fitting 0.42 ± 0.29, [0.03, 0.84]

Bayesian model fitting 0.42 ± 0.25, [0.06, 0.76]

CNN-2D 0.51 ± 0.18, [0.00, 0.86]

CNN-3D 0.44 ± 0.22, [0.06, 0.76]

Proposed method 0.56 ± 0.23, [0.04, 0.97]

Neuroimage. Author manuscript; available in PMC 2021 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Karimi et al. Page 30

Ta
b

le
 3

C
om

pa
ri

so
n 

of
 d

if
fe

re
nt

 f
O

D
F 

re
co

ns
tr

uc
tio

n 
m

et
ho

ds
 in

 te
rm

s 
of

 o
ri

en
ta

tio
n 

er
ro

r 
of

 th
e 

la
rg

es
t p

ea
k,

 W
A

A
E

, a
nd

 J
SD

. T
he

 m
ac

hi
ne

 le
ar

ni
ng

 m
et

ho
ds

 

w
er

e 
tr

ai
ne

d 
tw

ic
e,

 o
nc

e 
w

ith
 th

e 
si

m
ul

at
ed

 d
at

a 
an

d 
an

ot
he

r 
tim

e 
w

ith
 r

ea
l D

W
I 

da
ta

 w
ith

 g
ro

un
d 

tr
ut

h 
fO

D
Fs

 e
st

im
at

ed
 w

ith
 M

SM
T-

C
SD

. B
ec

au
se

 

m
ul

ti-
te

ns
or

 f
itt

in
g 

an
d 

B
ay

es
ia

n 
m

od
el

 f
itt

in
g 

m
et

ho
ds

 d
o 

no
t e

st
im

at
e 

fO
D

F,
 w

e 
ca

nn
ot

 c
om

pu
te

 J
SD

 f
or

 th
es

e 
tw

o 
m

et
ho

ds
. O

ur
 m

et
ho

d 
ac

hi
ev

ed
 

si
gn

if
ic

an
tly

 b
et

te
r 

re
su

lts
 in

 te
rm

s 
of

 a
ll 

th
re

e 
m

et
ri

cs
 th

an
 n

on
-l

ea
rn

in
g 

m
et

ho
ds

 a
nd

 C
N

N
-2

D
. O

ur
 m

et
ho

d 
w

as
 a

ls
o 

si
gn

if
ic

an
tly

 b
et

te
r 

th
an

 C
N

N
-3

D
 

in
 te

rm
 o

f 
or

ie
nt

at
io

n 
er

ro
r 

of
 th

e 
la

rg
es

t p
ea

k 
an

d 
W

A
A

E
. T

he
 p

at
te

rn
s 

of
 d

if
fe

re
nc

es
 b

et
w

ee
n 

m
et

ho
ds

, i
nc

lu
di

ng
 th

e 
ad

va
nt

ag
es

 o
f 

ou
r 

pr
op

os
ed

 

m
et

ho
d 

ov
er

 o
th

er
 te

ch
ni

qu
es

, a
re

 la
rg

el
y 

co
ns

is
te

nt
 a

cr
os

s 
th

e 
tw

o 
sh

el
ls

.

b 
va

lu
e

M
et

ho
d

O
ri

en
ta

ti
on

 e
rr

or
 o

f 
th

e 
la

rg
es

t 
pe

ak
W

A
A

E
 (

de
gr

ee
s)

JS
D

10
00

SF
M

15
.0

 ±
 1

.0
16

.4
 ±

 1
.1

0.
11

3 
±

 0
.0

19

C
SD

15
.2

 ±
 1

.3
16

.4
 ±

 1
.4

0.
07

1 
±

 0
.0

13

O
PD

F
15

.7
 ±

 1
.6

17
.0

 ±
 1

.9
0.

12
2 

±
 0

.0
23

C
SA

15
.3

 ±
 1

.3
16

.5
 ±

 1
.5

0.
09

2 
±

 0
.0

18

M
ul

ti-
te

ns
or

 f
itt

in
g

16
.1

 ±
 1

.8
19

.3
 ±

 2
.1

-

B
ay

es
ia

n 
m

od
el

 f
itt

in
g

15
.5

 ±
 1

.6
16

.0
 ±

 1
.7

-

T
ra

in
ed

 o
n 

si
m

ul
at

ed
 d

at
a

C
N

N
-2

D
14

.2
 ±

 1
.2

15
.2

 ±
 1

.2
0.

04
8 

±
 0

.0
04

C
N

N
-3

D
14

.3
 ±

 0
.9

15
.4

 ±
 1

.0
0.

04
4 

±
 0

.0
04

Pr
op

os
ed

 m
et

ho
d

13
.5

 ±
 1

.1
13

.8
 ±

 0
.9

0.
04

1 
±

 0
.0

04

T
ra

in
ed

 o
n 

re
al

 d
at

a
C

N
N

-2
D

12
.5

 ±
 0

.7
14

.7
 ±

 1
.3

0.
03

2 
±

 0
.0

03

C
N

N
-3

D
12

.0
 ±

 0
.7

14
.4

 ±
 1

.0
0.

03
0 

± 
0.

00
4

Pr
op

os
ed

 m
et

ho
d

10
.4

 ±
 0

.9
12

.9
 ±

 1
.1

0.
02

8 
± 

0.
00

3

26
00

SF
M

14
.2

 ±
 1

.1
15

.1
 ±

 1
.1

0.
10

4 
±

 0
.0

17

C
SD

14
.4

 ±
 1

.0
15

.4
 ±

 1
.3

0.
06

8 
±

 0
.0

11

O
PD

F
15

.0
 ±

 1
.5

16
.1

 ±
 1

.2
0.

11
0 

±
 0

.0
17

C
SA

14
.6

 ±
 1

.3
16

.0
 ±

 1
.4

0.
07

6 
±

 0
.0

15

M
ul

ti-
te

ns
or

 f
itt

in
g

15
.8

 ±
 2

.0
17

.0
 ±

 1
.8

-

B
ay

es
ia

n 
m

od
el

 f
itt

in
g

15
.1

 ±
 1

.7
15

.5
 ±

 1
.5

-

T
ra

in
ed

 o
n 

si
m

ul
at

ed
 d

at
a

C
N

N
-2

D
13

.4
 ±

 1
.2

14
.0

 ±
 1

.0
0.

04
4 

±
 0

.0
05

C
N

N
-3

D
13

.2
 ±

 0
.7

14
.1

 ±
 1

.1
0.

04
3 

±
 0

.0
05

Pr
op

os
ed

 m
et

ho
d

12
.5

 ±
 0

.8
12

.8
 ±

 0
.8

0.
04

0 
±

 0
.0

04

T
ra

in
ed

 o
n 

re
al

 d
at

a
C

N
N

-2
D

11
.9

 ±
 0

.8
13

.5
 ±

 1
.1

0.
02

8 
± 

0.
00

5

C
N

N
-3

D
11

.7
 ±

 0
.8

13
.1

 ±
 0

.8
0.

02
7 

± 
0.

00
3

Neuroimage. Author manuscript; available in PMC 2021 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Karimi et al. Page 31

b 
va

lu
e

M
et

ho
d

O
ri

en
ta

ti
on

 e
rr

or
 o

f 
th

e 
la

rg
es

t 
pe

ak
W

A
A

E
 (

de
gr

ee
s)

JS
D

Pr
op

os
ed

 m
et

ho
d

9.
5 

± 
0.

8
12

.1
 ±

 0
.8

0.
02

7 
± 

0.
00

4

Neuroimage. Author manuscript; available in PMC 2021 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Karimi et al. Page 32

Ta
b

le
 4

R
es

ul
ts

 o
f 

ex
pe

ri
m

en
ts

 to
 in

ve
st

ig
at

e 
th

e 
pe

rf
or

m
an

ce
 o

f 
di

ff
er

en
t f

O
D

F 
es

tim
at

io
n 

m
et

ho
ds

 w
ith

 d
ow

n-
sa

m
pl

ed
 d

at
a.

b 
va

lu
e

n d
at

a 
= 

60
n d

at
a 

= 
40

M
et

ho
d

O
ri

en
ta

ti
on

 e
rr

or
 o

f 
th

e 
la

rg
es

t 
pe

ak
W

A
A

E
 (

de
gr

ee
s)

JS
D

O
ri

en
ta

ti
on

 e
rr

or
 o

f 
th

e 
la

rg
es

t 
pe

ak
W

A
A

E
(d

eg
re

es
)

JS
D

10
00

SF
M

15
.7

 ±
 1

.0
17

.0
 ±

 1
.3

0.
12

2 
±

 0
.0

20
18

.2
 ±

 1
.1

19
.1

 ±
 1

.3
0.

14
8 

±
 0

.0
27

C
SD

16
.0

 ±
 0

.9
17

.1
 ±

 1
.2

0.
08

3 
±

 0
.0

21
18

.6
 ±

 1
.3

19
.4

 ±
 1

.6
0.

12
5 

±
 0

.0
26

C
SA

16
.2

 ±
 1

.2
17

.4
 ±

 1
.5

0.
09

8 
±

 0
.0

26
18

.8
 ±

 1
.6

19
.5

 ±
 1

.7
0.

12
9 

±
 0

.0
29

C
N

N
-2

D
14

.1
 ±

 1
.1

15
.6

 ±
 1

.4
0.

05
0 

±
 0

.0
06

16
.1

 ±
 1

.7
16

.4
 ±

 1
.5

0.
11

2 
±

 0
.0

17

C
N

N
-3

D
13

.5
 ±

 0
.9

14
.5

 ±
 1

.0
0.

03
8 

± 
0.

00
4

16
.2

 ±
 1

.3
16

.9
 ±

 1
.6

0.
10

6 
±

 0
.0

15

Pr
op

os
ed

 m
et

ho
d

11
.8

 ±
 0

.7
13

.1
 ±

 0
.8

0.
04

0 
±

 0
.0

04
14

.2
 ±

 1
.0

14
.5

 ±
 1

.1
0.

08
2 

± 
0.

01
9

26
00

SF
M

14
.8

 ±
 1

.1
15

.9
 ±

 0
.9

0.
10

8 
±

 0
.0

21
17

.0
 ±

 0
.9

17
.8

 ±
 1

.1
0.

12
6 

±
 0

.0
24

C
SD

15
.2

 ±
 0

.8
16

.1
 ±

 1
.0

0.
07

6 
±

 0
.0

18
17

.3
 ±

 1
.2

17
.8

 ±
 1

.3
0.

10
4 

±
 0

.0
23

C
SA

15
.1

 ±
 1

.5
16

.3
 ±

 1
.4

0.
09

0 
±

 0
.0

22
17

.5
 ±

 1
.5

18
.6

 ±
 1

.5
0.

11
5 

±
 0

.0
27

C
N

N
-2

D
13

.6
 ±

 1
.0

14
.9

 ±
 1

.3
0.

04
5 

±
 0

.0
05

15
.5

 ±
 1

.3
15

.7
 ±

 1
.3

0.
89

 ±
 0

.0
18

C
N

N
-3

D
12

.4
 ±

 0
.7

12
.8

 ±
 0

.9
0.

03
4 

± 
0.

00
5

15
.2

 ±
 1

.4
16

.0
 ±

 1
.3

0.
07

4 
± 

0.
01

4

Pr
op

os
ed

 m
et

ho
d

11
.2

 ±
 0

.8
12

.0
 ±

 0
.7

0.
03

3 
± 

0.
00

4
13

.2
 ±

 0
.8

13
.9

 ±
 1

.1
0.

07
0 

± 
0.

01
6

Neuroimage. Author manuscript; available in PMC 2021 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Karimi et al. Page 33

Table 5

Comparison of the proposed method and SFM in terms of the tractography score given by three independent 

experts. The values shown are the mean ± standard deviation of the total scores on 17 subjects. The score 

received by our method was significantly higher than the score received by SFM for all three experts.

Method Expert 1 Expert 2 Expert 3

SFM 15.6 ± 2.30 15.6 ± 1.19 18.4 ± 1.24

Proposed method 21.4 ± 2.19 22.1 ± 1.67 22.6 ± 0.77
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Table 7

Results of a set of experiments with 20 subjects from dHCP dataset to determine the effect of grid size on the 

fODF estimation accuracy. The first five rows show the results for the model shown in Fig. 1. The bottom two 

rows show the results for a model where the input and output of the MLP were represented with their spherical 

harmonics coefficients. The output of this model was then converted to fODF on a hemi-spherical grid with nf 

points. Therefore, in the last two rows, nf shows the size of the hemi-spherical grid used to compute WAAE 

and JSD.

Model WAAE (degrees) JSD

ns = 100, nf = 362 12.9 ± 1.1 0.028 ± 0.003

ns = 180, nf = 362 12.9 ± 1.1 0.027 ± 0.003

ns = 180, nf = 1000 12.7 ± 0.9 0.026 ± 0.004

ns = 360, nf = 1000 12.7 ± 1.0 0.026 ± 0.003

ns = 360, nf = 2500 12.6 ± 0.9 0.025 ± 0.003

Spherical harmonics (nf = 362) 13.4 ± 1.3 0.033 ± 0.004

Spherical harmonics (nf = 2500) 13.0 ± 1.2 0.032 ± 0.003
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