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Abstract

Summary—PRRT is a receptor-targeted radiation-based therapy for NETs. The key challenges in 

its deployment are prediction of efficacy and toxicity, patient selection and response optimization. 

This manuscript reviews the molecular profile of NETs and the strategies and tools used to 
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predict, monitor and assess PRRT toxicity. The few tumor gene mutations that can be evaluated 

(such as ATM/DAXX) are limited to pancreatic NETs. Transcriptomic and gene-based assays 

are effective in the prediction of radiotherapy response in other cancers. A blood-based 8 gene 

assay – the PPQ – has an overall accuracy of 95% for predicting responses to PRRT in NETs. 

There are currently no molecular markers that predict PRRT toxicity. Candidate molecular targets 

include 7 radiation-susceptibility SNPs. Blood transcriptomic evaluations and a combination of 

gene expression and specific SNPs, assessed by machine learning with tumor-specific algorithms, 

may yield molecular tools to enhance PRRT efficacy and safety.

Research strategy and selection criteria—A review of the literature based on the 

recommendations of systematic reviews and meta-analyses outlined by PRISMA and by the 

Cochrane Diagnostic Test Accuracy Working Group was undertaken (December 2019) using 

MEDLINE (PubMed.gov).

We identified 203 studies of which 7 had appropriate data for evaluation. All included appropriate 

data to assess whether molecular profiling was useful in PRRT, with a focus on prediction or 

response and/or toxicity. The final reference list was generated on the basis of relevance to the 

broad scope of this review.

Introduction

Background of PRRT:

Peptide receptor radiotherapy (PRRT) is a therapeutic strategy for metastatic or non­

resectable neuroendocrine tumors (NETs) that involves systemic administration of a 

radiolabeled octreotide derivative which preferentially targets the neoplastic expression 

of somatostatin receptors (SSTR). The clinical benefit of PRRT in the NETTER 1 

trial1 led to approval of 177Lu-DOTATATE for the treatment of well-differentiated 

gastroenteropancreatic (GEP) NETs. NETTER 1 was undertaken in well-differentiated G1 

and G2 midgut NETs, that were metastatic or locally advanced and exhibited disease 

progression at entry. PRRT exhibited a marked superiority versus high dose somatostatin 

analogues (SSA) consistent with the importance of using an appropriate targeted and 

biologically active therapy.

Efficacy and toxicity:

Patient selection is based on criteria such as tumor histology (histological/cytological 

confirmation of NET), imaging (PET/CT with 68Ga-labeled somatostatin analogs [68Ga­

SSA-PET] demonstrating tumor receptor binding) and safety measures (hematological, 

hepatic and renal function)2,3. FDG-PET can serve as a prognostic parameter but is not 

included as a stratification factor2,3.

PRRT is generally administered over 6–8 months and usually comprises 4 cycles of 177Lu­

DOTATATE (25–30GBq). Some centers use more individualized approaches: either a mix 

of radio-ligands (177Lu- and 90Y-peptides), addition of chemotherapy (chemo-radiotherapy) 

or different treatment cycles and administered activity. 177Lu-labelled peptides are often 

preferred due to better tolerance than 90Y-peptides. Therapeutic efficacy defined as “disease 

control” includes disease stabilization, partial or complete responses2,3. Evaluation post­
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therapy is based on comparisons with pre-therapy imaging (CT/MRI and 68Ga-SSA-PET) 
2,3.

Although PRRT prolongs progression-free survival (PFS), approximately 15–30% of 

patients will exhibit disease progression during therapy, and another 10–15% will progress 

early (6 months to 1 year) after treatment1–4. Although generally well-tolerated, PRRT 

may be associated with adverse events (e.g., for 177Lu-DOTATATE: subacute hematological 

toxicity (~10% G3-G4), myelodysplastic syndrome (2–4%) and renal failure (<0.4% grade 

4)5.

Two areas are critical for future optimization of PRRT. First, better patient selection 

and pretreatment stratification. This requires robust predictive markers of response. Risk­

based strategies, including PRRT combinations, targeted drugs, liver embolization, or 

chemotherapy, would be the result. Moreover, better methods are required for the prediction 

and early identification of toxicity, particularly myelotoxicity.

Outcome variables:

Treatment response represents the balance between the intrinsic aggressiveness of the tumor, 

the efficacy of the agent, medical status, immune response and adverse events. Several 

factors therefore influence outcome. Some, like grade or extent, provide “prognostic” 

information and cannot predict therapeutic responsiveness. Predictive features identify the 

likelihood of responding favorably to a medical intervention, irrespective of prognostic 

factors. Predictive features are usually derived from clinical trials that compare treatment to 

a control arm in subjects with and without the biomarker. Unfortunately, these factors are 

sometimes confused and prognostic factors are often erroneously considered predictive.

Precision medicine and tumor molecular profiling:

In the emerging era of precision medicine, criteria to assure drug efficacy and patient safety 

are critical. A balanced evaluation of cost-benefit ratios of high value therapies is also of 

utmost importance.

Increasingly, molecular biomarkers for predictive disease modeling and patient stratification 

are emerging, driven by the realization that genomic information facilitates understanding 

the architecture of disease. For instance, scoring systems or nomograms are used to 

assess risk in prostate cancer (https://www.mdcalc.com/ucsf-capra-score-prostate-cancer­

risk), (https://www.mskcc.org/nomograms/prostate) and are FDA-approved molecular tools. 

Neoplasia including uveal melanoma (gene expression score risk stratification/imaging­

treatment)6, breast (MammaPrint/treatment-decisions7), colon (prognostic subtyping8) and 

lung cancer (subtyping, treatment stratification)9 are successful applications of molecular 

profiling tools. These are also being developed for predicting radiation response (e.g., 

radio-sensitivity index [RSI]10) or radio-toxicity (e.g., radio-pathogenic SNPs in prostate 

cancer11).

The molecular characterization of NETs has lagged behind. Recent molecular observations 

in small bowel, pancreatic and bronchopulmonary NETs have pushed the development 
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of effective targeted therapy12–15. In particular, strategies that can define the molecular 

genomic status of a tumor and predict its susceptibility to PRRT have been developed.

This manuscript reviews current NET molecular literature that could be used to develop 

predictive tools for response and toxicity. We focus on providing context for individualized 

molecular profiling in PRRT (Appendix Figure 1, Table 1) and examine molecular 

signatures and other radiation therapies (e.g., external beam radiation) to identify whether 

these provide relevant information for NETs. In addition, clinical parameters e.g., grade, 

are evaluated to contrast with the utility of molecular profile data. Overall, we explore 

how current practice can be augmented by the use of novel genomic tools to optimize 

radionuclide therapy in NETs.

Results and Context

Radiobiology of radiation and PRRT:

From a radiobiological perspective, PRRT “kills” cells based on the absorbed dose, the type 

of radiation (e.g. beta-particles from 177Lu or 90Y, versus alpha-particles from 225Ac) and 

the intrinsic tumor radio-sensitivity16. Tumor doses that induce significant tumor shrinkage 

range from 10–340Gy using 177Lu-DOTATATE17.

Radio-sensitivity varies with the cell cycle; it is highest during mitosis and lowest during 

S-phase. This was recognized in 1906 when Bergonie and Tribondeau enunciated their 

“law” (“X-rays are more effective on cells which have a greater reproductive activity”)18. 

Radio-resistance conversely relates to lack of a substantial population of dividing tumor 

cells.

PRRT, like other radiotherapy, relies on radiation-induced DNA damage and suboptimal 

repair. Radioactive particles emitted by intracellularly trapped radio-peptides target DNA 

both directly and indirectly, through genotoxic oxidative stress, and induce single (SSB) 

or double-strand (DSB) breaks leading to apoptosis. Ionizing radiation from beta-emitters 

(Lu-177) principally induces SSB.

Several studies identify that radiation damage, irrespective of source (e.g., alpha-, 

beta-emitters) results in similar transcriptomic and pathway alterations19,20. Animal 

models (mice bearing human small intestinal NETs [GOT1] receiving 177Lu-DOTATATE) 

recapitulate these events (DNA damage/repair, proliferation, cell-cycle arrest, oxidative 

stress, apoptosis)21. Cellular radio-sensitivity is associated with defined processes and 

dysregulation of hundreds of genes (Table 2, Figure 1). A number of radiation-sensitizing 

and resistance gene assays have thus been developed in certain malignancies e.g., breast, 

esophageal adenocarcinoma22,23.

After radiation exposure, cells attempt to maintain their genetic integrity. This includes 

inhibition of progression from G1 to S-phase, activation of cell-cycle checkpoints (cell cycle 

arrest in G1, S and G2) and DNA repair and activation of transcription factors (P53 and 

NF-kB [nuclear factor-kappa B]). P53 is critical for radio-sensitivity: it is mutated in more 

than 50% of human cancers and loss of activity (mutation or phosphorylation) reduces radio­
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sensitivity24. DNA damage response is regulated by the PI3K kinase family: ATM (ataxia 

telangiectasia mutated), DNA-PK (DNA-dependent protein kinase), and ATR (Rad3-related 

kinase). Tumor oxygenation status is critical for efficient cell kill and hypoxia leads to 

radio-resistance. Hypoxia can also induce selection of clones resistant to apoptosis. This 

results in growth of tumor cells with expanded angiogenic potential, stem-like features and 

radio-resistance. Effective tumor cell kill results in decreasing tumor size, which is clinically 

recorded as “partial or complete response”. Re-growth depends on surviving cancer stem 

cells and the biological and genomic features related to radio-resistance.

The majority (80–90%) of well-differentiated NETs have a low proliferation rate and TP53 
mutations are rare (<5%). In regard to hypoxia, GEP-NET hepatic metastases frequently 

exhibit areas of hypodensity on CT-imaging, which likely represent central tumor necrosis 

secondary to hypoxia, very little in general is known about “stemness”; the relevance of 

cancer stem cells in NETs is unclear. The four major areas (proliferation, TP53/ATM 
mutations, hypoxia, stemness) related to radiation-response in other tumors either suggest a 

radio-resistant phenotype or are poorly understood in NETs.

The NET molecular landscape:

DNA-ploidy evaluation studies of the NET genomic landscape were undertaken in the 

1980s (Table 2). This was followed by more sophisticated, high-level analyses of DNA 

and its epigenome. Although no clear driver mutations were identified (especially for non­

pancreatic NETs), a number of genomic aberrations and modifications related to malignancy 

and possibly be associated with response to therapy have been identified.

Ploidy/S-phase studies: The low proliferative activity of NETs was noted in 1985, 

when 100% of intestinal carcinoid cases and 90% of pancreatic NETs were reported to 

exhibit diploid DNA and <2% S-phase nuclei25. The majority (87%) of rectal NETs are 

also diploid26. In bronchopulmonary NETs, diploidy was identified in 68% of typical 

carcinoids while aneuploidy was a feature of atypical histology27. Aneuploidy is a feature of 

malignancy and it is a prognostic marker; however, its relevance as a predictive marker in 

NETs remains unknown.

Chromosomal abnormalities: In small intestinal NETs, segmental losses of 

chromosome 18 occur in ~ 78%28. Recent high-coverage target sequencing of 52 sporadic 

tumors identified allelic loss of BCL2, CDH19, DCC and SMAD4 (all chromosome 18) in 

44%28. In pancreatic NETs, frequent losses of 1q, 3p (including VHL gene locus) and 11q 

(MEN1 and ATM gene loci) occurs and losses of 6q, 10q (PTEN locus) and 11p and gains 

on 7q and 9q have been noted29. In bronchopulmonary NETs, loss of 11q (including MEN1) 

is common (52%) as is loss of 10q and 13q (~30–40%)30.

Mutation studies: NETs are mutationally “quiet” tumors with ~0.1 variants/106 

nucleotides (mostly DNA base transitions – unlikely to affect protein activity)31. In small 

intestinal NETs, mutations in CDKN1B (P27, linked to MEN4; typically loss-of-function, 

truncating mutations) are identified in 8–10%32. Other mutations include APC (7.7%), 
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CDKN2C (7.7%), BRAF, KRAS, PIK3CA and TP53 (3.8% each)28. Germline mutations in 

MUTYH33 and IPMK34 have also been identified in a few families.

In contrast, several recurrent mutations have been recognized in pancreatic NETs. 

Approximately 35–50% harbor MEN1 mutations35, typically truncating mutations involved 

in chromatin remodeling. ATRX (10%), SETD2 and MLL3 (both 5%) may also be 

inactivated13. Mutations in DAXX (an apoptotic regulator) occur in ~20%. DNA damage 

repair deficiencies occur in 11% manifested as mutations in MUTYH, CHEK2 and BRCA2 
(both involved in homologous recombination). Additionally, inactivating mutations of 

negative regulators in the AKT/mTOR pathway have been noted in 10–12%.

In bronchopulmonary NETs, mutually exclusive mutations of histone covalent modifiers 

have been identified in ~40%15. These include mutations in MEN1 (9–11%) and TP53 
(10%), eukaryotic translation initiation factor 1A, X-linked (EIF1AX) (9%), lysine 

methyltransferase 2C gene (KMT2C or MLL3) (8%), and AT-rich interaction domain 

1 (ARID1A) (6–7%), mutations in the SETD family, in histone demethylases as well 

as in ATRP-dependent chromatin remodeling (SWI/SNF complex)15. Overall, chromatin 

remodeling is the pathway most affected (~50%) in these tumors36.

Transcriptomics: Expression profiling has identified 2 subtypes of small intestinal NETs: 

serotonin- or mixed-amine production12 with distinctive gene expression profiles versus 

pancreatic neoplasia37. Global microRNA profiling of small intestinal and pancreatic NETs 

revealed no overlapping expression. Selected mRNA may be prognostic38.

Pancreatic NET gene expression has defined 2 subtypes that correlate with benign 

versus malignant behavior37. Somatostatin receptor 2 (SST2) mRNA is absent or low in 

insulinomas39. MicroRNA dysregulation including upregulation of mir-103 and mir-10740, 

and overexpression of mir-21 (proliferation/liver metastases) is noted40. Non-functional 

tumors fall into two major subtypes based on epigenomic and transcriptomic signatures 

(ARX-positive versus PDX1-positive)14; those that are ARX+PDX1− are almost exclusively 

associated with distant relapse, suggesting this was a prognostic molecular marker for this 

tumor subgroup.

Bronchopulmonary NETs comprise three molecular subgroups41. Aggressive disease and 

poor outcome is related to mutations in MEN1, loss of OTP and NKX2 and upregulation 

of ANGPTL3, ERBB4 (HER4) and UGT gene expression41. Thyroid transcription factor 1 

(TTF1) is associated with outcome to PRRT but this is likely prognostic not predictive42.

A further application of gene expression data is circulating tumor marker signatures. The 

latter have been shown as clinically useful in diagnosis and have added value as liquid 

biopsies that provide direct measurements of NET proliferation, metabolism, epigenetic 

regulation, growth factor regulation and metastatic pathway signaling43.

Epigenetic regulation: Significant epigenetic changes have been identified in small 

intestinal NETs. Differential promoter methylation of RASSF1A and CTNNB1 occur in 

metastatic tumors and increased methylation of TP73, CHFR and RUNX3 are reported44. 

Global hypomethylation is increased in liver metastases which exhibit increased expression 
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of PI3K, ERBB1, PDGFRβ and mTOR signaling pathway components45. Genome 

methylation studies identified hyper-methylation of RASSF1A, CDKN2A and VHL genes 

and/or their promoter regions, and hypomethylation of ALU and LINE1 in pancreatic 

NETs46. DNA hypomethylation is associated with DAXX/ATRX loss and chromosomal 

instability47. In lung NETs, RASSF1 promoter hypermethylation and abnormal methylation 

of the p15INK4b gene have also been identified48.

Prediction of Tumor Response to PRRT

A number of parameters are used to predict response.

Dose of PRRT: The relationship between the tumor-absorbed dose and RECIST 1.1 

response has been prospectively demonstrated for metastatic pancreatic NETs (177Lu­

DOTATATE). Tumor doses ranged from 10–340Gy with a Pearson correlation co-efficient 

with tumor reduction of 0.64 for tumors measuring 2.2–4cm and 0.91 for tumors >4cm in 

diameter17. A similar relationship was not demonstrable for small-intestinal metastases49. 

Dose-effect relationships for renal and bone marrow toxicity have been demonstrated in 

numerous studies. Nevertheless, a dose threshold is difficult to define suggesting individual 

patient sensitivity, possibly genomic5.

Utility of clinical evaluation and current tools: Several clinical parameters have 

been studied. These include grade, extent, functional status, primary location and baseline 

metabolism (FDG PET/CT). None accurately predict response in a particular patient5. These 

factors are prognostic, not predictive (Figure 2, Table 3). The NETTER 1 study evaluated 

several factors as predictive markers1, none of which were associated with significant 

outcomes and the calculated hazard ratios were similar across all subgroups.Histological 

grade and Ki67 are “prognostic” markers but accuracy is limited by random biopsy, tumor 

heterogeneity, and inter-observer variability. Tissue biopsies are obtained from one site 

and do not represent disease status since metastatic biology differs from the primary and 

evolves over time. Ki67has e limited value in predicting PRRT. The NETTER 1 study 

demonstrated no value of G1 vs. G2 tumors for predicting PRRT1. Sorbye et al., recently 

evaluated PRRT in G3 tumors50. Although efficacy was evident, the mPFS (11–16 months) 

is considerably lower than G1/G2 tumors e.g., NETTER 1 (mPFS not reached). This 

suggests that proliferation index alone is not a useful marker for predicting PRRT and that 

other biological factors, as yet unidentified, determine the radio-sensitivity of NETs.

Extensive tumor load and reduced performance status (KPS ≤70) are associated with shorter 

PFS2. These are both prognostic factors. FDG avidity is also associated with shorter PFS 

(177Lu-DOTATATE), is a determinant of a poorer PFS irrespective of treatment modality51.

Tumor origin may have some relevance. Small intestine tumors, especially associated with 

the carcinoid syndrome (CS), have a lower response rate compared to certain pancreatic 

NETs e.g., gastrinoma4. However, there is evidence for symptomatic response in patients 

with CS and improved quality of life52. The poorer PFS likely reflects hepatic tumor burden. 

Alternatively, the differences in responses could reflect the generally lower replication/

mitosis rates noted in small intestinal NETs.
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Imaging biomarkers: Somatostatin receptor expression intensity (imaging) provides a 

measure of tumor-absorbed dose. The probability of response, however, is only 60%, 

even with very intense OctreoScan uptake3. Moreover, the NETTER 1 study identified no 

significant difference between those with SSR Grade 4 uptake versus SSR<Grade 41. While 

somatostatin receptor expression is important as an inclusion factor (therapeutic target), it 

is the biology or molecular genomic characteristics of the tumor that determine sensitivity 

to PRRT. Recently, in patients with liver metastases, a 68Ga-DOTATOC SUVmax cut-off 

of 16.5, showed a 95% sensitivity and 60% specificity for response prediction53. The low 

specificity is problematic indicating that even individuals with a high SUVmax, may not 

respond to therapy. Tumor to liver SUV ratio >2.2 is a possible alternative but requires 

further validation.

Imaging evaluation is limited by the subjective nature of assessment. Recently, algorithmic 

qualitative and quantitative characterization (neural networking/AI) of CT or PET images, 

has been introduced to correlate tumor phenotype with genotype. These are effective in 

differentiating benign from malignant lesions, defining grading, and supporting tumor 

behavior prediction including therapy response. SSR-PET image heterogeneity, based on 

the textural feature “Entropy”, correlates with both PFS and overall survival (OS) (AUC of 

0.60 and 0.70) after PRRT54. These novel strategies may advance the field if they can indeed 

provide predictive rather than just prognostic information.

Preliminary data in mice with GOT-1 NETs treated with 177Lu-DOTATATE suggest 

a correlation between pre-treatment DCE (dynamic contrast-enhanced)-MRI signal 

enhancement ratio at 40–60% radial distance, tumor response and CCD89 expression (a 

protein implicated in DNA damage repair, proliferation, and cell cycle arrest)21. Changes 

in diffusion after treatment correlated with response and with CATA, a protein involved in 

oxidative stress and apoptotic death21.

Current biomarkers: Circulating tumor markers such as CgA and NSE have been 

evaluated extensively. Baseline CgA>600ng/ml (i.e., 6xULN) in one 177Lu-DOTATATE 

series constituted a risk factor for early progression. However, CgA is a surrogate marker for 

tumor burden, which is prognostic. Similar results were described for NSE; levels>15ng/ml 

correlated with a shorter OS. This likely indicates prognosis than evidence of PRRT­

responsiveness55. The NETTER 1 study confirmed that secretory markers had no utility; 

there were no differences in outcome between individuals with CgA>2ULN vs <2ULN. 

Similarly, 5-HIAA (using 2ULN as a cut-off) had no relation to outcome1.

Molecular markers: A number of molecular markers for PRRT-response prediction 

have been proposed and include: detection of specific mutations and methylated DNA, 

identification of chromosomal abnormalities or transcriptional alterations. These could be 

detected both at a tissue level and in the circulation, if assays were available. Tissue 

identification is problematic (access difficulty, tumor heterogeneity).

a. TP53 is not currently used as a predictive marker for radiation therapy. It is better 

regarded as an “inclusion” factor (i.e. evidence for wild-type TP53), similar to 

image-based SSR uptake. While TP53 is mutated in up to 50% of other cancers, 
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this gene is mutated in <5% of grade 1 (G1) and grade 2 (G2) NETs, irrespective 

of anatomical origin. It is unlikely that P53 will have utility as a NET-predictive 

tool. However, in a high proportion of neuroendocrine carcinomas (60–100%) 

TP53 is mutated and these may require exclusion or combination therapy if 

PRRT is considered.

b. DNA damage repair genes and apoptosis regulation (e.g., pro-apoptotic DAXX) 

alterations occur in ~30% of pancreatic NETs and have been proposed as 

molecular targets. However, in animal models, DAXX heterozygosity did not 

induce sensitization to sub-lethal doses of ionizing radiation56.

c. ATM pathway alterations may be informative as increased radiation­

responsiveness is a well-recognized relationship16. However, gene dysregulation 

is also associated with radiation toxicity so caution is required in resolving the 

role of ATM-markers in PRRT.

d. Chromatin remodeling genes exhibit high level of alterations including MEN1 
(~40% lung NETs, 50–60% PNETs). There is a paucity of studies of PRRT in 

MEN1 syndrome but good palliative responses to 177Lu-DOTATATE have been 

reported57. Adequately powered, prospective studies are required to determine 

whether this gene is predictive or prognostic.

e. Differential methylation patterns are a consistent NET feature. However, their 

utility as predictive biomarkers has not been examined. Currently, epigenetic 

markers of radio-sensitivity or resistance have not been determined. Such 

markers are likely more relevant as prognostic factors.

f. Chromosomal imbalances and abnormalities are not currently standard tests 

except in hematological and fetal assays. While large-scale chromosomal 

instability is a common NET feature, and specific patterns of gain/loss have 

some prognostic value58, there is no evidence for predictive utility. Chromosomal 

assessment seems currently unlikely to provide predictive utility.

g. Transcriptional data is a useful resource to generate biomarkers with either 

prognostic or predictive value. Such information could be derived from the tumor 

or as a circulating biomarker. Molecular profiling in other cancers including 

tissue-based assays (MammaPrint, Oncotype Dx) suggests a viable precedent 

for assay development in NETs. In terms of radiobiology, a variety of tissue­

based marker gene assays have been developed. These are explored in “Other 
transcriptome-assays”. In NETs, a circulating 51 NET-specific marker gene 

assay has been reported as an in vitro diagnostic tool. Genes are detectable in 

the different NET subtypes and the assay functions as a pan-tumor-biomarker. 

Circulating gene expression is robust, easy to detect and quantify, and is 

specifically derived from NET tissue and not from blood cell populations e.g. 

lymphocytes59. The tool is an effective NET therapy monitor, and test score 

alterations are useful as an interventional biomarker for PRRT60. Recently a 

predictive liquid biopsy assay for PRRT (PRRT Prediction Quotient or PPQ) has 

been developed using transcriptomics and grading61,62.
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PRRT Prediction Quotient (PPQ):

Molecular Profiling to predict PRRT Efficacy: Analysis of pre-treatment blood 

samples from patients undergoing PRRT identified different gene expression patterns 

in responders versus non-responders61. These reflected genes involved in growth factor 

signaling (GFS) and metabolism (M). Levels of gene expression (aggregating normalized 

values of GFS and M mRNA>5.9), were associated with an AUC of 0.74 for predicting lack 

of progression on PRRT (6 months after therapy). A separate analysis of histological grade 

indicated that G1/G2 and typical/atypical carcinoids were more likely to achieve stable 

disease or response (77%) than high grade tumors (50%)61. Two of the four high grade (G3) 

tumors in this series responded. Integration of gene expression and grading using logistic 

regression modeling allowed derivation of the PPQ that exhibited an AUC of 0.90 with a 

binary output of “responder (or PPQ-positive) and non-responder (PPQ-negative). This was 

associated with a predictive accuracy of 94% for response to PRRT (those achieving disease 

stabilization or demonstrating a partial response versus individual exhibiting progressive 

disease at the time of follow-up) in the test cohort.

A significant treatment effect (mPFS not reached) was identified for PPQ biomarker 

“positive” patients62. Conversely, PPQ-negative patients exhibited an mPFS of 8 months 

(from start of treatment; HR 36.4, p<0.0001). The sensitivity of the PPQ was 100% for 

responders with an NPV of 100% (non-responders).

A subsequent prospective evaluation at two independent sites validated the PPQ as an 

effective predictive biomarker62. Responders (stable disease or partial/complete response) 

were correctly predicted in 97% and non-responders in 100%. In responders, mPFS was not 

reached; in non-responders mPFS was 9.7 and 14 months, respectively. The HR was 18–92 

(p<0.0001), with sensitivity and NPV of 94–97% and 83–93%62.

It should be noted that biomarkers may have both predictive and prognostic features. The 

association between a biomarker and outcome, regardless of treatment, should be evaluated. 

While this should ideally be undertaken in a randomized study, comparing results from 

single arm studies collected both prospectively and retrospectively are well-described and 

established approaches in biomarker validation63–65. Disappointingly the NETTER 2 study 

has determined that it will not include a predictive molecular biomarker in the evaluation of 

the efficacy of PRRT.

To determine the specificity of the PPQ as a predictive as opposed to prognostic, two 

additional cohorts (n=128 patients) of non-PRRT treated patients were examined: cohort #1, 

SSA treatment (n=28) was evaluated and PPQ measured before therapy. No differences were 

identified between those who had progression (47%) or stability (53%) on follow up at time. 

The PPQ was therefore not predictive for assessing SSA efficacy alone in the absence of 

a radioligand. Cohort #2 included 100 patients in a Registry study, none of whom received 

PRRT. The PPQ was not predictive of PFS and ineffective as a prognostic marker over the 

18 months evaluated62.

These studies demonstrate that the PPQ functions specifically as a predictive biomarker for 

PRRT and correctly detected a radiation sensitivity fingerprint in the blood.
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Other transcriptome-based radiation sensitivity assays: Several gene tissue-based 

expression assays have been developed to predict radiation sensitivity in some other cancers. 

Clinically validated assays have been described by Eschrich et al.66 and Kim et al.23.

The signature proposed by Eschrich used a panel of 48 human cancer cell lines to develop 

a radio-sensitivity index (RSI). This is a 10 gene output which identifies radio-resistance 

based upon gene expression of the “Signal transduction and stress response signaling” 

pathway including RELA, IRF1 and JUN. In one study, 95% of breast cancer patients 

deemed radiosensitive were relapse-free 5-years after therapy compared to 77% predicted to 

be radiation-resistant22. A glioblastoma study reported 82% of the radiosensitive cohort 

alive at 12 months compared to 51% of the radiation-resistant group67. The overall 

predictive accuracy of the RSI ranged from 42%−57%. Those with a radiation-sensitive 

signature, however, exhibited longer relapse-free survival (95% vs. 75%) or OS (1 year: 

84.1% vs. 53.7%, HR: 1.64).

Kim proposed a radio-sensitivity gene signature including 31 genes that captured 

information in the “Signal transduction and stress response” pathway as well as the “Cell 

cycle check-point activation” system. In a different study, neither signature accurately 

predicted radiation response in esophageal cancers suggesting there may be a neoplasia­

specific signature68. These authors identified a 4 gene panel (CBR1, PAK2, RAB13 and 

TWF1) associated with cell adhesion and cellular cross-talk relevant to radiation sensitivity 

in this cancer. In 31 patients studied, this gene panel differentiated a responsive cohort with 

an OS not reached from a non-responsive cohort with an OS of ~565 days. The prediction 

accuracy was 81%.

These data identify that transcriptomic strategies have utility for developing tools to predict 

benefit from radiation therapy. The PPQ captures both growth factor and metabolomic 

genes that are specifically related to oxidative stress, metabolism and hypoxic signaling. 

A direct comparison of the PPQ genes with the Eschrich and Kim signatures identified 

significant overlap between genes measured in blood and those identified at a tissue level. 

This demonstrates that the blood PPQ signature captures radio-sensitive information derived 

from tumor tissue. It may be of interest to assess whether the NET PPQ is effective as a 

predictive tool in other endocrine and non-endocrine cancers treated with targeted radiation 

e.g., 131I-Na treated thyroid cancers or prostate cancers targeted by 177Lu-PSMA.

Prediction of PRRT Toxicity

Acute and delayed renal and hematologic toxicity result from exceeding the radiation 

threshold of individual organ tolerance. PRRT tolerance varies with the absorbed dose to 

specific organs (Figure 1). This is related both to the dwell-time in an excretory organ 

e.g., kidney, but also to binding of the radio-ligand to SSTR2 on non-tumor cells, such as 

lymphatic tissues, spleen, and in the hematological progenitors in the marrow.

Utility of clinical evaluation in the prediction of toxicity: The role of clinical 

factors for predicting toxicity in NETs remains unclear. For the kidney, these may include 

long-standing and poorly controlled hypertension or diabetes. For the bone marrow, toxicity 

may be related to pre-exposure to alkylating chemotherapeutic agents. A review of 807 
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patients treated with PRRT using 177Lu, 90Y or a combination thereof with follow-up up 

to 180 months (1997–2013) from one center was evaluated to identify clinical factors that 

could be used to predict toxicity5. A series of regression analyses indicated that only 20–

27% of severe nephrotoxicity (<2%) was modelled by clinical risk factors, with hypertension 

(co-efficient 0.14, p<0.0001) and low hemoglobin (co-efficient 0.21, p<0.0001) being the 

most relevant. Myelodysplastic syndrome occurred in ~2.5% although it was modelled by 

clinical data in 30%. Platelet toxicity grade (co-efficient 0.14, p=0.01) and increased time 

after PRRT (>1000 days) were relevant risk factors for MDS. Overall, known clinical risk 

factors provided a limited (<30%) risk estimate and were unable to predict toxicity in a 

particular individual. It seems likely that toxicity may represent an individual susceptibility, 

based upon an intrinsic genomic susceptibility in addition to residual reserve from prior 

treatments.

Genomic prediction of toxicity: Tissue or intrinsic radio-sensitivity is substantially 

influenced by intrinsic factors encoded in our DNA. However, little is known regarding 

the genetic architecture of radio-sensitivity or the specific genomic variants underlying 

individual tissue responses to radiation. Currently, several studies e.g., the international, 

REQUITE study, are ongoing to prospectively determine and validate predictive models 

and biomarkers for radiotherapy for breast, lung and prostate cancer. Identifying intrinsic 

susceptibility to radiation exposure is a key unmet need in the field of radiation oncobiology, 

to reduce severe “unpredictable” long-term effects.

The Terra Incognita of Genomic Toxicity Prediction: Several genes are involved 

in response to radiation injury, because homozygous mutations result in unusually severe 

reactions to radiation therapy. An example is the ATM gene: individuals with ataxia­

telangiectasia exhibit an extreme propensity to radiation toxicity69. Other genes (NBS1, 

LIG4) may be involved in DNA damage response or development of fibrosis and 

are likewise considered candidate factors for radiation sensitivity/toxicity. However, the 

incidence of common adverse effects cannot be explained by high penetrant mutations 

(or genetic heterogeneity/homozygosity) as these occur too infrequently. An individual’s 

risk therefore is most likely determined by a series of common genetic variants (SNPs). 

Thousands of such variants may eventually be identified that determine radio-sensitivity.

The international Radio Genomics Consortium (RGC) was established in 2009 to develop 

assays to predict toxicity. This is a National Cancer Institute/NIH-supported Cancer 

multi-investigator, multinational Epidemiology Consortium (http://epi.grants.cancer.gov/

Consortia/single/rgc.html). Molecular profiling using GWAS identified a number of SNPs 

associated with radiation injury including the ATM rs1801516 SNP70. In this study of 

5456 breast and prostate cancer patients, a significantly increased risk of toxicity was 

identified for carriers of the minor (Asn) allele with odds ratios ranging from 1.2–1.5. In 

a separate meta-analysis, SNPs in the XRCC1 gene, specifically the rs25487 Arg399Gln 

polymorphism, increased the risk of acute radiation-induced side effects (odds ratios 1.29–

1.49) but not late radiation-induced effects71. This suggests separate pathways may be 

pertinent to acute and irreversible toxicity.
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Overall, seven SNPs have been confirmed as associated with late effects of radiotherapy. 

Genes range from TGFβ1 (growth factor signaling) to SLC36A4 (high affinity amino acid 

transporter) and are associated with toxicity-related endpoints including fibrosis and overall 

toxicity72. While these have been defined for external radiotherapy, they represent potential 

candidate factors for PRRT-related toxicity.

An alternative strategy is transcriptomic mining using interactome analysis and “omic 

cluster” interrogation. Gene expression profiles have been developed and validated for 

predicting the development of radiation-induced fibrosis in breast cancer73. The tissue 

expression of 9 genes CDC6, CXCL12, FAP, LMNB2, LUM, MXRA5, SOD2, SOD3, 

and WISP2, were evaluated in cultured normal fibroblasts and a risk score developed. 

This index had clinical utility (33% accuracy, 92% specificity) with an odds ratio of 7.373 

and provides support for the feasibility of developing a transcriptome-based assay that can 

predict radiation-induced toxicity.

Despite these advances, the magnitude of the genetic contribution to radiation response 

likely will exceed our current understanding of individual risk variants and genes involved. 

Future deployment of mathematical analysis using machine learning methodology and deep 

neural network analysis may provide additional or complementary insights into myriad 

genes involved in defining an individual “toxicity-liable” profile for a specific radionuclide 

treatment.

Summary

Molecular profiling of NETs identifies few predictive markers for PRRT efficacy or toxicity 

(Figure 3). However, a blood RNA assay has been developed and validated as an accurate 

predictor of tumor response or stabilization in NETs treated with PRRT. Currently, no tool, 

exists for PRRT toxicity. We predict that transcriptomic evaluations or a combination of 

gene expression and specific SNPs, coupled to machine learning and using unique tumor­

specific algorithmic constructs74, will yield a viable strategy to predict the safety of isotope 

therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Radiation sensitivity and toxicity: pathobiological features, pathways and candidate 
genes.
Tumor features relevant to radiation sensitivity (pink – top left): include proliferation, 

hypoxia, “stemness” and mutations particularly in TP53 and the ATM genes. Molecular 

profiling studies have identified pathways common to radiation responsiveness (green – 

bottom left). These include DNA damage recognition and repair; senescence induction and 

apoptosis.

Radiation toxicity affects the kidneys, individual blood cell populations e.g., platelets, white 

cells and the bone marrow (pink – top right). Candidate factors related to toxicity (green 
– bottom right) include intrinsic sensitivity to radiation which may be related to SNPs or 

mutations in DNA damage/repair pathways including ATM, NBS1 and LIG4. A variety of 

genes validated as radiation-sensitive genes in other cancers have been identified as relevant 

to PRRT lung and gut sensitivity, that as they are. Furthermore, intrinsic radiation toxicity 

has been found for TNFα and TANC1 genes. None of these candidate genes have been 

evaluated for PRRT.
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Figure 2. Clinical Factors commonly used to “predict” PRRT response
A panoply of clinical factors has been evaluated as “predictors” of PRRT response. Factors 

that predict clinical outcomes and survival have been misperceived as predictors of PRRT 

response. Thus, performance status, primary location, and disease extent are all prognostic 

and unrelated to the prediction of PRRT response. Similarly, glucose-based metabolism 

(FDG-positive) and tumor grade are also prognostic features. Circulating monoanalyte 

biomarkers, if elevated, reflect tumor burden, and are prognostic. Other parameters such 

as somatostatin receptor imaging intensity or IHC SSTR expression provide evidence of 

target existence and properly are “inclusion” factors. They cannot predict PRRT response 

but represent indices of target acquisition likelihood.

CgA = chromogranin A; IHC = immunohistochemistry; KPS = Karnofsky performance 

score; NSE = neuron-specific enolase; ORR = objective response rate; OS = overall survival; 

PFS = progression free survival; SSTR = somatostatin receptor; IHC= immunohistochemical

(Figure adapted from Bodei et al. EJNMMI 2018; 45(7): 1155–69).
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Figure 3. Current and future targets for predicting sensitivity and toxicity.
Sensitivity. PRRT-sensitivity prediction can currently be measured using the blood-based 

transcriptome assay (PPQ). Different tissue-based multigene radiation-sensitivity assays 

(10–31 genes) for other cancers have not yet been tested for PRRT. Molecular profiling 

indicates that somatic mutations of chromatin remodeling genes, DNA damage/repair and 

apoptosis may be viable targets for evaluation. For lung, this may include TTF1, MEN 
and ARID genes. In pancreatic NETs a series of mutations in ATM, BRCA2, CHECK2, 

MUTYH and DAXX might be relevant. Given the absence of mutations in small intestinal 

NETs, the most likely candidate is chromosome 18q loss.

Toxicity: Germline SNPs in a series of genes that are proven radiation sensitivity intrinsic 

factors require assessment. Fibrosis can be evaluated using a 9, circulating gene-based 

fibrosis assay.

Separately, epigenetic or CTC evaluation may provide alternative molecular strategies for 

either sensitivity or toxicity prediction.
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Table 1.

Relevant PRRT-related studies – molecular-based profiling, prognosis and prediction

Category Radiotherapy Parameters Type of 
Response

Type of 
study

Patient 
number

Primary Site Refs

Prognostic 177 Lu-PRRT Various clinical 
parameters including 

SSR uptake

PFS P, two-arm 221 Midgut 1 

Prognostic None FDG-glucose uptake 
(imaging)

PFS/OS NHx 100 All NET sites 51 

Prognostic 177 Lu-PRRT Various including CgA, 
Ki-67 etc

PFS/OS R 74 GEP-NET 55 

Predictive 177 Lu-PRRT/ 90 Y-PRRT, 
mixed, and chemotherapy

PPQ, transcriptomics, 
grade, CgA, SSR etc

PFS P, single 

arm*
54 All NET sites 61 

Predictive 177 Lu-PRRT/ 90 Y-PRRT, 
mixed, and chemotherapy

PPQ, transcriptomics, 
grade, CgA, SSR etc

PFS P, single 

arm*
158 All NET sites 62 

Interventional 177 Lu-PRRT/ 90 Y-PRRT, 
mixed, and chemotherapy

NETest, CgA PFS P, single 
arm

122 All NET sites 60 

Toxicity 177 Lu-PRRT/ 90 Y-PRRT, 
mixed, and chemotherapy

Various clinical 
and pathobiological 

parameters

PFS/OS R 807 All NET sites 5 

NHx = natural history (follow-up); (P), prospective study; (R), Retrospective study.

*
comparisons were made with separate study cohorts of SSA treatment and long-term follow-up
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Table 2.

Genomic factors related to radiation responsiveness

Proliferation Ploidy/S-phase studies

Genomic Chromosomal abnormalities e.g., chromosomal loss or amplification, copy number variation (CNV), or translocations

Mutations Tumor burden, specific targeted mutations e.g., TP53 or ATM, or gene-fusions

GWAS Single nucleotide polymorphisms (SNPs)

Transcription Transcriptomics e.g., whole exome, mRNA, miRNA, lncRNA

Epigenome Chromosomal modifications (transcriptome-targeting, or structural) e.g., methylation, acetylation

GWAS = genome wide association studies, lncRNA = long non-coding RNA, mRNA = messenger RNA, miRNA = microRNA
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