TABLE 4.
Datasets | Models | AUC (95% CI) | ACC | SEN | SPE | PPV | NPV |
Training dataset | R-model | 0.822 (0.776, 0.867) | 0.826 | 0.912 | 0.645 | 0.844 | 0.778 |
M-model | 0.798 (0.749, 0.846) | 0.733 | 0.680 | 0.844 | 0.902 | 0.556 | |
RM-model | 0.848 (0.810, 0.885) | 0.795 | 0.788 | 0.809 | 0.897 | 0.644 | |
CM-model | 0.811 (0.770, 0.853) | 0.758 | 0.761 | 0.752 | 0.866 | 0.599 | |
CRM-model | 0.856 (0.820, 0.892) | 0.756 | 0.707 | 0.858 | 0.913 | 0.582 | |
Temporal validation dataset | R-model | 0.817 (0.744, 0.890) | 0.800 | 0.928 | 0.653 | 0.755 | 0.887 |
M-model | 0.751 (0.674, 0.828) | 0.690 | 0.590 | 0.806 | 0.778 | 0.630 | |
RM-model | 0.865 (0.807, 0.924) | 0.813 | 0.855 | 0.764 | 0.807 | 0.821 | |
CM-model | 0.795 (0.723, 0.867) | 0.755 | 0.819 | 0.681 | 0.747 | 0.766 | |
CRM-model | 0.882 (0.828, 0.936) | 0.832 | 0.928 | 0.722 | 0.794 | 0.897 | |
External validation dataset | R-model | 0.691 (0.567, 0.816) | 0.693 | 0.721 | 0.656 | 0.738 | 0.636 |
M-model | 0.624 (0.490, 0.759) | 0.680 | 0.953 | 0.313 | 0.651 | 0.833 | |
RM-model | 0.721 (0.601, 0.841) | 0.733 | 0.744 | 0.719 | 0.780 | 0.676 | |
CM-model | 0.738 (0.621, 0.855) | 0.747 | 0.860 | 0.594 | 0.740 | 0.760 | |
CRM-model | 0.738 (0.618, 0.857) | 0.760 | 0.767 | 0.750 | 0.805 | 0.706 |
R-model, radiomics model; M-model, morphological model; RM-model, radiomics-morphological model; CM-model, clinical-morphological model; CRM-model, clinical-radiomics-morphological model; AUC, area under the receiver operating curve; ACC, accuracy; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value. SEN, sensitivity; SPE, specificity.