Skip to main content
. 2021 Aug 11;15:721268. doi: 10.3389/fnins.2021.721268

TABLE 4.

Performance of the radiomics, morphological, radiomics-morphological, clinical-morphological, and clinical-radiomics-morphological models.

Datasets Models AUC (95% CI) ACC SEN SPE PPV NPV
Training dataset R-model 0.822 (0.776, 0.867) 0.826 0.912 0.645 0.844 0.778
M-model 0.798 (0.749, 0.846) 0.733 0.680 0.844 0.902 0.556
RM-model 0.848 (0.810, 0.885) 0.795 0.788 0.809 0.897 0.644
CM-model 0.811 (0.770, 0.853) 0.758 0.761 0.752 0.866 0.599
CRM-model 0.856 (0.820, 0.892) 0.756 0.707 0.858 0.913 0.582
Temporal validation dataset R-model 0.817 (0.744, 0.890) 0.800 0.928 0.653 0.755 0.887
M-model 0.751 (0.674, 0.828) 0.690 0.590 0.806 0.778 0.630
RM-model 0.865 (0.807, 0.924) 0.813 0.855 0.764 0.807 0.821
CM-model 0.795 (0.723, 0.867) 0.755 0.819 0.681 0.747 0.766
CRM-model 0.882 (0.828, 0.936) 0.832 0.928 0.722 0.794 0.897
External validation dataset R-model 0.691 (0.567, 0.816) 0.693 0.721 0.656 0.738 0.636
M-model 0.624 (0.490, 0.759) 0.680 0.953 0.313 0.651 0.833
RM-model 0.721 (0.601, 0.841) 0.733 0.744 0.719 0.780 0.676
CM-model 0.738 (0.621, 0.855) 0.747 0.860 0.594 0.740 0.760
CRM-model 0.738 (0.618, 0.857) 0.760 0.767 0.750 0.805 0.706

R-model, radiomics model; M-model, morphological model; RM-model, radiomics-morphological model; CM-model, clinical-morphological model; CRM-model, clinical-radiomics-morphological model; AUC, area under the receiver operating curve; ACC, accuracy; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value. SEN, sensitivity; SPE, specificity.