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a b s t r a c t 

COVID-19 has emerged as one of the deadliest pandemics that has ever crept on humanity. Screening 

tests are currently the most reliable and accurate steps in detecting severe acute respiratory syndrome 

coronavirus in a patient, and the most used is RT-PCR testing. Various researchers and early studies im- 

plied that visual indicators (abnormalities) in a patient’s Chest X-Ray (CXR) or computed tomography 

(CT) imaging were a valuable characteristic of a COVID-19 patient that can be leveraged to find out virus 

in a vast population. Motivated by various contributions to open-source community to tackle COVID-19 

pandemic, we introduce SARS-Net, a CADx system combining Graph Convolutional Networks and Convo- 

lutional Neural Networks for detecting abnormalities in a patient’s CXR images for presence of COVID-19 

infection in a patient. 

In this paper, we introduce and evaluate the performance of a custom-made deep learning architec- 

ture SARS-Net, to classify and detect the Chest X-ray images for COVID-19 diagnosis. Quantitative analysis 

shows that the proposed model achieves more accuracy than previously mentioned state-of-the-art meth- 

ods. It was found that our proposed model achieved an accuracy of 97.60% and a sensitivity of 92.90% on 

the validation set. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

COVID-19, also known as the coronavirus disease 2019, is an in- 

ectious disease caused by severe acute respiratory syndrome coro- 

avirus 2 (SARS-CoV-2), known as 2019 novel coronavirus (2019- 

CoV) previously. The cases started spreading worldwide, mainly 

rom Wuhan, China, where first cases were reported in late De- 

ember 2019 [40] . 

The severe acute respiratory syndrome coronavirus 2 has a 

omparatively more significant risk on humanity due to its high 

eproductive number than SARS coronavirus (mean R0 for SARS 

oronavirus 2 is 3.28) [38] . The mean serial interval was calculated 

s 3.96 days, considerably shorter than mean serial interval calcu- 

ated for SARS (8.4 days) or MERS (14.6 days) [8] . Various measures 

ave been taken to suppress its exponential Reproductive Number 

R0) and Series Interval. It is crucial to immediately isolate the in- 

ected person from uninfected population if there is an absence of 

pecific therapeutic drugs or vaccines for COVID-19. While screen- 
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ng tests have been very useful in finding infection in a patient, 

he patient gets quick treatment and is isolated to stop the virus 

pread. RT-PCR testing has been instrumental during initial stage 

f virus spread and is considered gold standard. (Bell et al.) How- 

ver, it has some flaws that might emerge once the most affected 

ountries enter community transmission phase. 

As the virus enters community transmission phase, there’ll be 

 need for finding an optimal tradeoff between testing accuracy 

performance) and time taken for testing to be done. With many 

ases emerging every day, it will be harmful to the human body to 

ait for a few days before screening tests. Therefore, some feasi- 

le alternative method is very much needed. One such method is 

OVID-19 detection through radiography images. Chest radiography 

maging includes chest X-ray (CXR) or Computed Tomography (CT) 

maging, that is conducted by some radiologists who further look 

or visual indicators (abnormalities) associated with SARS COVID- 

9 infection. 

Chest CT and CXR imaging modalities have been used to di- 

gnose Pneumonia for a long time. [26] They are currently the 

est method available because of their less complexity and high 

vailability, which aids in the faster diagnosis of a patient. They 

re the most commonly used imaging modality for diagnosing and 

creening various chest-related diseases and play a vital role in 
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Fig. 1. Example of two CXR images from the COVID x dataset showing (A) non-COVID infection and (B) COVID-19 infection. 
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linical and epidemiological studies. Recent studies have shed light 

n Chest CT, demonstrating typical radiographic features of most 

ovid infected patients, including ground-glass opacity, multifocal 

atchy consolidation, and interstitial changes with a peripheral dis- 

ribution. As per a study conducted by (Daniel J Bell et al., 2020) 

hest radiography is less sensitive than chest CT; it is typically the 

rst-line imaging modality used for patients suspected of COVID- 

9. Of the Chest radiographs of patients with covid requiring hos- 

italization, 69% (Wong et al., 2019) of total patients had an ab- 

ormal chest radiograph when admitted. After admission, approxi- 

ately 80% had abnormalities at any time during hospitalization. 

he above findings were most extensive about 10-12 days after 

ymptoms. 

Radiography examinations are usually done for any respiratory- 

elated ailments and therefore it is readily available. Any symp- 

omatic/asymptomatic COVID-19 patient will show respiratory ail- 

ents as a symptom. Therefore, when radiography examinations 

re performed over a patient, the radiologist can look for ab- 

ormalities in CXR images and detect the presence of the SARS- 

oV-2 virus. As the COVID-19 pandemic progresses, there will 

e more reliance on radiography techniques than RT-PCR test- 

ng because of its advantages. The biggest challenge in detect- 

ng COVID-19 through radiography is the unavailability of experi- 

nced radiologists who can readily spot any abnormality in a pa- 

ient’s CXR image. As Pneumonia and COVID-19 have similar symp- 

oms, a radiologist should correctly interpret the radiographic im- 

ges as the visual indicators can be very minute. This challenge 

an be tackled using Computer-aided Diagnostic (CADx) systems, 

hat can help a radiologist spot the visual indicators more effi- 

iently and accurately. The pressure on an individual radiologist 

r a doctor also increases resulting in human error, which is not 

he case in machine-aided detection tailored to detect COVID-19 

ccurately. 

CADx tools can lower the clinical burden by facilitating Clas- 

ification and Interpretation using Machine Learning and AI. Deep 

earning (DL) plays a vital role in medical image analysis due to 

ts excellent feature extraction ability. DL models complete tasks 

y automatically analyzing multi-modal medical images. Some ex- 

mples of the application of DL include the diagnosis of dia- 

etic retinopathy (P. [3] ), cancer detection and classification (B. 

11] ), polyp detection during colonoscopy (R. [35] ), and multi- 

lassification of multi-modality skin lesions (L. [2] ), 

Many articles provide systematic reviews of machine learn- 

ng techniques in detecting COVID-19 and the potential of Neu- 

al Networks and DL for the task [ 1 , 6 ]. [17] developed an on-

evice COVID-19 screening system that uses CXR images to iden- 

ify COVID-19 infections. Afshar et al. developed a capsule-based 

etwork framework to identify COVID-19 infection in CXR images. 
2 
15] have worked on developing a semi-supervised technique for 

he identification of COVID-19 infection. 

Computer Vision refers to using a specific set of algorithms for 

rocessing visual data and how a computer might gain information 

nd understanding from this process. Convolutional Neural Net- 

ork (CNN), a class of DL algorithm, has been proven very useful 

n image recognition & classification, video analysis, medical image 

nalysis & other vision-related tasks. Generally, due to the limited 

vailability of data (especially in the case of medical data), pre- 

rained CNN models trained on large datasets like ImageNet are 

sed to capitalize on the knowledge of generic features from the 

mages for a target application. Advanced computer-aided diagno- 

is schemes are primarily based on state-of-the-art methods. 

[18] employed learning of relation-aware representation (RAR) 

long with image-level representation. When evaluating each data 

oint individually, RAR is a method that uses the relationships be- 

ween data points collected as a whole to improve decisions un- 

iasedly. Taking inspiration from their work, we used RAR over an 

ntire cohort of X-ray images to assess the associations between 

hem. We determined chest-related diseases in each image un- 

iasedly. The above association can be effectively modeled if we 

reat each image as a ’node.’ [10] proposed a new AI framework, a 

raph convolutional network (GCN), that can learn RARs of nodes 

y studying graph structure and node features. This work aims to 

earn image-level features using a conventional CNN, and relation- 

ware representation (RAR) features using a Graph Convolutional 

etwork. Through extensive experiments, we find the combination 

ould outperform any network operating alone. This research aims 

o present a CADx system that uses a combination of CNN and GCN 

o make more accurate diagnoses for detecting COVID-19 from CXR 

mages. 

The rest of paper’s organization is described as follows: 

ection 2 describes the Literature survey required for the study. 

he proposed Methodology is depicted and described in detail in 

ection 3 . The experiments, quantitative comparison, and analysis 

f results are discussed in Section 4 . Finally, concluding remarks 

ave been made in Section 5. 

. Literature survey 

Since COVID-19 has become widespread, many literature works 

ave described the application of computer vision and DL in 

he diagnosis of the disease based on medical images and have 

chieved promising results. Chest CT and X-ray images have proven 

uccessful in detecting acute Pneumonia through various DL meth- 

ds described in the literature [ 13 , 21 ]. [34] developed a DL-based

NN prediction model to classify COVID-19 Pneumonia and in- 

uenza with an accuracy of 86.7%. CT images were used as an 
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maging modality by [33] , who utilized a modified Inception TL 

odel and obtained an accuracy of 89.5%. [22] used a DL algo- 

ithm to characterize COVID-19 Pneumonia in chest CT images. A 

ethodology based on DeTrac CNNs was presented for the clas- 

ification of images into COVID-19 and non-COVID-19. The results 

ere promising, with an accuracy of above 90%. (Abbas et al., 

020) 

(Luz et al., 2020) employed TL technique to use a class of CNNs 

nown as Efficient-Nets to detect the pattern of COVID-19 in CXR 

mages, that are famous for their high accuracy and low compu- 

ation. They also used a hierarchical classifier for the task, mak- 

ng it suitable to embed medical equipment or mobile phones. 

9] use the TL strategy to fine-tune a ResNet-50 model in the clas- 

ification of CXR images for detecting COVID-19 along with bacte- 

ial and viral Pneumonia. [20] also used TL to develop Deep-Covid 

o predict COVID-19 from CXR images. They curated a dataset of 

0 0 0 CXR images by board-certified radiologists and used a sub- 

et of those images to train four CNNs, namely ResNet-18, ResNet- 

0, Squeeze-Net, and DenseNet-121. [31] used Squeeze-Net with a 

ayesian optimization additive for COVID-19 diagnosis. They report 

etter performance and obtain higher COVID-19 diagnosis accuracy 

n their proposed network due to fine-tuned hyperparameters and 

ugmented datasets. [23] used a combination of SVM and CNNs to 

etect COVID-19 from CXR images. [25] presented a weakly labeled 

ata augmentation method on COVID-19 CXR images. 

[30] give insights into an extensive set of statistical results ob- 

ained from the currently available public datasets, besides pro- 

iding results on a medium-size COVID CXR dataset. [14] propose 

oro-Net, a CNN-based model to automate the detection of COVID- 

9 infection from CXR images. They use TL to train Xception CNN 

rchitecture, pretrained on the ImageNet dataset, and employ a 4- 

old cross-validation method for evaluation. [24] used Inception- 

3 to extract features from CXR images for COVID-19 and classi- 

ers such as KNNs, Decision Trees, Random Forests, SVMs for their 

lassification. They reported an F-1 score of 0.89 for the COVID-19 

lass, using hierarchical analysis for the task of COVID-19 detec- 

ion. The authors of [12] analyzed X-ray images and combined the 

exture and morphological features to classify them into COVID-19, 

acterial Pneumonia, and non COVID-19 viral Pneumonia. 

. Methodology 

The contributions of this research entail the following points: 

1) First, we designed a base network SARS-Net CNN (Net-1), a 

NN consisting of convolution layers and Inception blocks. (2) 

ext, we added various improvement techniques in the base 

etwork, Net-1, namely Coordinate-Convolutions (CC), anti-aliased 

AA) CNNs, and rank-based stochastic pooling (RSP) to obtain Net- 

, Net-3, and Net-4. The names of Net-2, Net-3, and Net-4 are 

ARS-Net CC, SARS-Net AA, and SARS-Net RSP, respectively. (3) 

ast, we developed SARS-Net (Net-5), where we combined Net-1 

ith our proposed 2-layer graph convolutional network (GCN). We 

refer to use the Net-i naming convention for ease of understand- 

ng where i = 1 to 5. Further experiments showed that Net-5 gives 

he best results amongst all proposed five networks. In addition, 

et-5 was superior to state-of-the-art approaches. 

.1. Dataset 

The dataset used for training and validation is COVIDx , intro- 

uced in the COVID-NET paper [32] . It consists of 13,975 CXR 

mages spreading across 13,870 patient cases. So far, the COVIDx 

ataset is the most prominent openly available CXR dataset in 

erms of the number of COVID-19 positive patient cases. 

The distribution of data samples from the COVIDx dataset used 

or training and testing is depicted in Table 2 . We use 90% of
3 
he data samples for training and validation, and the rest 10% is 

sed for testing. To generate the COVIDx dataset, the CXR images 

ere collected from various publicly available dataset repositories, 

amely: 

a COVID-19 Image Data Collection [5] 

b COVID-19 Chest X-ray Dataset Initiative [4] 

c ActualMed COVID-19 Chest X-ray Dataset Initiative [4] 

d COVID-19 radiography database [COVID-19 radiography 

database] 

e RSNA Pneumonia Detection Challenge dataset [RSNA pneumo- 

nia detection challenge] 

For generating the final dataset for training and evaluation of 

ARS-Net, the following type of patient cases were used from each 

f the repositories: 

COVID-19 Pneumonia No pneumonia and non-COVID-19 

(a), (b), (c), (d) (a) (e) 

.2. Data augmentation methods (DA) 

All the variants of SARS-Net architecture were trained on the 

OVIDx dataset. First, as a pre-processing step, the CXR images 

ere Centre cropped before training to remove the commonly- 

ound embedded textual patient information. Then, various DA 

ethods were tried out to decide the optimal methods which en- 

ance the performance of SARS-Net and prevent overfitting. We 

ried several combinations of DA strategies and proceeded with 

he ones that gave the optimal model performance during training 

nd evaluation. Initially, we relied on the augmentation techniques 

hat are effective for CXR imaging modality [32] and subsequently 

dded other DA methods in the pipeline. DA helps us increase the 

umber of samples and introduce variability in the dataset with- 

ut collecting new samples. Furthermore, to train the architectures, 

A was leveraged with the following augmentation types: Elastic, 

ranslation, CutBlur, Rotation, Random Horizontal flip, Zoom, Mo- 

ionBlur, Intensity shift, and CutNoise. Finally, the input images in 

ach batch were normalized. 

.3. SARS-Net CNN architecture 

Most of the methods used in the literature so far for COVID- 

9 detection have used transfer learning techniques (Luz et al., [9] , 

inaee et al., Periera et al., [14] ). DL models previously trained 

n ImageNet dataset are initialized and fine-tuned according to re- 

uirements. The underlying principle in Transfer Learning (TL) lies 

n the fact that DL models transfer the weights learned while cap- 

uring generic features from ImageNet datasets for aforementioned 

asks. 

The proposed SARS-Net CNN network architecture is shown in 

ig. 3 , that employs parallel concatenation in a single block known 

s Inception Block, which was introduced by (Szegedy et al., 2020). 

As shown in Fig. 2 , each Inception block comprises four parallel 

aths leading to concatenation. Different spatial sizes are extracted 

y first three paths, which use filter sizes of 1 × 1, 3 × 3, and 

 × 5. We use a convolution of 1 × 1 in two middle paths to re-

uce the number of input channels. It also helps in reducing the 

odel complexity. The fourth and last path uses a max-pooling of 

 × 3, followed by a 1 × 1 convolution, to change the channels. 

ll paths use padding to maintain same height and width of the 

lock’s input and output. The outputs along each path are concate- 

ated along the channel to constitute the Inception block output. 

Mathematically speaking, for a given image I and filter K, the 

onvolution operation can be expressed as: 

on v ( I, K ) x,y = �n H 
i =1 

�n W 
j=1 

�n C 
k =1 

K i, j,k I x + i −1 , y + j−1 ,k (1) 
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Table 1 

The five proposed networks used in our study. 

Index Modules Network Name Description 

Net-1 Base Network SARS-Net CNN CNN consisting of conv. layers and Inception blocks 

Net-2 ← Net-1 + CC SARS-Net CC Add coordinate-convolutions to Net-1 

Net-3 ← Net-1 + AA SARS-Net AA Add anti-aliased CNNs to Net-1 

Net-4 ← Net-1 + RSP SARS-Net RSP Use RSP to replace Max-Pooling in Net-1 

Net-5 ← Net-1 + GCN SARS-Net Add 2-layer GCN to Net-1 

Fig. 2. Illustration of An Inception Block. 

Fig. 3. Illustration of Architecture of SARS-Net consisting of Inception Blocks. 

Table 2 

Data split of COVIDx into train and test 

split with the number of samples belong- 

ing to each Patient case. 

Cases Train-Split Test-Split 

Normal 7966 885 

Pneumonia 5451 594 

COVID-19 258 100 

Total 13675 1579 

=
W

 

t

p

b

l  

m

f

=

(
dim ( con v ( I, K ) ) = 

(⌊
n H + 2 p − f 

s 
+ 1 

⌋
, ⌊

n W 

+ 2 p − f 

s 
+ 1 

⌋
, n C 

)
; s > 0 

)
(2) 

 ( n H + 2 p − f, n W 

+ 2 p − f ) ; s = 0 (3) 

here � x � is the floor function of x 

There are also some special types of Convolution: 

• Valid convolution: p = 0 
• Same convolution: output size = input size → p = 

f−1 

2 

4 
• 1 × 1 convolution: f = 1 , it might be helpful to in some cases

to shrink the number of channels n C without changing the 

other dimensions ( n H , n W 

) . In the example below, we filled the 

filter with numbers for the sake of illustration. In a CNN, the 

f ∗ f ∗ n C Filter parameters are learned through backpropaga- 

tion. 

Our proposed SARS-Net CNN consists of a stack of four Incep- 

ion blocks and a global average pooling to predict the final out- 

ut. The dimensionality is reduced by using max-pooling layers in 

etween the Inception blocks. The input is passed through convo- 

utional blocks having a kernel size of 7 × 7, 3 × 3, and 1 × 1 with

ax-pooling between them. ReLU is used as an activation function 

or the convolutional blocks. 

The Pooling operation can be expressed as: 

dim ( pooling ( image ) ) = 

(⌊
n H + 2 p − f 

s 
+ 1 

⌋
, ⌊

n W 

+ 2 p − f 

s 

⌋
+ 1 , n C 

)
; s > 0 (4) 

 ( n H + 2 p − f, n W 

+ 2 p − f ) ; s = 0 (5) 

Pooling Layer: 
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Fig. 4. Illustration of a convolutional and CoordConv layers. (Left) A standard convolutional layer maps from a representation block with shape h × w × c to a new 

representation of shape h’ × w’ × c’ . (Right) A CoordConv layer has the same functional signature, but accomplishes the mapping by first concatenating extra channels to 

the incoming representation. 

Fig. 5. Block Diagram of common Anti-aliasing downsampling layers. (Top) Max-pooling, Strided-convolution, and average-pooling can each be better anti-aliased (bottom) 

with the shown architectural modification. 
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• Input: a [ l−1 ] with size ( n [ l−1 ] 
H 

, n 
[ l−1 ] 
W 

, n 
[ l−1 ] 
C 

) , a [0] being the image 

input 
• Padding: p [ l] (rarely used), stride: s [ l] 

• Size of pooling filter: f [ l] 

• Pooling function: φ[ l] 

• Output: a [ l] with size ( n [ l] 
H 

, n 
[ l] 
W 

, n 
[ l] 
C 

= n 
[ l−1 ] 
C 

) 

We can assert that: 

 

[ l ] 
x,y,z = pool 

(
a [ l−1 ] 

)
x,y,z 

= φ[ l ] 

(
a [ 

l−1 ] 
x + i −1 ,y + j−1 ,z 

)
( i, j ) ∈ [ 1 , 2 , ... , f [ l ] ] 2 

(6) 

im 

(
a [ l ] 

)
= 

(
n 

[ l ] 
H 

, n 

[ l ] 
W 

, n 

[ l ] 
C 

)
(7) 

ith 

 

[ l ] 
H 
W 

= 

⌊ 

n 

[ l−1 ] 
H 
W 

+ 2 p [ l ] − f [ l ] 

s [ l ] 

⌋ 

+ 1 ; s > 0 (8) 

 n 

[ l−1 ] 
H 
W 

+ 2 p [ l ] − f [ l ] ; s = 0 (9) 

 

[ l ] 
C 

= n 

[ l−1 ] 
C 

(10) 

.4. Proposed model variants of SARS-Net CNN: Net-2, Net-3, and 

et-4 

In this section, we discuss various improvement techniques that 

e adopted over the base network, SARS-Net CNN, to formulate 

nd design the other three nets, namely SARS-Net CC (Net-2), 

ARS-Net AA (Net-3), and SARS-Net RSP (Net-4). 
5 
.4.1. SARS-Net CC (Net-2) 

For designing SARS-Net CC (Net-2), we add an extra module 

f CoordConv [19] that allows SARS-Net to learn either varying 

egrees of translational dependence or complete translational in- 

ariance without compromising computational and parametric ef- 

ciency of ordinary convolution. The proposed CoordConv layer is 

 simple addition to the standard convolutional layer. It works by 

iving convolution access to its input coordinates using extra co- 

rdinate channels. Fig. 4 depicts the operation where two coordi- 

ates, i and j , are added. The i -coordinate channel is an h × w

ank-1 matrix with its first row filled with 0 ′ s, its second row with

 

′ s, its third with 2 ′ s, and j coordinate channel is similar but with

olumns filled in with constant values instead of rows. 

The CoordConv layer is implemented as a simple extension of 

tandard convolution. We first instantiate extra channels and fill 

hem with coordinate information (constant, untrained). Once we 

ave them ready, they are concatenated channel-wise to the input 

epresentation and a standard convolutional layer is applied. We 

pply a final linear scaling of both i and j coordinate values in all 

xperiments to make them fall in the range [ −1, 1]. 

.4.2. SARS-Net AA 

SARS-Net AA (Net-3) consists of an extra module of Anti- 

liasing layers [36] that allows the SARS-Net to improve shift- 

quivariance without compromising the computational and para- 

etric efficiency of ordinary convolution. The Anti-aliasing layer is 

 simple modification of the standard downsampling and Strided 

onvolutional layer. It works by integrating low-pass filters before 
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Fig. 6. A toy example of various pooling technologies. AP: average pooling, MP: max pooling, RM: rank matrix, ER: exponential rank, RAP: rank-based average pooling, RWP: 

rank-based weighted pooling, RSP: rank-based stochastic pooling, RM: rank matrix, ER: exponential rank. 

Fig. 7. Illustration of a cosine-similarity k-nearest neighbor (KNN) based adjacency matrix ADM. (A) denotes the Graph and (B) denotes its corresponding Adjacency matrix 

generated by cosine similarity (CS)-based kNN. 
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ownsampling to achieve anti-alias, a common signal processing 

echnique. 

Modern CNNs are not shift-invariant, as small input shifts 

r translations can cause drastic changes in the output. Com- 

only used downsampling methods, such as max-pooling, strided- 

onvolution, and average pooling, ignore the sampling theorem. 

he well-known signal processing fix is anti-aliasing by low-pass 

ltering before downsampling. Conventional methods for reduc- 

ng spatial resolution – max-pooling, average pooling, and Strided 

onvolution – all break shift-equivariance. We use improvements, 

hown in Fig. 5 . 

Anti-aliasing to improve shift-equivariance: 

• MaxPool → MaxBlurPool 

The Max operation preserves shift-equivariance, as it is densely 

evaluated in a sliding window fashion, but subsequent sub- 

sampling does not. [36] add an anti-aliasing filter with kernel 

m × m, denoted as Blur m 

, as shown in Fig. 5 . 

MaxPoo l k,s → Subsampl e s ◦ Blu r m 

◦ Ma x k (11) 
6 
= BlurPoo l m,s ◦ Ma x k 

• StridedConv → ConvBlurPool 

Strided-convolutions suffer from the same issue, and the same 

method applies. 

Relu ◦ Con v k,s → BlurPoo l m,s ◦ Relu ◦ Con v k, 1 (12) 

• AveragePool → BlurPool 

Blurred downsampling with a box filter is the same as average 

pooling. Replacing it with a more robust filter provides better 

shift-equivariance. 

AvgPoo l k,s → BlurPoo l m,s 

√ 

b 2 − 4 ac (13) 

.4.3. SARS-Net RSP 

For SARS-Net RSP (Net-4), we replace the traditional module 

f max pooling with rank-based stochastic pooling (RSP) [29] that 

llows the SARS-Net to improve its performance without com- 

romising its computational and parametric efficiency. Rank-based 
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ooling is calculated based on the matrix ranks rather than their 

bsolute values, as in the case of max and average pooling. 

The output of the conv layer, feature maps, are usually overly 

izable in terms of their length, width, and the number of channels 

hat can cause substantial computational burdens during train- 

ng. The problem is solved by the pooling layers, a process of 

onlinear downsampling. Pooling layers also help the CNN to be 

ranslation invariant. Pooling layer (PL) is a procedure of nonlin- 

ar downsampling (NLDS) to solve the above problem. Addition- 

lly, PL could provide invariance-to-translation characteristics to 

hose AMs. Given a region � with size of 2 × 2, let the pixels of 

= { ϕ m,n } , ( m = 1 , 2 , n = 1 , 2) are 

= 

[
ϕ 1 , 1 ϕ 1 , 2 

ϕ 2 , 1 ϕ 2 , 2 

]
(14) 

We added a constant 1/ | �| , here | �| denotes the size of region

. | �| = 4 for a 2 × 2 NLDS pooling. 

The two commonly used Downsampling procedures are average 

ooling (AP) and max pooling (MP). AP computes the mean value 

n � as 

λAP 
� = average ( �) (15) 

 

∑ 2 
m,n =1 ϕ 

2 
m,n 

| �| 
MP works on � and chooses its maximum value: 

MP 
� = max ( �) (16) 

 max 2 m,n =1 ϕ m,n 

Rank-based pooling (RP) is another type of pooling method. 

hree typical algorithms are rank-based average pooling (RAP), 

ank-based weighted pooling (RWP), and rank-based stochastic 

ooling (RSP). All pooling operations in RP are calculated based on 

he ranks other than the realistic values. First, the 2 × 2 region is 

ectorized, and the rank matrix (RM) is calculated via the values of 

very entry ϕ k ∈ �, k ∈ (1 , 1, 1 , 2, 2 , 1, 2 , 2), usually lower ranks

 k ∈ R are assigned to higher values ( ϕ k ) as 

 k 1 〈 ϕ k 2 ⇒ r k 1 〉 r k 2 (17) 

Providing tied values ( ϕ k 1 = ϕ k 2 ), a constraint is added to 

q. (17) . 

 k 1 = ϕ k 2 ∧ ( k 1 > k 2 ) ⇒ r k 1 > r k 2 (18) 

RAP λRAP 
�

� used the v greatest activations 

RAP 
� = 

1 

h 

∑ 

k 

( ϕ k | r k ≤ v ) (19) 

 = 2 is defined in this work. RWP and RSP are calculated on the

xponential rank (ER) vector E = { e k }, which is defined as 

 k = α × ( 1 − α) 
r k −1 (20) 

here α is a hyper-parameter, here α = 0 . 5. 

At this setting, Eq. (20) can be updated as 

 k = 0 . 5 × 0 . 5 r k −1 = 0 . 5 r k . RWP is defined as the summa- 

ion of ϕ i j and ϕ i j as below 

RW P 
� = 

| φ| ∑ 

k =1 

ϕ k x e k (21) 

Suppose k ∗ is an outcome from a binary discrete random vari- 

ble ε ∼ E = { e 1 , …, e | �| }, then RSP is defined as 

RSP 

� = ϕ k ∗ (22) i

7 
.5. SARS-Net: SARS-Net CNN + graph convolutional network (GCN) 

As an improvement over our base model, we also use Graph 

onvolutional Network (GCN) to learn the Relation Aware Repre- 

entation (RAR) from the CXR images to improve the performance 

f SARS-Net. The CNN prioritizes the local characteristics of the im- 

ge and objects, such as edges, corners and interest points when 

he kernel performs the convolution over the visual feature maps; 

hus, a lot of global information is lost. GCN helps in generalizing 

he regular convolution operation to graph convolution and works 

ell with non-Euclidean data [27] . When we represent data pat- 

erns in a non-Euclidean way, we are giving it an inductive bias. 

e can prioritize and reward the model into learning certain pat- 

erns in data by changing its structure, given data of an arbitrary 

ype, format and size. Generally, the inductive bias that is used is 

elational, in majority of current research pursuits and literature. 

e define an Adjacency Matrix (ADM) A ∈ R 

N ×N for studying the 

elationship of the nodes { v i } of a graph G = ( V, E ), where there

re N nodes v i ∈ V, i = 1 , �, N and related links ( v i , v j ) ∈ E . 

Graph Convolutional Network is used to represent a graph G 

ith the help of a Neural network f ( X, A ) in which X ∈ R 

N ×D ,

here D represents the feature dimension of every node, N repre- 

ents the number of nodes, and AX represents the sum of features 

f all neighboring nodes. Thus, GCN can successfully learn the Re- 

ation Aware Representation (RAR) feature [7] . 

A multi-layer GCN uses the layer-wise rule to update all the 

odes’ feature representation: 

 

l+1 = σ
(

ˆ A H 

l W 

l 
)

(23) 

here ˆ A ∈ R 

N ×N denotes the normalized form of the adjacency ma- 

rix A , and σ denotes the ReLU activation function. H 

( l ) ∈ R 

N ×dl 

epresents the feature representation of the l -th layer. For finding 

he normalization matrix of A, i.e., A �→ 

ˆ A , following steps are fol- 

owed: 

Firstly, the degree matrix d m ∈ R 

N ×N that is a diagonal matrix 

s computed as: 

 

m 

i j 

def = 

{
deg ( v i ) , i = j 

0 , otherwise 
(24) 

Afterward, ˆ A is deduced via degree matrix d m and ADM A [16] . 

Each image can be represented by its image-level features and 

ts neighbor features by combining CNN and the two layer-GCN 

28] . We use a two-layer Graph Convolutional Network: 

Here X = H 

(0) , so we have 

 

( 1 ) = σ
(

ˆ A X W 

( 0 ) 
)

(25) 

 

( 2 ) = σ
(

ˆ A H 

1 W 

( 1 ) 
)

(26) 

here W 

(0) ∈ R 

d 0 ×dC , and W 

(1) ∈ R 

dC ×d 2 are two trainable weight 

atrixes. 

We follow the same method as implemented by [37] . For the 

OVID-19 detection task, the SARS-Net CNN consisting of Incep- 

ion blocks was initially used to give an image-level presentation 

f CXR images. As the CNNs do not consider the inter-image de- 

endencies, so their RARs are learned by GCN. The GCN was com- 

ined with SARS-Net CNN. The Fully connected layer represented 

s Dense in Fig. 3 is utilized as the individual image-level repre- 

entation I ∈ R 

D where D = 100 in this work. 

Once we obtain the individual image-level representations, we 

ake them pass through k-means clustering (KMC) to obtain N 

luster centroids (CCs) X ∈ R 

N ×D . The Cluster Centroid correlation 

s used to display the relationships of the images. Then the adja- 
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Fig. 8. Basic building blocks of SARS-Net. The top rows indicate the complete GCN pipeline, where the CNN features and GCN features are combined, while the bottom row 

shows the SARS-Net CNN pipeline. 

Fig. 9. Pipeline of Convolution and Max-pooling layer operations. 
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ency matrix A ∈ R 

N ×N is deduced as 

mn = 

{
1 , i f X m ∈ KN N ( X n ) ∨ X n ∈ KN N ( X m ) 
0 , otherwise 

(27) 

KNN represents the cosine similarity (CS)-based kNN, its neigh- 

or number is set to k KNN . 

In the above example, where the four CS-based nearest neigh- 

ors of nodes a & b are KNN ( X b ) = (5 , 6 , 7, a ), KNN ( X a ) = (1, 2, 3,

). So, we have X a ∈ KNN ( X b ), X b / ∈ KNN ( X a ). 

Using the ’or’ operation, we can conclude A ij = 1. 

The node features X, and the adjacency matrix A is then passed 

o a two-layered- GCN, and we obtained H 

(2) ∈ R 

N ×D if we set 

 2 = D = 100. The H 

(2) is then combined with I via dot product

 = H 

( 2 ) I (28) 

Through a linear projection with trainable weights W 

(2) ∈ 

 

N ×NC , in which N C denotes the number of classes, we can define 

z = y W 

( 2 ) + W b (29) 

here z ∈ R 

Nc , and W 

b represent the bias. Here, N C = 3 due to

his tertiary classification problem, i.e., Normal, Non-COVID-19 or 

OVID-19. Hence, we only need to train (W 

(0) , W 

(1) , W 

(2) ) and their

elated biases for the two-layer Graph Convolutional Network. 

Fig. 8 illustrates the basic building block of SARS-Net, which is 

 combination of GCN along with SARS-Net CNN. CNN represen- 

ations are obtained during the inference stage, along with their 
8 
orresponding GCN representations using a qualified 2L-GCN and a 

re-built graph. 

.6. Implementation details 

The proposed SARS-Net is trained and validated on the COVIDx 

ataset. The division of the COVIDx dataset for training and testing 

s depicted in Table 2 , where we split 90% of the data for training

nd validation (train split), and the rest 10% is the test split. Out 

f the 90% train split, we further divide 10% of the data for vali- 

ation and use the rest for training. A scheduling LR policy is used 

o update the learning rate where the learning rate is decreased by 

 small amount when learning remains the same for an extended 

eriod. Adam optimizer is used for optimizing the SARS-Net. 

The hyperparameters used for training were: 

• LR = 1e-3 
• Epochs = 100 
• Batch size = 32 

Various data augmentation techniques were used to prevent the 

verfitting of SARS-Net model on the training dataset, namely ro- 

ation, zoom, horizontal flip, and translation. 

The SARS-Net model was built and evaluated using PyTorch, a 

L library. The convolution operation used in the architecture can 

e summarized as a series of convolutional products using vari- 

us kernels of filters applied to an input image. Finally, the out- 

ut is passed through an activation function. In the end, we have 

ully connected layers for the classification of the convoluted fea- 

ure outputs. 



A. Kumar, A.R. Tripathi, S.C. Satapathy et al. Pattern Recognition 122 (2022) 108255 

∀

=

a

d

W

n

=

n

f

z

→

w

c

t

n

3

i

p

t

D

t

a

i

c

L

W  

S

u

d

m

t  

t

b

e

b

d

c

c

n

t

a

W

W

w

W

W

More specifically, at any lth layer of a CNN we have, 

• Input: a [ l−1 ] with size ( n [ l−1 ] 
H 

, n 
[ l−1 ] 
W 

, n 
[ l−1 ] 
C 

) , a [0] being the image 

input 
• Padding: p [ l] , stride: s [ l] 

• Number of filters: n 
[ l] 
C 

where each K 

(n ) has dimension: 

( f [ l] , f [ l] , n 
[ l−1 ] 
C 

) 

• Bias of the n th convolution: b 
[ l] 
n 

• Activation function: ψ 

[ l] 

[ l] 

• Output: a [ l] with size ( n [ l] 
H 

, n 
[ l] 
W 

, n 
[ l] 
C 

) 

And we have: 

 n ∈ 

[ 
1 , 2 , . . . , n 

[ l ] 
C 

] 

con v 
(
a [ l−1 ] , K 

( n ) 
)

x,y 
= ψ 

[ l ] 

(
�

n [ 
l−1 ] 

H 

i =1 
�

n [ 
l−1 ] 

W 

j=1 
�

n [ 
l−1 ] 

C 

k =1 
K 

( n ) 
i, j,k 

a [ 
l−1 ] 

x + i −1 ,y + j−1 ,k 
+ b [ 

l ] 
n 

)
dim 

(
con v 

(
a [ l−1 ] , K 

( n ) 
))

 

(
n 

[ l ] 
H 

, n 

[ l ] 
W 

)
(30) 

Thus: 

 

[ l ] = 

[
ψ 

[ l ] 
(
con v 

(
a [ l−1 ] , K 

( 1 ) 
))

, ψ 

[ l ] 
(
con v 

(
a [ l−1 ] , K 

( 2 ) 
))

, 

. . . , ψ 

[ l ] 

(
con v 

(
a [ l−1 ] , K 

(
n [ 

l ] 
c 

)))]
(31) 

im 

(
a [ l ] 

)
= 

(
n 

[ l ] 
H 

, n 

[ l ] 
W 

, n 

[ l ] 
C 

)
(32) 

ith: 

 

[ l ] 
H 
W 

= 

n 

[ l−1 ] 
H 

+ 2 p [ l ] − f [ l ] 

s [ l ] 
+ 1 ; s > 0 (33) 

 n 

[ l−1 ] 
H 
W 

+ 2 p [ l ] − f [ l ] ; s = 0 (34) 

 

[ l ] 
C 

= number of f ilters 

The learned parameters at the l th layer are: 

• Filter with ( f [ l] × f [ l] × n 
[ l−1 ] 
C 

) × n 
[ l] 
C 

parameters 

• Bias with ( 1 × 1 × 1 ) × n 
[ l] 
C 

parameters 

The operation of the Fully connected layer: 

In general, considering the j th node as i th layer, we have the 

ollowing equations: 

 

[ i ] 
j 

= �
n i −1 

l=1 
w 

[ i ] 

j,l 
, la [ 

i −1 ] 

l 
+ b [ 

i ] 
j 

(35) 

 a [ 
i ] 
j 

= ψ 

[ i ] 

(
z [ 

i ] 
j 

)
The input a [ i −1 ] the output of a convolution or pooling layer 

ith the dimensions ( n [ i −1 ] 
H 

, n 
[ i −1 ] 
W 

, n 
[ i −1 ] 
C 

) . 

We reshape the tensor to a 1D vector to plug it into the fully 

onnected layer, having the dimension: ( n [ i −1 ] 
H 

× n 
[ i −1 ] 
W 

× n 
[ i −1 ] 
C 

× 1 ) , 

hus: 

 i −1 = n 

[ i −1 ] 
H 

× n 

[ i −1 ] 
W 

× n 

[ i −1 ] 
C 

(36) 

The learned parameters at the l th layer is: 

• Weights w j, l with n l−1 × n l parameters 
• Bias with n l parameters 

The algorithm for training the SARS-Net: 

• Initialization of the model parameters and weights. 
9 
• For i = 1,2,…N, (N = Total epochs): 

1 Forward propagation: 

i ∀ i, Compute the predicted value of x i through the DL 

model: ˆ y θ
i 

. 

ii Evaluate the function: J(θ ) = 

1 
m 

∑ m 

i =1 L ( ̂  y θ
i 
, y i ) where m 

is total number of input images, θ stands for the model 

parameters, and L is the cost function. 

2 Perform Backpropagation 

i Apply a gradient descent method to update the parame- 

ters: θ =: G (θ ) 

.7. Dealing with the class imbalance problem 

We use Cross-Entropy as the loss function/criterion for train- 

ng our SARS-Net because it minimizes the distance between two 

robability distributions, i.e., the actual and the predicted. This sec- 

ion shows how class imbalance can cause problems while training 

L models by creating a bias against the majority class. We prove 

he above statements by using the formula for cross-entropy loss, 

nd finally, we use class-specific weight factors to handle the data 

mbalance. 

The cross-entropy loss contribution from the i th training data 

ase is: 

 cross −entropy ( x i ) = −( y i log ( f ( x i ) ) + ( 1 − y i ) log ( 1 − f ( x i ) ) ) (37) 

here x i and y i are the input features and labels, and f(x i ) is the

ARS-Net output, the probability that it is positive. Suppose we 

se a normal cross-entropy loss function with a highly unbalanced 

ataset. In that case, the algorithm will be trained to prioritize the 

ajority class (i.e., Non-COVID cases) since it contributes more to 

he loss. For any case, i.e., (Y i = 0) or (1- Y i = 0) , so only one of

hese terms contributes to the loss (the other term is multiplied 

y zero and becomes zero). 

We can rewrite the overall average cross-entropy loss over the 

ntire training set D of size N as follows: 

L cross −entropy ( D ) 

= −1 /N 

( ∑ 

positi v e examples 

l og ( f ( xi ) ) + 

∑ 

negati v e examples 

l og ( 1 − f ( xi ) ) 

) 

(38) 

Using this formulation, we can see that if there is a large im- 

alance with very few positive training cases, the negative class 

ominates the loss. Summing the contribution over all the training 

ases for each class (i.e., pathological condition), we see that the 

ontribution of each class (i.e., positive or negative) is: 

f reqpos + = 

number of positi v e examples 

N 

(39) 

f reqneg − = 

number of negati v e examples 

N 

(40) 

As we see in our case, positive COVID-19 contributions are sig- 

ificantly lower than negative ones. However, we want contribu- 

ions to be equal. One way of doing this is by multiplying each ex- 

mple from each class by a class-specific weight factor W pos , and 

 neg, so that the overall contribution of each class is the same. 

To implement this, we want: 

 pos + ∗ f re q neg− = W neg− ∗ f re q pos + (41) 

hich can be implemented by: 

 pos + = f re q neg− (42) 

 neg− = f re q pos + (43) 
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Fig. 10. The training and testing workflow of the SARS-Net CADx system is depicted in the following flow chart. 

Table 3 

Performance of tested CNN architectures on the COVIDx test 

dataset in terms of Positive Predictive Value (PPV). 

Architecture PPV (%) 

Normal Non COVID-19 COVID-19 

VGG-16 87.30 81.10 94.40 

VGG-19 89.60 81.30 94.30 

ResNet-50 92.20 86.80 95.60 

SARS-Net CNN 91.50 91.30 97.90 

SARS-Net 92.80 92.50 98.60 

Table 4 

Performance of tested CNN architectures on the COVIDx test dataset in terms 

of Sensitivity (%) and Accuracy (%). 

Architecture Sensitivity (%) Accuracy (%) 

Normal Non COVID-19 COVID-19 

VGG-16 92.00 87.00 56.50 91.32 

VGG-19 93.67 89.00 61.50 92.07 

ResNet-50 95.00 91.40 79.80 94.67 

SARS-Net CNN 94.00 93.65 90.50 95.38 

SARS-Net 94.80 95.67 92.90 97.60 
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This way, we balance the contribution of positive and negative 

abels. After computing the weights, our final weighted loss for 

ach training case is: 

 cross −entropy W ( x ) 
= −( W pos + y log ( f ( x i ) ) + W neg−( 1 − y ) log ( 1 − f ( x i ) ) ) 

(44) 

. Experiments and results 

.1. Quantitative analysis 

To evaluate the efficiency and demonstrate the usefulness of the 

roposed SARS-Net, we carry out extensive quantitative analysis to 

etter understand its detection performance. We calculate the test 

ccuracy, Sensitivity, and PPV (Positive Predictive Value) for each 

ase (Normal, Pneumonia, COVID-19) on the COVIDx dataset. 

The Positive Predictive Value of each of the individual disease 

ases on various CNN architectures is shown in Table 3 . PPV is de-

ned as the probability of patients who have a positive test result 

ctually having the disease. It is commonly used in medical test- 

ng where a "positive" result means that a patient actually has the 

isease. 

The Accuracy and Sensitivity of each patient case on various 

NN architectures during testing are shown in Table 4 . From the 

able, it can be observed that SARS-Net achieves good accuracy by 

chieving a test accuracy of 97.60%. The average inference time on 
10 
PU and GPU and the model input size is mentioned in Table 5 .

t can be noted that the proposed SARS-Net model has a relatively 

horter inference time of 0.035 milliseconds and 0.015 milliseconds 

n CPU and GPU, respectively. Finally, the comparisons of five net- 

ork model variants of SARS-Net are shown in Table 6 . Getting 

 quick test result is crucial in scenarios like COVID-19 detection, 

here time is essential in testing pathology and hospitals. 

Evaluation Metrics used: 

i Accuracy 

Accuracy = 

Number of Corr ect pr edictions 

T otal no of predic tions made 
(45) 

ii Sensitivity 

Sensit i v it y = 

T rue P osit i v e 
F alse Negat i v e + T rue P ositi v e 

(46) 

iii Positive Predictive Value (PPV) 

P P V = 

T rue P ositi v e 
T rue P ositi v e + F alse P ositi v e 

(47) 

As mentioned in the Inception blocks, SARS-Net uses parallel 

oncatenation to extract information in parallel, employing differ- 

nt kernel sizes ranging from 1 × 1 to 11 × 11. Besides, it has 

ong-range connectivity and uses repeated blocks to learn complex 

eatures of the COVID-19 infected CXR images and produce good 

esults compared to other CNN architectures. It is also advanta- 

eous to use various sized kernels in DL models to extract complex 

eatures. 

As can be inferred from the above values, the addition of Graph 

onvolutional Network (GCN) enhances the performance of the 

roposed SARS-Net as GCNs can quickly learn the RARs among the 

est set. Therefore, classifiers with GCNs provide more precise re- 

ults than those without GCNs. 

.2. Comparison to state of the art approaches 

We compare the performance of SARS-Net with various other 

OTA model literature that adopt a similar methodology and re- 

ort the results in terms of Accuracy and Sensitivity for COVID- 

9 detection. Table 7 shows the results in Accuracy and Sensitivity 

or detecting COVID-19 of our proposed SARS-Net model compared 

o other State of the art literature studies. As is shown, SARS-Net 

ielded the following performance in terms of Sensitivity = 92.90 

nd Accuracy = 97.60. 

.3. Model interpretation 

To get a better insight into how DL models make their decision, 

e analyze the output of GRAD-CAM, which highlights the areas 
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Fig. 11. Output of GRADCAM for the COVID-19 Detection. 

Table 5 

Performance of tested CNN architectures on the COVIDx test dataset on inference time on CPU and GPUs. 

Architecture Input Size(Ch, H, W) Average Inference time on CPU (in MS) Average Inference time on GPU (in MS) 

SARS-Net 3 ∗224 ∗224 0.035 0.015 

SARS-Net CNN 3 ∗224 ∗224 0.030 0.009 

ResNet18 3 ∗224 ∗224 0.234 0.015 

ResNet50 3 ∗224 ∗224 0.587 0.040 

Alex Net 3 ∗224 ∗224 0.670 0.010 

VGG16 3 ∗224 ∗224 0.782 0.050 

VGG19 3 ∗224 ∗224 0.901 0.067 

Table 6 

Comparison of five network model variants of SARS-Net. 

Architecture Sensitivity (%) Accuracy (%) 

Normal Non COVID-19 COVID-19 

SARS-Net CNN 94.00 93.65 90.50 95.38 

SARS-Net CC 94.48 93.23 90.73 95.56 

SARS-Net AA 94.86 94.06 92.60 96.40 

SARS-Net RSP 94.59 94.91 92.78 97.08 

SARS-Net 94.80 95.67 92.90 97.60 

Table 7 

Performance of State of the Art (SOTA) CNN architec- 

tures reproduced on the prepared COVIDx test dataset 

in terms of Accuracy and Sensitivity for COVID-19 

Cases. 

Architecture Accuracy (%) Sensitivity (%) 

Afshar et al. 95.15 90.00 

Luz et al. 93.90 90.80 

Wang et al. 93.30 90.00 

Ozturk et al. 87.02 85.35 

Rahimzadeh et al. 91.40 80.53 

Wang Z et al. 93.65 90.92 

SARS-Net CNN 95.38 90.50 

SARS-Net 97.60 92.90 
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f the input image in the form of heat maps that impact SARS- 

et decisions. To interpret SARS-Net predictions, we produce the 

eatmaps to highlight the image areas most indicative of the dis- 

ase using the Class Activation maps [39] , generated by a method 

nown as GRAD-CAM. The left portion of Fig. 11 (A) shows an in- 

ut image fed into the SARS-Net, and the right portion (B) show- 

ases a heatmap pointing out the areas of the image that indicate 

OVID-19. 

The fully trained convolutional network, SARS-Net, is fed with 

n image to generate the Class Activation Mappings, and the fea- 

ure maps are extracted from the output of the last convolutional 

ayer. Suppose W is the last classification layer’s weight for fea- 
c.k 

11 
ure map k belonging to class c and f k be the feature map. To gen-

rate a mapping of the most significant salient features of an input 

mage belonging to a class c , we calculate the weighted sum of the 

eature maps using the weights connected to them. Specifically, a 

apping M c is calculated as: 

 c = 

∑ 

k 

w c,k f k (48) 

In the last step to obtain the Class activation mapping to visu- 

lize the most critical features of an input image, we upscale the 

apping M c according to the dimensions of the image, followed by 

verlaying the image. 

. Conclusion 

In this paper, we introduce SARS-Net, a CADx system combin- 

ng Graph Convolutional Network and Convolutional Neural Net- 

ork for COVID-19 detection from CXR images. Extensive experi- 

ents showed that the proposed SARS-Net model attains the best 

esults among all other proposed networks and attains superior 

erformances to state-of-the-art methods. The SARS-Net is a com- 

ination of the SARS-Net CNN model and a 2L-GCN model. Here, 

ARS-Net CNN aids to extract image-level features, whereas GCN 

elps to extract relation-awareness features. The combination of 

oth two networks helps increase the performance of our pro- 

osed SARS-Net model. Medical image processing has been gaining 

uch attention recently due to the emergence of deeper and high- 

ccuracy networks that can compete against humans and speed 

p medical research to a great extent. COVID-19 detection has al- 

ays been a crucial step for diagnosis in the present pandemic 

cenario, and recently many computer-aided analysis approaches 

re being used for quick and more reliable analysis. In this pa- 

er, the proposed SARS-Net model incorporates the latest profound 

L advancements to diagnose COVID-19 from CXR images accu- 

ately. Our SARS-Net achieves an accuracy of 97.60% on the test set. 

he application of our method in hospitals is promising. Carrying 

ut automated COVID-19 detection can improve the recovery rate 
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Table 8 

Pseudocode for SARS-Net Training (Algorithm 1). 

Algorithm 1 Training procedure for SARS-Net 

Input: image is the training data split of COVID-19 X-rays; class label is the labels assigned to the images; K is the 

number of epochs 

Output: the trained model m; training time T 

1: (X) ← (generate augmented CXR image from all data repositories) 

2: (Y) ← (class label) 

3: (trainX, trainY), (valX, valY) ← split((X,Y), split size = 0.1) 

4: for each epoch e in Range K do 

5: m t ← modelTrain(Adam,(trainX,trainY)) 

6: m e ← modelEvaluate(mt,(valX,valY)) 

7: if earlyStopping(m e ) is TRUE then 

8: break 

9: end if 

10: end for 

11: m best ← save bestModel{(m t , m e ) It = 1,2,. . .,K} 
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nd enable faster cures, thus improving people’s overall health and 

uality of life. By leveraging automation by experts, CAD-X systems 

an aid healthcare services and reduce the burden of radiologists 

nd doctors in developing countries where healthcare services are 

imited. Future scope includes works to improve SARS-Net’s gener- 

lization and Sensitivity as more and more COVID-19 infected CXR 

mages are available. The future research directions contain the fol- 

owing steps: (i) We also hope to develop a variant of SARS-Net 

rained on CT imaging modality when sufficient datasets are re- 

eased, making our prediction model robust to different imaging 

odalities. (ii) Test out other combination mechanics of CNN and 

CN to improve the classification results. (iii) Test other recent DA 

ethods. 

Figs. 1 , 6 , 7 , 9 , 10 and Tables 1 and 8 
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