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Abstract

Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum 

of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotide­

binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming 

the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution 

the ancient motor domains were combined with different transmembrane mechanical systems to 

orchestrate a variety of cellular processes. In recent years, it has become increasingly evident 

that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We 

therefore propose a new ABC transporter classification that is based on structural homology in the 

TMDs.
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We suggest a new classification of the ABC transporter superfamily that is based on the 

TMD fold. Historically, first hints of the ABC protein superfamily came from sequence 

alignments of bacterial proteins that revealed highly conserved motifs in their ATPase 

domains [1]. The superfamily of ABC proteins was subsequently divided into three 

main classes [2-4]: exporters, nontransporter ABC proteins, and a third class consisting 

primarily of importers. The mammalian ABC systems, in particular, were grouped into 

seven subfamilies (ABCA to ABCG), based on NBD and TMD sequence homology, gene 

structure, and domain order [5-7]. It should be noted that ABCE and ABCF are not 

transporters, but exist as twin-NBDs without TMDs and are involved in mRNA translation 

control [8]. Detailed membrane topology and sequence analyses of exporters uncovered 

that, in contrast to the NBDs, the TMDs are polyphyletic and can serve as references 

to categorize ABC transporters into three distinct types (ABC1-3) [9,10]. According 

to this classification, the cystic fibrosis transmembrane conductance regulator (CFTR), 

the transporter associated with antigen processing (TAP), and the drug efflux pump P­

glycoprotein (P-gp) belong to the ABC1 transporters; ABCG2 and ABCG5/G8 are members 

of the ABC2 group, which also comprises importers; and the macrolide translocator MacB 

is categorized as an ABC3 system. Yet, another classification scheme currently in use 

differentiates between the three types of importers predominantly found in prokaryotes 

[11-14] and two types of exporters, exemplified by Sav1866 [15] and ABCG5/8 [16], in 

addition to the LptB2FG-type [17,18] and MacB-type [19-22] transporters.

Our motivation for proposing a revised nomenclature stems from the recent wealth of ABC 

transporter structures determined by X-ray crystallography and single-particle cryo-electron 

microscopy, which has unveiled a remarkable diversity of TMD folds and evolutionary 

relationships between bacterial and eukaryotic/mammalian transporters [16-21,23-26]. This 

affluence of structural information provides the opportunity to introduce a universal 

nomenclature that combines previous phylogenetic analyses with the new findings coming 

from high-resolution structures. The nomenclature groups ABC transporters into distinct 

types, I–VII, based on their TMD fold (Fig. 1, Tables 1 and 2). This classification is 

supported by quantitative analyses using TM-scores based on pairwise structural alignment 

of TMDs (Tables S1-S6, Fig. S1). The classification focuses on the transporter-forming 

TMDs and does not consider additional membrane integrated domains, as for example 

observed in TAP1/TAP2 [27,28].

As before, types I-III of the new nomenclature cover the three different importer 

architectures (Fig. 1, Table 1, Tables S2 and S3; TM-score for pairwise structural alignment 

between the type III systems CbiQ (PDB code 5X3X) and EcfT from Lactobacillus brevis 
(PDB code 4HUQ): 0.736). It is noteworthy that prokaryotic importers typically operate 

with periplasmic, extracellular, or membrane-embedded substrate-binding proteins whose 

structural features correlate with the type of TMD fold [29].
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Based on the characteristic structure of the founding member Sav1866, which includes 

a domain-swapped TMD arrangement, type IV members of the new nomenclature have 

previously been classified as type I ABC exporters [15]. However, a significant and growing 

number of these ABC proteins have nonexporter functions, i.e., the gated chloride channel 

CFTR, the regulatory KATP channel modules SUR1/2, the lysosomal cobalamin (vitamin 

B12) transporter ABCD4 [30], the bacterial siderophore importers YbtPQ and IrtAB, and 

the cobalamin/antimicrobial peptide importer Rv1819c [31-33], as well as several type 

IV systems with importer functions in plants [34-39]. This striking functional diversity 

mediated by the same structural framework (Fig. 1, Tables 1 and 2, Tables S4 and S5) makes 

the type IV ABC transporters stand out and is also the main reason why we suggest the more 

universal taxonomy based on structural principles.

According to the new classification, type V systems are ABC transporters of the ABCG/

ABCA/Wzm type (Fig. 1, Tables 1 and 2, Table S6). They include channel-forming 

biopolymer secretion systems in bacteria [25,26]. Remarkably, although many type V 

systems are exporters, this type also comprises transporters with import function, including 

the retina-specific importer (flippase) ABCA4 (rim protein) [40,41] and importers in plants 

[42-44].

Finally, LptB2FG and MacB are the founding members of type VI and type VII ABC 

transporters, respectively. We are aware that LptF and LptG have TMD folds that resemble 

type V members, and the TMD of MacB is reminiscent of type V systems and LptF/G. 

Yet, they exhibit distinct features that warrant classifications into separate groups. These 

include the lack of an amphipathic N-terminal ‘elbow helix’ and no extracellular reentrant 

helices between TM5 and TM6. In addition, MacB contains only four proper TM helices 

as well as an additional coupling helix, thereby defining a separate transporter architecture. 

In accordance with differences in TMD topologies, the LptFG and MacB transporters also 

display diverging dimerization interfaces. Thus, we have chosen to assign LptFG and MacB 

to separate types. This notion is corroborated by the TM-score-based quantitative analysis 

(Table S6 and Fig. S1). Of note, at the time of writing, publicly available, yet unpublished 

structures of the lipid transporter complex MlaFEDB of Gram-negative bacteria reveal some 

resemblance of MlaE to LptF/G and MacB. However, the number of TM helices differs 

between LptFG (six TM helices), MlaE (five TM helices), and MacB (four TM helices) 

[45-48] (Table S6 and Fig. S1).

We would like to point out that the classification of the mammalian ABC transporters 

into the ABCA-G subfamilies can be maintained as subcategories of type IV (subfamilies 

B–D) and type V (subfamilies A and G) within the new nomenclature (Table 2). We are 

also not proposing any changes to gene symbols. Most importantly, the new nomenclature 

based on TMD architecture can be universally applied to ABC transporters beyond 

their particular physiological functions and across the three domains of life. Hence, it 

allows any newly discovered transporter fold to be compared with the existing types and 

seamlessly incorporated into the classification scheme, possibly as a new type. Since the 

new nomenclature depends on TMD architecture, it requires structural information in order 

to classify new transporter systems. At the same time, we regard the nomenclature as a 
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dynamic platform that can be upgraded, adjusted, or refined whenever necessary due to 

novel insights that add extra dimensions to our understanding of ABC systems.

The recent advances in structural mapping of the diverse superfamily of ABC transporters 

have revealed a vast area of mechanistically uncharted territory. One key objective of future 

research should be to fully comprehend how type IV systems perform so many different 

functions, i.e., as importer, exporter, lipid floppase, ion channel, and regulator, by employing 

a single structural scaffold. However, we do not exclude that other types might turn out to be 

as functionally diverse as type IV systems. Exploring the different modes of operation and 

accompanying conformational landscapes [49] and the dynamics of the multifarious ABC 

systems will require integrative experimental approaches that include electron paramagnetic 

resonance (EPR), nuclear magnetic resonance (NMR), single-molecule techniques, and 

single-turnover experiments. We are confident that future studies of such kind will provide 

major new insights into the mechanisms of these fascinating molecular machines.

Supplementary Material
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Fig. 1. 
The different types within the ABC transporter superfamily. Members of the superfamily of 

ABC transporters can be grouped into distinct types based on their TMD fold. The TMDs 

of representative experimentally determined structures are depicted as cartoons, and their 

NBDs are shown in surface representation. The TMD architecture of the first structure of 

each type is illustrated by a topology diagram. The number of structures shown for each 

transporter type does not necessarily reflect the abundance or importance of the respective 

type, but highlights the common scaffold and functional diversity of the transporters. The 

two TMDs of each transporter are shown in green and blue, respectively, except for cases 

where the TMDs are part of the same polypeptide chain (uniform blue color). Please 

note that the type V ABC transporters also include the retina-specific importer ABCA4 

and importers in plants. Substrate-binding components of type I-III folds are illustrated 

in orange, and auxiliary domains and additional (TM) helices are shown in red, salmon, 

and violet, respectively. Bound (occluded) nucleotides and Mg2+ ions in the NBDs are 
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shown as dark pink spheres. Transported substrates and inhibitors are shown in yellow 

(carbon) and in CPK colors (remaining atoms in small-molecule compounds), respectively. 

The directions of substrate transport are indicated by solid and dashed red arrows. The 

structures have the following Protein Data Bank (PDB) accession codes: MalFGK2-MalE: 

2R6G [12]; BtuC2D2-BtuF: 4FI3 [50]; EcfTAA′-FolT: 4HUQ [14]; Sav1866: 2HYD [15]; 

TmrAB: 5MKK [51]; TM287/288: 4Q4H [52]; McjD: 4PL0 [53]; PCAT1: 6V9Z [54]; 

Atm1: 4MYH [55]; MRP1: 5UJA [56]; PrtD: 5L22 [57]; P-gp: 4M1M [58]; TAP1/2: 5U1D 

[59]; ABCB4: 6S7P [60]; ABCB8: 5OCH; ABCB10: 3ZDQ [61]; ABCB11: 6LR0 [62]; 

MsbA: 5TV4 [63]; PglK: 6HRC [64]; YbtPQ: 6P6J [31]; IrtAB: 6TEJ [32]; Rv1819c: 6TQF 

[33]; ABCD4: 6JBJ [30]; CFTR: 5UAK [65]; SUR1: 6BAA [66]; Wzm-WztN: 6OIH [25]; 

TarGH: 6JBH [26]; ABCG5/8: 5DO7 [16]; ABCG2: 6HCO [67]; ABCA1: 5XJY [23]; 

LptB2FG: 5X5Y [17]; MacB: 5LJ7 [21]. ABC, ATP-binding cassette; β-jr, β-jellyroll-like 

domain; C, C terminus; CH, coupling helix; CoH, connecting helix; EH, elbow helix; N, 

N terminus; NBD, nucleotide-binding domain; P2, extracytoplasmic loop; PG, periplasmic 

gate helix; PLD, periplasmic domain; TMD, transmembrane domain.
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