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ABSTRACT
Autophagy (a process of cellular self-eating) is a conserved cellular degradative process that plays 
important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection- 
mediated stresses. Surprisingly, little attention has been paid to the role of this cellular function in 
species of agronomical interest, and the details of how autophagy functions in the development of 
phenotypes of agricultural interest remain largely unexplored. Here, we first provide a brief description 
of the main mechanisms involved in autophagy, then review our current knowledge regarding auto-
phagy in species of agronomical interest, with particular attention to physiological functions supporting 
livestock animal production, and finally assess the potential of translating the acquired knowledge to 
improve animal development, growth and health in the context of growing social, economic and 
environmental challenges for agriculture.

Abbreviations: AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ASC: adipose- 
derived stem cells; ATG: autophagy-related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BVDV: 
bovine viral diarrhea virus; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CMA: chaper-
one-mediated autophagy; CTSB: cathepsin B; CTSD: cathepsin D; DAP: Death-Associated Protein; ER: 
endoplasmic reticulum; GFP: green fluorescent protein; Gln: Glutamine; HSPA8/HSC70: heat shock 
protein family A (Hsp70) member 8; IF: immunofluorescence; IVP: in vitro produced; LAMP2A: lysosomal 
associated membrane protein 2A; LMS: lysosomal membrane stability; MAP1LC3/LC3: microtubule 
associated protein 1 light chain 3; MDBK: Madin-Darby bovine kidney; MSC: mesenchymal stem cells; 
MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NBR1: NBR1 autophagy cargo 
receptor; NDV: Newcastle disease virus; NECTIN4: nectin cell adhesion molecule 4; NOD1: nucleotide- 
binding oligomerization domain 1; OCD: osteochondritis dissecans; OEC: oviduct epithelial cells; OPTN: 
optineurin; PI3K: phosphoinositide-3-kinase; PPRV: peste des petits ruminants virus; RHDV: rabbit hemor-
rhagic disease virus; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy.
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Introduction

Autophagy, a lysosomal degradation pathway by which the 
cell self-digests its own components, has been recognized over 
the past decade as an essential process of cellular metabolism 
and a main contributor to homeostasis [1]. Autophagy rids 
the cell of excessive or damaged organelles, misfolded pro-
teins, and invading microorganisms, and provides nutrients to 
maintain crucial cellular functions. Modulation of autophagy 
is linked to numerous fundamental physiological functions. 
Its dysfunction is an important common denominator in 
many diseases affecting a wide range of organs and systems 
[2]. Consequently, the past two decades have witnessed an 
explosion of research on the molecular mechanisms of auto-
phagy in the context of diverse human diseases including 
heart failure, liver inflammation, impaired long-term humoral 
immunity, Parkinson disease, and cancers [1–3].

Surprisingly, whereas it is now clearly established that 
autophagy plays a central role in differentiation and develop-
ment, cellular and tissue homeostasis, protein and organelle 
quality control, metabolism and immunity, little attention has 
been paid to the role of this cellular function in species of 
agronomical interest. The details of how autophagy functions 
in fertility, development and growth of the livestock animals, 
tolerance to nutrient deficiency and/or imbalances, abiotic 
stresses or pathogens, and quality of the animal products 
remain largely unexplored.

Autophagy is a key process of cellular metabolism and 
represents an interesting target to design new feeding/breeding 
strategies to optimize animal growth while maintaining pro-
ducts of high nutritional value and quality and to lower envir-
onmental impacts. In this article, after a brief description of the 
main mechanisms involved in autophagy, we review the cur-
rent knowledge regarding autophagy in species of agronomical
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interest, with particular attention to the processes of reproduc-
tion and production of animal products, as well as the potential 
role of this cellular function in the adaptation of animals to 
farming conditions. Finally, we conclude on the relevance to 
consider (as new metabolic criteria) and/or manipulate this 
function in these species to face new social and environmental 
challenges for agriculture in the near future.

Molecular description of autophagic pathways

The term autophagy encompasses different types of mechanisms 
(known as macroautophagy, chaperone-mediated autophagy, 
microautophagy, and endosomal microautophagy) depending 
on the delivery route of cytoplasmic material to the lysosomal 
lumen (Figure 1). Here, we provide a brief description of each of 
these autophagic pathways, but readers interested in a more 
complete description are encouraged to consult review articles 
that discuss these pathways in detail [4–8].

Macroautophagy

Macroautophagy is the variant of autophagy best character-
ized so far. This system relies on the formation of specialized 
double-membrane vesicles called autophagosomes, which 
engulf and transport cell components to the lysosome. The 
autophagosomes do not bud from a preexisting compartment; 
they form de novo by the coordinated action of over 20 
evolutionary conserved autophagy-related (ATG) proteins 
[9], originally discovered in yeast genetic screens [10]. Upon 
autophagy induction, ATGs are hierarchically recruited to 
lipo-proteic cores called “phagophore,” close to specific endo-
plasmic reticulum (ER) subdomains [11], where they play

essential roles during autophagosome formation (Figure 1). 
These involve (1) the de novo assembly of the phagophore, 
which precisely shapes like a cup, (2) the elongation of the 
phagophore membranes by accommodating incoming phos-
pholipids from various sources including the ER, recycling 
endosomes, and mitochondria, (3) the sequestration of sub-
strates (referred to as cargos) and (4) the complete closure of 
the vesicle to form a novel double-membrane compartment 
with a distinct identity and functions. Upon sealing of the 
autophagosome membrane, these cargo-containing vesicles 
move along microtubules to fuse with the lysosome and 
deliver the sequestered cargo in this hydrolytic organelle 
[12]. This whole process is fine-tuned in time and space and 
is fundamental to ensure developmental and environmental 
plasticity in eukaryotes [13–15].

Macroautophagic responses can result in nonselective 
degradation of cytoplasmic components. Upon lysosomal 
degradation, these autophagy substrates fuel bioenergetic 
metabolism or repair processes [16,17]. However, it is now 
clear that macroautophagy also contributes to intracellular 
homeostasis by selectively degrading cargo material such as 
aggregated proteins, damaged mitochondria, excess peroxi-
somes or invading pathogens [18]. Several targets of selective 
macroautophagy have been described, such as aggregated 
proteins (aggrephagy), mitochondria (mitophagy), peroxi-
somes (pexophagy), ribosomes (ribophagy), endoplasmic reti-
culum (reticulophagy), lipid droplets (lipophagy), glycogen 
(glycophagy) and even invading pathogens (xenophagy) [19– 
22]. In these cases, the formation of the phagophore occurs in 
the vicinity of the cargo through specific receptors, such as 
SQSTM1/p62 (sequestosome 1), NBR1, CALCOCO2/NDP52 
and OPTN [18]. Most of these receptors share an evolutiona-
rily conserved domain known as the MAP1LC3/LC3 (micro-
tubule associated protein 1 light chain 3)-interacting region 
(LIR), which allows them to bring macroautophagy cargo in 
the proximity of forming autophagosomes through the simul-
taneous binding of the cargo and LC3, a key component of 
the autophagy machinery.

Chaperone-mediated autophagy (CMA)

CMA has been described as a selective mechanism for the 
degradation of specific soluble proteins within lysosomes [23]. 
Besides a well-described role in protein quality control (resulting 
from its ability to selectively target damaged or nonfunctional 
proteins for degradation), the diversity of the sub-proteome 
degraded by CMA also associates this function with the regula-
tion of transcriptional programs [24], cell death and cell survival 
mechanisms [25–27], DNA repair and cell cycle progression [28] 
as well as a variety of intracellular processes related to the control 
of cellular energetics [29–33]. Not surprisingly, CMA emerged 
these last years as a key factor in the control of cellular home-
ostasis [33].

CMA involves the direct delivery of cytosolic proteins 
targeted for degradation to the lysosome [5]. During this 
process, cytosolic proteins containing a CMA-targeting 
motif (KFERQ-related sequences) are first recognized by 
the chaperone HSPA8/HSC70 [34,35] (Figure 1). This sub-
strate/chaperone complex then docks at the lysosomal

Figure 1. Illustration of the main steps of the different pathways of mammalian 
autophagy. In macroautophagy, double-membrane organelles called autopha-
gosomes engulf intracellular components and then fuse with lysosomes. In CMA, 
cytosolic proteins carrying a KFERQ-like motif bind the chaperone HSPA8/HSC70 
(heat shock protein family A [Hsp70] member 8/heat-shock cognate protein of 
70 kDa) and are subsequently translocated into the lysosomes in a LAMP2A- 
dependent mechanism. In microautophagy, cytoplasmic substrates intended for 
degradation are absorbed by the lysosome by direct membrane invagination. In 
endosomal microautophagy, the complex HSPA8-KFERQ-containing protein is 
targeted to the endosomal membrane to be internalized into multivesicular 
bodies, which then fuse with lysosomes to allow degradation of their content.
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membrane through specific binding to the cytosolic tail of 
the LAMP2A (lysosomal associated membrane protein 2A), 
the only one of the three spliced isoforms of the LAMP2 gene 
that has been shown to be essential and limiting for CMA 
activity [36]. Multimerization of LAMP2A will then result in 
the formation of a translocation complex, and promote 
translocation of substrate proteins [37]. After unfolding, 
substrates subsequently translocate across the lysosomal 
membrane and are degraded.

There is still little information on the regulation of this 
autophagic route. Available data indicate that CMA activity 
depends on the levels of the LAMP2A protein at the lysosomal 
membrane [38] as well as on the efficiency of its assembly and 
disassembly in this compartment [39]. CMA is active in most 
cells under basal conditions, but it is maximally activated in 
response to oxidative stress [40], hypoxia [25,41] or nutrient 
deprivation [42].

Microautophagy and endosomal microautophagy

Microautophagy is defined as a lysosomal (vacuolar) mem-
brane dynamics that directly wraps and transports cytosolic 
components into the lumen of the lytic organelle [43]. 
Microautophagy is probably the least studied form of auto-
phagy and the molecular signature of the process remains, for 
the most part, unknown. Most of what is known about this 
degradative pathway originate from studies in yeast where it 
has been involved in the degradation of multiple substrates, 
including peroxisomes [44], portions of the nucleus [45], 
damaged mitochondria [46], and lipid droplets [47].

Interestingly, a similar mechanism has been recently iden-
tified in late endosomes of cells from Drosophila melanogaster 
[48] and mammals [49,50]. During this process, commonly 
known as endosomal microautophagy (or eMI), proteins har-
boring the KFERQ-like motif bind the chaperone HSPA8/ 
HSC70 and are directed to the endosomal membrane to be 
subsequently internalized into multivesicular bodies in endo-
somal sorting complexes required for transport (ESCRT)- 
dependent mechanism.

Despite the marked differences between these autophagic 
pathways, they all contribute to the preservation of cellular 
homeostasis. In physiological conditions, they all proceed at 
baseline levels, avoiding the accumulation of potentially cyto-
toxic entities that may cause abnormal cellular functions (e.g., 
damaged mitochondria) [7,17,51]. In addition, they are also 
sensitive to perturbations of intracellular or extracellular 
homeostasis. Thus, disturbances of different nature (nutri-
tional, metabolic, chemical, physical or hormonal) can induce 
an autophagy response that involves complex interactions 
between the different autophagy routes that remain largely 
misunderstood.

Current knowledge on autophagy in species of 
agronomical interest

As stated above, research on molecular mechanisms of auto-
phagy in the context of various human diseases has increased 
dramatically over the past 20 years. In contrast, much less 
attention has been paid to autophagy in species of

agronomical interest and to the relevance of considering 
and/or manipulating this cellular function in these species to 
face new social and environmental challenges for agriculture. 
In order to synthesize the data available on autophagy in 
livestock animals and to single out present and future research 
subjects, we conducted an exhaustive keyword-based biblio-
graphic search in the Web Of Science, one of the most com-
prehensive bibliographic databases that provide extensive and 
well-formatted bibliographic publication records in numerous 
disciplines including agriculture, biological sciences, engineer-
ing, medical and life sciences. The lists of keywords included 
or excluded from the analysis and the method used are 
detailed in Figure 2 and Data S1. A total of 945 articles 
published between 1975 and 2019 have been extracted. 
However, after the exclusion of irrelevant references that do 
not relate to issues or functions of agronomic interest or that, 
although the term “autophagy” is present in the keywords, are 
not or only marginally related to this topic, only 295 articles 
were considered as relevant for our analysis. In the next 
subsections, we will describe the results obtained for each 
species or group of species and the main insights gained

Figure 2. Flow chart of the bibliographic search. The list of keywords related to 
each species and autophagy as well as that of terms to be excluded are detailed 
in supplementary data. The manual curation aimed to exclude irrelevant refer-
ences that do not relate to issues or functions of agronomic interest (specified in 
supplementary data) or that, although the term “autophagy” is present in the 
keywords, are not or only marginally related to this topic.
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from them. They mainly concern macroautophagy hereafter 
referred to as autophagy.

Autophagy, meat and dairy ruminants

We extracted 119 publications related to autophagy in rumi-
nants (Figure 2). Of these, however, only 45 publications 
brought knowledge on the autophagy processes monitored 
by at least one method proposed by the recent guidelines for 
studying autophagy [52]. At a glance, these few publications 
highlight that autophagy is a key cellular process that con-
tributes to the health and many normal developmental pro-
cesses that sustain ruminant productions.

Role of autophagy in pathogen infections in ruminants
Of the 45 publications, 19 reported how interactions of micro-
organisms or viruses with the autophagy system of host cells 
contribute to their pathogenicity (Figure 3). Notably, several 
ruminant viruses have developed strategies to use autophagy 
machinery to promote their replication. This was well docu-
mented for bovine viral diarrhea virus (BVDV) infection. 
Immuno-co-localization of BVDV antigens with the autopha-
gy marker LC3 revealed that BVDV replication was associated 
with autophagosomes in Madin-Darby bovine kidney 
(MDBK) cells [53]. BVDV infection induced the autophagy 
flux in these cells [54]. The authors examined the autophagy 
flux in cells expressing a fusion construct comprising green 
fluorescent protein (GFP) tagged to LC3 (GFP-LC3) and by 
using chloroquine as an inhibitor of the autophagic process. 
The increase in the number of double- or single-membrane 
vesicles, the rapid redistribution of GFP-LC3 in puncta and 
the accumulation of autophagosome-associated LC3 protein 
(known as LC3-II) upon BVDV infection supported autopha-
gy induction. This was associated with the promotion of virus 
replication (as already inferred by Fu et al. [55]) and inhibi-
tion of the interferon-mediated signaling pathway and apop-
tosis. Interestingly, not only BVDV envelope proteins but also 
a non-structural protein (NS4B) alone could induce autopha-
gosomes formation [56].

There are several other examples of interplay of viruses 
with autophagy. Infection by peste des petits ruminants virus

(PPRV) [57] and Bluetongue virus [58] also triggered an 
autophagic response as shown by the appearance of double- 
and single-membrane autophagy-like vesicles, increased ratio 
of LC3-II:LC3-I, and SQSTM1 degradation. Yang et al. 
reported that PPRV induced a first wave of autophagy in 
infected cells through the cellular pathogen receptor 
NECTIN4 and the AKT-MTOR-dependent pathway [59]. 
They also described that a later wave resulted from interaction 
of viral proteins and the immunity-related protein IRGM and 
the heat shock protein HSPA1A and was sustained during 
replication.

Immune positivity for LC3B was also correlated to the 
distribution and intensity of Brucella spp antigen in several 
tissues of bovine fetuses aborted due to natural infection with 
Brucella spp [60]. The immunopositivity of LC3B and cleaved 
CASP3 (an apoptotic marker) was extremely high in the lung, 
thymus, spleen, kidney, and liver tissues and was highly simi-
lar to the distribution of Brucella spp antigens, suggesting that 
autophagy may be activated by this infectious agent.

In prion diseases, Lopez-Perez et al. investigated the rela-
tionship between gene expression and protein distribution of 
different autophagy-related markers and prion-associated 
lesions in several areas of the central nervous system [61]. In 
sheep infected with classical scrapie, while the expression of 
autophagy markers ATG5 and ATG9 was downregulated in 
some areas of the brain, ATG5 protein accumulated in the 
medulla oblongata (the most inferior part of the brainstem) 
and positively correlated with prion deposition and scrapie- 
related lesions. In the late phases of the disease, downregula-
tion of autophagy-related genes (ATG5 and ATG9) and 
increase in the levels of ATG5 and SQSTM1 proteins were 
observed in highly affected areas, suggesting an arrest of the 
autophagy machinery that would facilitate prion replication. 
Conversely, the autophagy machinery was still intact in 
less affected areas, particularly in specific neuronal cells 
such as Purkinje cells, and consequently would constitute 
a neuroprotective mechanism against prion-induced toxicity. 
In sheep experimentally infected with atypical scrapie prions, 
while ATG5 protein showed a similar distribution to that 
observed in the classical form, expression of the isoforms 
LC3B and LC3A of the LC3 protein did not change in any 
brain region. Overexpression of SQSTM1 in the most prion- 
affected areas, including Purkinje cells [62], confirmed the 
association between prion-related lesions and autophagy 
downregulation in a different form of the disease.

Autophagy and environmental contaminants in ruminants
Two publications of the corpus provide pieces of evidence on 
the role of autophagy in crops pests- or chemicals-induced 
toxicity of ruminants [63,64]. The hepatotoxicity of Saanen 
goats induced by the perennial herbaceous plant Eupatorium 
adenophorum was associated with an excessive autophagy that 
triggers apoptosis that leads to cell death. Specifically, 
Eupatorium adenophorum was shown to suppress the 
PI3 K-AKT-MTOR pathway and activate AMP kinase, pro-
moting the expression of autophagic proteins LC3-II and 
BECN1 (beclin 1), puncta formation and autophagic vacuole 
accumulation in hepatocytes [63]. Higher rates of autophagy

Figure 3. Number of original articles related to autophagy in ruminants accord-
ing to agronomic fields.
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markers, such as autophagosome formation and increased 
expression of autophagy-related genes and proteins were 
also evidenced in bisphenol A-mediated toxicity of goat 
Sertoli cells [64]. According to the authors, autophagy might 
act as a transitory survival pathway in goat Sertoli cells under 
bisphenol A treatment but might be deleterious when it 
occurs excessively or when it is impaired and might lead to 
activation of apoptosis mediated cell death.

Role of autophagy in fertility and reproduction in 
ruminants
In ruminants, the gestation/lactation cycle must be efficient 
for the renewing of herd and for milk production, which 
implies an optimal fertility, reproduction and mammary 
gland development. Of the 45 publications selected, five pub-
lications suggest that autophagy is involved in many facets 
related to fertility or reproduction in ruminants (Figure 3). 
The expression of autophagy-related genes (LC3A, LC3B, 
ATG3, and ATG7), the levels of LC3-II as well as the lysoso-
mal activity were thus shown to increase during the regression 
of bovine Corpus Luteum, a temporary endocrine structure in 
female ovaries involved in the production of progesterone and 
required during the estrus cycle [65]. High levels of genes 
involved in all stages of autophagy – from initial step of 
vesicle elongation (ATG9, LC3, ATG5) to autophagosome- 
lysosome fusion (RAB7) – as well as a high number of double 
membrane-enclosed vesicles (autophagosomes) with engulfed 
portions of cytoplasm were also observed in the placental 
tissues after the transfer of in vitro-produced (IVP) sheep 
embryos [66]. The authors of this study conclude that high 
autophagic activity in IVP placentae can be a successful tem-
porary counterbalance to the delayed vasculogenesis and the 
reduction of fetal growth observed in pregnancies after the 
transfer of IVP embryos. In goats, the variation in the abun-
dance of canonical markers of cellular autophagy was used to 
propose that autophagy pathway is part of the signaling 
involved in the endometrial function, the conceptus elonga-
tion and thus the pregnancy success [67].

However, increased autophagy has also been related to 
detrimental reproductive performance due to oviduct inflam-
mation. Notably, in bovine oviduct epithelial cells (OECs) 
incubated with palmitic acid (a major saturated fatty acid 
known to exert a negative effect on the physiological functions 
of bovine OECs), LC3 and SQSTM1 proteins content were 
increased. This effect was associated with induction of 
CXCL8/IL8 (C-X-C motif chemokine ligand 8) secretion, 
suggesting a role for autophagy in the regulation of inflam-
mation induced by palmitic acid [68].

Role of autophagy in lactation and mammary gland 
physiology, and early weaning in ruminants
Over the 45 publications selected for ruminants, seven 
reported that autophagy is involved in the lactation-driven 
mammary gland development or involution (Figure 3). 
Results from GFP-LC3 fluorescence microscopy, accumula-
tion of autophagosomes measured by transmission electron 
microscopy (TEM) and variations in the abundances of LC3 
and BECN1 in bovine mammary epithelial cells support that 
autophagy is increased during the remodeling of the

mammary gland induced by the drying-off in cows (for review 
see Klionsky et al. [52]), as well as during the mammary gland 
development under the control of ovarian hormones [69]. 
Besides mammary gland, autophagy can be considered as 
part of the adaptive metabolism that sustains milk production. 
To face the negative energy balance classically experienced by 
early-lactating ruminants, dairy cows mobilize fat and muscle 
tissues. A key adaptive metabolic organ is the liver that inter-
converts mobilized molecules and nutrients thanks to 
increased gluconeogenesis and ketogenesis. A decrease in the 
abundance of the ratio of LC3-II:LC3-I in liver was reported 
in early lactating cows intravenously treated with hyperketo-
nemia treatments [70]. In muscle, phosphorylation of AKT 
and MTORC1 substrates was decreased whereas macroauto-
phagy assayed by the ratio of LC3-II:LC3-I was upregulated at 
21 d post-partum comparatively to 28 d before calving [71]. 
Therefore, autophagy may be closely associated with meta-
bolic changes that balance the partition of nutrients between 
milk and whole-body metabolism.

As an indirect consequence regarding milk production, the 
early weaning may be used increasingly. Indeed, early wean-
ing is widely used in livestock farming; especially dairy calves 
are weaned early to reduce milk costs. However, their gastro-
intestinal tract is not ready for early weaning. Glutamine 
(Gln) supplementation was proposed as a strategy to protect 
the intestinal barrier integrity. Gln infusion increased growth 
rates, villus height, and crypt depth in the duodenum of early- 
weaned calves [72]. Low-dose infusion of Gln induced auto-
phagy, which is presumed to reduce cellular stress, and 
decreased the level of apoptosis in the duodenum of early- 
weaned calves [73]. The Gln-induced autophagy was mainly 
dependent on the inhibition of MTOR phosphorylation.

Role of autophagy in ruminant muscle development and 
the conversion of muscle in meat
Muscle development and the transformation of muscle into 
meat are major components of meat production and qualities, 
especially tenderness. Meat conversion is a complex mechan-
ism dependent on changes in the architecture and the integ-
rity of the muscle fibers. The process of conversion includes 
biochemical changes, degradation and oxidation of myofibril-
lar proteins, and breakdown of high-energy compounds. The 
effective conversion of the muscle into meat after slaughter 
includes the pre-rigor mortis phase, the rigor mortis establish-
ment, and the tenderization phase where muscle fiber degra-
dation occurs due to proteolytic enzyme activity. The 
proteolytic changes occurring in the architecture of the myo-
fibril and its associated proteins are a result of the activity of 
endogenous proteases (e.g., the calpain proteinase system, 
cathepsins, and caspases). Meat scientists have considered 
the role of apoptosis in the hours following animal killing as 
a crucial early process during meat conversion [74]. More 
recently, Sierra and Oliván have proposed that autophagy 
should also be considered in the pre-rigor phase (within the 
first 24 h postmortem), but this is still debated [75]. Garcia- 
Macia et al. reported time variations in the autophagic- 
lysosomal pathway in postmortem longissimus dorsi muscle 
of beef breeds differing in their production purposes: a meat- 
specialized breed (Asturiana de los Valles) vs. a small- to
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medium-sized rustic breed (Asturiana de la Montaña) [76]. 
They analyzed the pattern of several autophagic markers and 
reported an increase in abundances of BECN1, LC3, CTSD 
(cathepsin D) and CTSB along the 2–12 h postmortem as well 
as in the ratio of the CTSD:CTSB activity (a marker of 
lysosomal viability) at 2 h postmortem in both beef breeds 
studied. Based on significantly higher LC3-II and LC3-I abun-
dance at 2 h postmortem, the authors concluded to an earlier 
autophagic activation in the muscle of the rustic breed. Early 
autophagic activation is an adaptive response to rescue muscle 
cells from stress conditions after slaughter (sudden arrest of 
blood flow, deprivation of oxygen and nutrients, oxidative 
challenge). According to several reports showing that rustic 
beef breeds exhibit a slower tenderization pattern than that of 
meat-specialized breeds, the authors proposed that the early 
autophagy activation results in postponing cellular degrada-
tion and, eventually, meat maturation. Longo et al. did 
not confirm the contribution of autophagy to the control of 
meat tenderization by studying the temporal evolution of 
the proteome, phosphoproteome and metabolome of the 
Piedmontese longissimus thoracis muscle undergoing muscle- 
to-meat conversion [77]. However, they found compelling 
pieces of evidence of the contribution of apoptosis in this 
process.

Conclusion
Despite the poor availability of specific antibodies for rumi-
nants, most of the knowledge on autophagy in these species 
was obtained thanks to the quantification of autophagy- 
related protein abundances. A more in-depth analysis of 
autophagic processes will be challenging because of the 
inability to utilize genetic approaches and the prohibitive 
costs of administering pharmacological inhibitors. There 
are pieces of evidence for the implication of autophagy as 
a regulator of tissue remodeling, plasticity, and functioning 
that sustain ruminant productions and health. The identifi-
cation of the conditions (including genetics and nutritional 
feeding strategy) that modulate autophagy-based favorable 
traits will help benefit from them.

Autophagy in pigs

In this section, we provide an overview of the literature on 
autophagy in pigs (284 articles extracted). We eliminated 214 
articles that did not directly address issues of agronomic 
interest (Figure 2). In the remaining 70 articles, the role of 
autophagy has mainly been studied in the context of (i) 
pathogen infections (32 articles), (ii) reproductive disorders 
(12 articles), and (iii) muscle development and the transfor-
mation of muscle in meat (26 articles) (Figure 4). We describe 
here the main information provided by these articles.

Role of autophagy in pathogen infections in pigs
In pigs, numerous studies have highlighted that autophagy is 
involved in many processes of infection through different 
pathogens (viruses and bacteria). Indeed, many of them sug-
gest that some viruses are able to exploit autophagic processes 
for their propagation as already mentioned above. In particu-
lar, viruses, such as poliovirus or hepatitis C, use

autophagosomes to gather their replication complexes into 
the cytoplasm of infected cells. Recently, Gou et al. have also 
shown the involvement of autophagy in the death of 
T lymphocytes in the spleen of pigs infected with the classical 
swine virus fever [78]. Compared to healthy animals, the 
T lymphocytes of infected pigs expressed significantly more 
BECN1, ATG5 and LC3-II. Other studies have also revealed 
that autophagy was strongly activated in the context of 
respiratory pathologies [79].

Role of autophagy in fertility and reproduction in pigs
A significant part of the literature (12 publications) also 
addressed the role of autophagy in the ovarian follicles during 
their maturation. Indeed, a successful estrus cycle requires the 
remodeling of the follicular cells and the disappearance of 
99% of them. Kim et al. have shown that several autophagy- 
related genes (LC3A, ATG5, BECN1) are induced during 
follicular development [80]. During embryonic development, 
variations in the microenvironment (calcium, ceramide, ROS) 
are also able to induce mitochondrial disturbances and auto-
phagy. In 2011, Xu et al. have thus shown that the LC3B and 
LAMP2 genes were overexpressed in pigs during early 
embryonic pre-implantation [81]. In addition, a study showed 
that heat stress (HS), well known to compromise follicular 
and early embryo development in a variety of agriculturally 
important species [82–86], induced a decrease in ATG12– 
ATG5 complexes and an increase in anti-apoptotic signals 
BCL2 and BCL2L1 in oocyte and early follicles in pig [87]. 
These data thus contributed to the biological understanding of 
how HS acts as an environmental stress to affect follicular 
development and negatively impacts reproduction.

Figure 4. Number of original articles related to autophagy in pigs according to 
agronomic fields.

1814 S. TESSERAUD ET AL.



Role of autophagy in early weaning in pigs
Weaning is the most challenging period that has significant 
bearings on pig welfare and growth performance in swine 
industry. During weaning period, piglets are immediately 
imposed on a number of environmental and psychosocial 
stressors that predispose them to diarrhea and gut damage, 
which can adversely affect their survival at a very early and 
most vulnerable stage. Zhang et al. were the first to highlight 
that autophagic activity was significantly upregulated in the 
liver, spleen and skeletal muscle tissues of piglets upon early- 
weaning [88]. More recently, Liao et al. examined the effect of 
chloroquine as a feed additive agent to modulate autophagy 
after early weaning [89]. Throughout the experiment, chlor-
oquine treatment was beneficial to alleviate early weaning 
stress as well as intestinal and immune system dysfunctions.

Role of autophagy in muscle development and the 
transformation of muscle in meat
In pigs, many studies (26 publications) also focused on the 
role of autophagy in the development of muscle and adipose 
tissue in response to nutrition. Rapid muscle growth in the 
newborn has thus been correlated to the positive balance 
between protein synthesis and degradation [90]. The authors 
highlighted the important role of insulin and amino acids (in 
particular leucine), as signal molecules, to modulate several 
important factors of muscle protein synthesis and degradation 
after birth, including the autophagosome-related proteins LC3 
and ULK1. In adult pigs, autophagy has also been shown to be 
downregulated in re-feeding conditions after a period of food 
restriction, again supporting the role of this cellular function 
in muscle development [91].

Finally, autophagy acts on postmortem muscle metabolism 
during meat maturation. Rubio-Gonzalez et al. have revealed 
that pig rearing strategies and stress related to animal trans-
port impact postmortem muscle autophagy [92]. The authors 
propose that monitoring the evolution of several biomarkers 
of autophagy (e.g., BECN1, LC3-II:LC3-I ratio) in the muscle 
within the first 24 h postmortem may help the detection of 
animal stress and its potential effect on the postmortem mus-
cle metabolism and meat maturation.

In conclusion, a significant proportion of studies on auto-
phagy in pigs focuses on its role in controlling key physiolo-
gical functions (e.g., reproduction and muscle development) 
but also meat quality in the final product. However, there are 
still many studies to be carried out to understand precisely 
how this cellular function works in pigs, but also to determine 
how to apply the knowledge acquired to improve animal 
development, growth, and health.

Autophagy in animal species used in poultry production

Poultry or domestic fowl classically includes, among other 
species, chickens, turkeys, ducks and geese. In this section, 
we will discuss the existing data on autophagy in these species 
of economic interest, but not in wild birds. Available data on 
autophagy in the chicken used as a model for neuroscience, 
embryonic development, medicine will also be not considered 
here: although they are obtained on same species or strains, 
the information they provide is outside the scope of the

review because it is not related to issues or physiological 
functions supporting livestock animal production such as 
reproduction, growth, immune system … (37 articles 
excluded). In these conditions, 67 articles were selected con-
cerning chickens, ducks, and geese, but also quails and ostrich 
from the 214 extracted publications initially (Figure 2). The 
most represented species was the chicken (Gallus gallus) stu-
died in 55 articles (about 80% of the total number of extracted 
articles) (Figure 5A). Only one other species reached 
a noticeable representation, ducks (Anas platyrhynchos and 
Cairina moschata) with 7 (10%) articles. For other species, i.e., 
ostrich (Struthio camelus), quail (Coturnix coturnix Japonica), 
and goose (Anser cygnoides), the number of items found was 1 
to 3, and, except for geese, autophagy was generally not the 
central subject. Overall, the selected articles covered research 
in infectiology-immunity with 25 articles (37% of the total 
number of extracted articles), environmental stress with 18 
(27%) articles, reproduction with 9 (13%) articles, metabolism 
with 11 (17%) articles and muscle growth-meat quality with 4 
(6%) articles (Figure 5A).

Role of autophagy in pathogen infections and immunity in 
chickens and ducks
Autophagy has been largely investigated in chickens and 
ducks due to the major detrimental impacts of pathogen 
infection on poultry production. The corpus of articles 
includes studies in which pathogens cause liver disease or

Figure 5. Number of original articles related to autophagy in (A) species used in 
poultry production and (B) according to agronomic fields.
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egg drop syndrome (avian adenovirus) [93,94], neoplastic 
disease and immunosuppression (avian leucosis virus) [95– 
97], respiratory diseases and/or malabsorption syndrome 
(avian reovirus [98–105], Newcastle disease virus [106,107], 
avian metapneumovirus [108], avian infectious bronchitis 
virus [109,110]), and acute disease with high mortality rates 
(duck enteritis virus [111–114] and duck hepatitis virus type 1 
[115]). In domestic fowl, as in non-avian species, there is clear 
evidence that autophagy is involved in the processes related to 
infectiology [116–118]. Autophagy participates in the control 
of infections acting as an anti-viral (via the degradation of 
intracellular pathogens once internalized in the host cell and 
the regulation of the immune response) and pro-viral path-
way, the latter being the most studied in recent years in 
poultry. Indeed, the roles of autophagy depend on the virus 
and species because of host-pathogen coevolution. Some 
pathogens have developed strategies to counteract autophagy 
(e.g., decreased autophagy in case of avian leucosis virus 
infection [95]), or alternately, to exploit autophagy to their 
own profit and promote their replication, as reported for 
numerous viruses in chickens (Newcastle disease virus 
[106,107]; avian metapneumovirus [108]; reovirus [98,99]) 
and ducks (egg drop syndrome virus [94]; reovirus [105]; 
duck enteritis virus [111–113]). However, despite the fact 
that these findings can be illustrated in avian species as in 
ruminants and pigs (present review), it is important to avoid 
over-generalization and study the mechanism of autophagy 
and its involvement in the different economically important 
avian diseases. For example, classical autophagy may not play 
a major role in the replication cycle of infectious bronchitis 
virus as reported by Maier et al. in avian cells [109].

Most of the studies extracted here used in vitro models, 
such as mainly duck and chick embryo fibroblasts, and 
chicken embryo fibroblast DF-1 cell line. This in vitro 
approach facilitates the use of various and specific 
approaches to investigate autophagy, allowing, for example, 
the quantification of key proteins (LC3, SQSTM1, BECN1, 
ATG5, ATG7) and associated signaling pathways (AKT, 
MTOR, AMPK) by western blot and even autophagic flux 
measurements [107]. This also allows the visualization of the 
phagophores and autophagosomes by TEM and particularly 
by immunofluorescence (IF) with antibodies against LC3, or 
the GFP-LC3 construct. The GFP-LC3 co-localization with 
LAMP1 was also investigated by IF [94,107,109]. Only three 
articles reported quantification of gene expression level by 
RT-qPCR and/or transcriptomic approach [97,103,106]. 
Two of them aimed to clarify the interactions between 
viruses and host, with a particular interest for genes related 
to autophagy, apoptosis, antiviral defense, innate or adaptive 
immunity and inflammation [97,103]. The last article, com-
bining the quantification of gene expression and different 
other approaches in studies performed in vitro and in vivo, 
aimed to understand the role of autophagy during Newcastle 
disease virus (NDV) infection [106]. The authors first 
demonstrated that NDV induced autophagy in chicken 
cells (higher autophagosome formation shown by TEM, 
enhanced conversion of LC3-I to LC3-II, and degradation 
of SQSTM1) and that autophagy inhibition by chloroquine 
enhanced apoptosis in NDV-infected chickens cells. The

potential roles of autophagy during NDV infection were 
then investigated in vivo by determining the levels of the 
autophagy-related genes that are involved in autophagosome 
initiation, elongation and maturation steps. The results indi-
cated that autophagy induction by rapamycin resulted in 
upregulation of almost all autophagy-related genes in the 
NDV-infected spleen and lung tissues, whereas the inhibi-
tion of autophagy by chloroquine decreased the expression 
levels of ATGs in the tissues targeted by NDV, suggesting 
that autophagy plays a crucial role in the host response to 
NDV infection.

Some relatively few studies included additional in vivo and 
tissue measurements in order to quantify the impact of dis-
ease, for example, liver integrity and function due to adeno-
virus [93], and pathogenesis, virus infectivity and/or apoptosis 
in target tissues after Newcastle disease virus infection 
[106,107]. Interestingly, the knowledge on autophagy in 
domestic fowl completed by in vivo and tissue measurements 
can also help to propose protection strategies and test their 
efficacy by determining the protection against infection by 
avian leucosis virus using an autophagy-targeted vaccine 
[96], and the survival of reovirus-infected chicken embryos 
following treatment with autophagy inhibitors [102].

Environmental stress studied in chickens and ostrich
Environmental stress is considered here as representing 
a series of factors independent of the animal and generally 
related to oxidative stress or inflammation. It has been 
shown to induce autophagy in chickens and ostrich. In 
poultry, the main factors considered are 1) environmental 
toxic pollutants (arsenic, copper, cadmium, lead), since the 
water system and soil can contain elevated concentrations of 
these toxic elements (11 articles), 2) some trace elements 
present in excess or deficiency in the diet (iron, selenium, 
boron; 5 articles) and 3) aflatoxins that contaminate a large 
variety of tropical and subtropical foodstuffs (2 articles). For 
example, it has been reported that copper and/or arsenic 
induced autophagy while inhibiting AKT/MTOR pathway 
in chicken skeletal muscle [119] and cadmium modulated 
MIR-33-AMPK axis and led to BNIP3-dependent autophagy 
in chicken spleen [120]. In this domain, autophagy was 
mostly studied at the tissue level, more precisely in muscle 
[119,121], intestine [122], gizzard [123], heart [124], brain 
[125], liver [126–128], kidney [129], testis [130], and 
immune organs [120,131–133]. The methods combined the 
quantification of key proteins involved in macroautophagy 
(LC3, SQSTM1, BECN1, ATG4B, ATG5, ATG12), some-
times mitophagy (MFN1, MFN2, BNIP3) and associated 
signaling pathways by western blot and/or their transcript 
by RT-qPCR and ultrastructure imaging by TEM. 
Interestingly, the use of the autofluorescent compound 
monodansylcadaverine was reported in two studies per-
formed in chicken hepatocytes for labeling of autophagic 
vacuoles (IF imaging) [134,135]. Due to the link between 
environmental and oxidative stress, numerous studies also 
explored antioxidant system, oxidative stress cascades, 
inflammation or immune system. Moreover, some of them 
tested potential strategies (dietary selenium supplementa-
tion, astragalus polysaccharide supply) to limit the
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deleterious effects of environmental stress by enhancing 
antioxidant systems and/or promoting immunomodulatory 
effects as mechanisms of protection against pollutant- 
induced autophagy [130,134,136].

Reproduction in chickens, geese and quails
In poultry, the role of autophagy on reproduction has mainly 
been analyzed on egg production-related functions; only two 
articles focused on other facets related to reproduction, i.e., 
spermiogenesis and blastoderm dormancy [137,138], but au-
tophagy was not the central subject. Egg production-related 
functions present peculiarities in domestic fowl. The charac-
teristic feature of avian species includes the presence of an 
ovarian follicular hierarchy containing follicles at all stages of 
maturation, and consequently the possibility of having one 
egg per day in laying hens, the existence of molt induction 
(period without egg production) to rejuvenate the egg-laying 
performance of commercial laying hen flocks and the exis-
tence of broodiness, a specific maternal behavior of poultry, 
which can result in reduced egg-lay. Using TEM, it has been 
shown that autophagy participates in the involution of isth-
mus (section of the oviduct) in molting hens [139,140] and 
follicular atresia (i.e., follicular degeneration and resorption) 
in the ovaries of quails [141] and geese [142]. The transcrip-
tome analysis of follicles also reveals the importance of auto-
phagy in broodiness in goose [143]. The increase in the 
formation of autophagic vacuoles in broody goose follicles 
was confirmed by the elevated expression of the autophagy- 
related genes LC3, BECN1, ATG9, ATG12 as well as the 
abundance of LC3-II [142], and further supported by the 
involvement of MTOR as regulator [144]. In laying period, 
autophagy was shown to be involved in the regression of the 
ruptured follicle after ovulation, especially in the theca layer 
(i.e., the envelope of connective tissue surrounding the gran-
ulosa cells) [145]: BECN1 was distributed mainly in theca cells 
and coupled with LC3-II accumulation (IF imaging); more-
over, LC3-II and BECN1 increased and SQSTM1 declined 
with the regression of post-ovulatory follicles (western blot).

Metabolism and growth-meat quality in chickens and 
quails
There is a relative paucity of information on the role of autopha-
gy in relation to metabolism, growth and meat quality in domes-
tic fowl (15 articles). Scientific research in this area concerns the 
response to food deprivation or nutrient depletion, the regula-
tion of feed efficiency (i.e. weight gain per amount of feed 
consumed), body composition and meat quality.

The effect of food deprivation was investigated about 
20 years ago by TEM in the intestine of hens [146] and in 
chickens [147] demonstrating autophagic vacuoles in the duo-
denal epithelial cells of fasted animals. These findings were 
linked to changes in the morphology of intestinal villi, and 
therefore intestinal functions. More recent studies integrating 
western blot analyses highlighted the effect of fasting on LC3- 
II:total LC3 (i.e., increased ratio) in skeletal muscle [148], as 
well as the effect of nutrient depletion on LC3-II and 
GABARAP in chicken embryo fibroblasts [149].

Regarding autophagy and functions more geared toward 
production efficiency, articles mainly reported quantification

of gene expression level by RT-qPCR and/or omic approaches 
(global gene and gene and/or protein expression analyses). 
This includes the characterization of autophagy-related genes 
(involved in autophagosome initiation and elongation) in 
chickens and quails [150], and the detection of differentially 
expressed genes or proteins related to autophagy in the breast 
muscle of chickens varying in dietary methionine provision 
(e.g., increased expression of the genes ATG5 and BECN1 
with slight methionine deficiency [151]) and in feed efficiency 
(pedigree broiler model) [152–154]. In the last model, the 
autophagy pathway was enriched in the breast muscle of 
high feed efficiency broilers with an increased expression of 
several genes involved in autophagosome initiation, elonga-
tion and maturation steps.

Little data is available concerning mechanisms underlying 
skeletal muscle growth, even if DAP (death associated protein; 
a negative regulator of autophagy) was shown to be required for 
regulating myogenesis and apoptosis of chicken satellite cells, 
which may affect muscle mass accretion [155]. Two articles 
concern muscle differentiation [156] and skeletal development 
[157], but autophagy was not the central subject. Meat quality 
was the subject of only one article [158], in which the authors 
investigated the relationship between meat quality and oxidative 
damage in the breast muscle of broiler chickens. The expression 
of autophagy-related genes (LC3, BECN1) and the abundance 
of protein LC3-II increased by oxidative stress induced by H2O2 
(in agreement with the findings presented in the section 
Environmental stress studied in chickens and ostrich), while 
a decline was found in histomorphology and meat quality traits 
such as the ultimate pH and tenderness.

Interestingly, two recent papers focused on the regulation 
of autophagy by the endocrine system by studying the effect 
of either LEP (leptin) or corticosterone [159,160]. Besides 
reducing feed intake, intracerebroventricular administration 
of LEP increased the expression of autophagy-related genes 
and/or proteins (LC3, BECN1, ATG3, ATG5, ATG7) in 
hypothalamus, liver and muscle [159]. These findings were 
corroborated by testing the direct effect of LEP treatment in 
hypothalamic organotypic culture as well as muscle and hepa-
tocyte cell cultures by using the same techniques (RT-qPCR 
and western blot) and IF. The potential downstream mediator 
of the effect of LEP was also investigated. Overall, this study 
demonstrates that AMPK mediates the effect of LEP on auto-
phagy in a tissue-specific manner. Otherwise, corticosterone 
induced a decrease of LC3-II and LAMP1 protein levels as 
well as of autophagic vacuoles in chicken liver [160]. This 
study also demonstrated that dietary supplementation of 
betaine to laying hens could prevent the cortiscosterone- 
induced inhibition of these autophagy- and lysosome-related 
factors in the offspring. The authors propose that this effect of 
maternal betaine supplementation on autophagy could par-
tially contribute to alleviate the corticosterone-induced hepa-
tic lipid accumulation by enhancing lipophagy, a specific 
autophagy-related process through which lipid droplets in 
the hepatocytes can be degraded.

Conclusion
The research effort on autophagy in poultry appears relatively 
unbalanced according to the agronomic domains, both in number
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of studies and tools or approaches developed. A very significant 
expansion has been observed in recent years in infectiology and 
environmental stresses, thereby allowing us to imagine some 
potential protection strategies. On the other hand, too few studies 
have been devoted to the role of autophagy in relation to metabo-
lism, growth and quality of meat, and the underlying mechanisms 
must be investigated to control these functions by new nutritional 
and breeding strategies.

Autophagy in animal species used in aquaculture

In this section, we discuss the existing data on autophagy in 
the most important fish and shellfish species cultured world-
wide (FAO 2011–2018). Available data on autophagy in the 
model fish species zebrafish (Danio rerio) are therefore not 
covered here, and readers are referred to review articles focus-
ing on this specie in detail [161–164].

Overall, our analysis allowed extracting 99 articles devoted 
and/or related to autophagy in fish and shellfish species of 
economic interest. These articles focused on research in infec-
tiology-immunity (30 articles), environmental stress (33 arti-
cles), reproduction (4 articles), metabolism (17 articles) and 
muscle growth-meat quality (16 articles) (Figure 6A). They

concerned 24 species, including 7 shellfish species (5 mollusks 
and 2 crustaceans) and 17 fish species (Figure 6B). Among 
these farmed aquatic species, two are over-represented: the 
blue mussel (Mytilus edulis), which has been studied in 23 
articles (23% of the total number of extracted articles) and 
rainbow trout (Oncorhynchus mykiss) covered in 23 articles 
(23% of the total number of extracted articles). Two other 
species reach a noticeable representation, although much less 
than the former two, namely the common carp (Cyprinus 
carpio) and the Pacific oyster (Crassostrea gigas) with 8 (8%) 
and 7 (7%) articles, respectively. For other species, the num-
ber of articles found is 1 to 5, and autophagy for most of them 
is not the central subject. Here, we outline the data available 
for the 2 most significant species, the blue mussels (Mytilus 
edulis) and the rainbow trout (Oncorhynchus mykiss).

Blue mussels (Mytilus edulis)
Blue mussels are produced in fluctuating environments such 
as estuaries where they are subjected to variable salinity, 
temperature, nutritional condition, and chemical pollutants, 
as well as repeated air exposure (which results in hypoxia) and 
reimmersion in seawater [14,165–170]. Consequently, this 
essentially stressful fluctuating environment has been shown 
to induce the autophagy-lysosomal system, which, by remov-
ing altered proteins and/or damaged organelles, results in 
more efficient cellular housekeeping and helps to minimize 
the formation of harmful lipofuscin and other aggregates 
[13–15].

A well-established tool to assess the autophagy-lysosomal 
response of mussels’ cells to environmental stress is the lyso-
somal membrane stability (LMS) assay (based on cytochemi-
cally determined lysosomal enzyme latency or, alternatively, 
lysosomal retention of neutral red dye) [170]. Lysosomes 
respond to a broad range of pollutants and/or environmental 
stresses with a significant increase in permeability of their 
membranes [171–173]. The evaluation of LMS has thus 
emerged as an easy and relevant method to estimate the 
degree of stress or disease in mussels [174]. In this regard, 
LMS but also the size of lysosomal membrane has been 
correlated to site-specific contamination levels [175–177], as 
well as to natural stress factors such as temperature, hypoxia, 
salinity or food availability and quality [178–181]. In addition 
to these anthropogenic and natural stressors, specific physio-
logical and/or physiopathological conditions such as repro-
ductive status, infection or disease were reported to affect 
LMS [182,183].

Other biomarkers suitable to assess the autophagy- 
lysosomal system reactions to environmental stressors in 
blue mussels have been developed in complement to LMS. 
They include, among others, lipofuscin levels [184], lysosomal 
neutral lipid content [184], and more recently LC3 puncta 
[185], CTSB and CTSD activities [186], and the phosphoryla-
tion of the master autophagy inhibitor MTOR [187].

Overall, the development of these markers increased our 
understanding of the response of the autophagic-lysosomal 
system to environmental changes and/or during particular 
physiological or physiopathological situations in mollusks. 
Recent studies used a network modeling approach to integrate 
multi-biomarker data and provide a more comprehensive

Figure 6. Number of original articles related to autophagy in animal species 
used in aquaculture classified by (A) agronomic field or (B) species.
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view of the interconnected autophagic and lysosomal pro-
cesses, together with anti-oxidant protective system, enable 
animals to respond and adapt to changes in their environment 
[187–189].

Rainbow trout (Oncorhynchus mykiss)
Rainbow trout is probably one of the most deeply studied fish 
species with a long history of research carried out in physiol-
ogy, nutrition, ecology, genetics, pathology, carcinogenesis, 
and toxicology [190]. In addition, as a carnivorous species, it 
has unusual metabolic characteristics (i.e., a high requirement 
for dietary protein combined with an apparent inability to 
metabolize dietary carbohydrates) that make it a particularly 
relevant model organism for studying the metabolic role of 
autophagy.

The first data concerning autophagy in this species date from 
the ‘90s. An in vitro study conducted on isolated rainbow trout 
hepatocytes revealed by TEM the existence of autophagic 
vacuoles containing organelles (such as mitochondria) or lipid 
droplets [191]. Since then, we and others identified and studied 
the regulation of the expression of several critical rainbow trout 
atg genes in muscle and cultured myocytes as well as, more 
recently, in RTgill-W1 epithelial cells [192–199]. The expression 
of these genes was shown to be induced in catabolic situations 
(e.g., fish subjected to prolonged fasting or during sexual 
maturation or cells subjected to nutrient restriction) and sup-
pressed by refeeding [192,196,199,200]. In this regard, we 
reported an unexpected role of amino acids in the regulation 
of the expression of atg genes, thus providing new evidence for 
understanding the nutritional control of this cellular function 
[194]. However, different effects of fasting and refeeding on the 
expression of these genes have been recorded between diploid 
and triploid rainbow trout [197], suggesting that ploidy affects 
the mechanisms of atg gene regulation. Further characterizing 
these mechanisms will contribute to the development of ploidy- 
specific feeding strategies, diet formulations, or husbandry prac-
tices that optimize nutrient utilization and growth performance.

Recently, we also demonstrated that both broodstock nutri-
tional history and an early acute hypoxia applied at embryo 
stage induced significant changes in both the mRNA levels and 
the methylation of several CpG sites of bnip3a and bnip3lb1, 
two genes involved in the autophagy-mediated mitochondrial 
degradation (known as mitophagy), in whole-body fry [201]. 
Similarly, a recent study also demonstrated that early feeding of 
rainbow trout with a methionine-deficient diet over a 2-week 
period increases the abundance of several canonical markers of 
mitophagy at later juvenile stages [202]. These findings thus 
raised the interesting possibility of directing autophagy-related 
functions in trout and open up new opportunities toward the 
optimization of nutrition and health of trout by the mean of 
nutritional programming.

However, as autophagy machinery is primarily regulated at 
post-translational level, a number of tools have also been 
developed for accurate monitoring of autophagy activity. 
Most components of autophagy, autophagy-related functions 
(e.g., mitophagy) and associated signaling pathways (Akt, 
Foxo, Ampk, Mtor) are evolutionary conserved and can be 
studied in rainbow trout by western blot through the use of 
commercially available antibodies produced against their

mammalian orthologs [193,203,204]. The detection of Lc3- 
II, which is the gold standard method for estimating autop-
hagosome quantity within the cell, can also be performed by 
western blot or by IF in trout using commercially available 
antibodies [194,199,204–207]. Overall, these tools allowed 
studying both in vivo and in vitro the response of autophagy 
in rainbow trout to different factors including nutrient 
restriction or imbalance [199,202,204–206] or exposure to 
viruses [207]. Recently, antibodies specific to rainbow trout 
Lc3 and Atg12 were also produced with the objective of 
exploring the main effect of follicle autophagy on gonadal 
degeneration in triploid female rainbow trout [208]. These 
antibodies were proved successful for western blot (Lc3 and 
Atg12) and immunochemistry (Lc3) analyses, further increas-
ing the arsenal of tools available to study this function in 
trout.

However, despite the increase in the number of tools 
available to monitor autophagy in trout, most of the available 
data remains descriptive and few studies addressed the speci-
fic role of this cellular function in this species. Recently, the 
respective role of both the proteasome and autophagy to total 
protein degradation has been studied in fasted trout myotubes 
by using specific inhibitors [209]. The results demonstrated 
that autophagy plays a major role in this process (around 50% 
of total protein degradation) compared to the proteasome 
(which only accounts for 17%), at least in this model. By 
using the autophagic flux inhibitor colchicine, autophagy 
was also shown to contribute to the maintenance of blood 
glucose and amino acid levels as well as the lipid stores in the 
liver of this species [210]. Similarly, the treatment of fasted 
trout hepatocytes with the autophagy inhibitor bafilomycin Al 
has been shown to decrease the mRNA levels of many of the 
gluconeogenesis-related genes and increased those of genes 
involved in intracellular lipid stores [211]. Together, these two 
studies corroborated the reported role of autophagy in the 
regulation of glucose homeostasis and intracellular lipid 
stores, highlighting the importance of this function in the 
control of hepatic metabolism in rainbow trout.

Collectively, these studies led to significant advances in 
the characterization of autophagy in trout and in our under-
standing of the main mechanisms involved in its control, 
especially by nutrients. However, studies on the role of this 
function in fish are still very limited, and details on how 
autophagy functions in fertility, development and growth of 
trout (as well as of other aquaculture fish species) but also 
tolerance to dietary imbalances, abiotic or pathogenic stres-
ses and finally in the quality of the flesh consumed remain 
widely unexplored.

Autophagy in other livestock animals: horse, rabbit

This section gathered publications dealing with autophagy in 
two species: horse and rabbit. Over 79 original articles, only 
14 were related to autophagy in 5 agronomic fields: reproduc-
tion (5 studies), inflammation/immunity/pathogens response 
(4 studies), metabolism (2 studies), growth (2 studies), envir-
onmental stress/toxicology (1 study) and distributed in each 
animal as shown in Figure 7.
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Horses
In the context of equine science, we identified six publications 
related to autophagy in metabolism, growth, and 
reproduction.

It has thus been observed that the aging of equine triceps 
brachii muscle is accompanied by a decrease in the level of 
autophagy-related proteins ATG5 and LC3-II and an accu-
mulation of SQSTM1, suggesting an age-associated decline of 
autophagosome formation in this tissue [212].

In a different context, Marycz et al. demonstrated that 
autophagy is one of the mechanisms underlying the biological 
properties of mesenchymal stem cells (MSCs) and chondro-
cytes in equine metabolic syndrome (an endocrinopathy affect-
ing horses and ponies) and osteoarticular disease, respectively 
[213]. For many years, MSCs have gained popularity in equine 
veterinary medicine for regenerative purposes because of their 
self-renewal ability and their multilineage differentiation poten-
tial, conferring them a high value in tissue engineering. In this 
respect, the study of Marycz et al. showed that adipose-derived 
stem cells (ASCs) isolated from horses affected by equine 
metabolic syndrome were markedly characterized by impaired 
proliferative and metabolic activity (deterioration of mitochon-
drial dynamics), which is related to lower mitochondrial meta-
bolism and induced autophagy process. The authors showed 
that the differentiation potential of these cells relies on the 
induction of autophagy (evaluated by mRNA expression of 
LC3, BECN1 and LAMP2). The increase in autophagy was 
found to alleviate the energy production crisis caused by dys-
functional mitochondria and excessive oxidative stress induced 
by the metabolic syndrome in those cells [213]. Currently, 
various pretreatment conditions are evaluated to improve the 
regenerative potential of equine adipose-derived stromal cells. 
Indeed, it has been demonstrated that calystegines

(polyhydroxylated alkaloids) extracted from Hyoscyamus albus 
can rescue ASCs affected by metabolic syndrome by promoting 
their survival by blocking apoptosis and improving the 
dynamic status of mitochondria [214].

Osteochondrosis (OC) is a condition commonly found in 
sport and racing horses, usually accompanied by osteochon-
dritis dissecans (OCD), characterized by a defect of ossifica-
tion in young animals, which negatively affects joint 
homeostasis. Kornicka et al. investigated the cytophysiological 
properties of equine OCD chondrocytes at molecular level 
including expression of chondrogenic genes, apoptosis, mito-
chondria dynamics and autophagy [215]. OCD chondrocytes 
were characterized by increased apoptosis and senescence. 
The expression of LC3 mRNA is diminished in OCD cells 
while there is no change in BECN1 expression.

Finally, in the field of reproduction, autophagy was inves-
tigated in relation to sperm conservation and quality, but the 
results are still highly debated. Thus, in a first study, the 
authors suggested that the increase in LC3-II levels could be 
considered as a marker of sperm survival when evaluating 
different cooling media [216]. However, in a second study, 
the increase in LC3-I to -II processing was considered as 
a marker of stress during spermatozoa freezing, and inhibition 
of autophagy was shown to improve sperm viability [217].

Rabbit
The rabbit is an essential model in scientific research, parti-
cularly in the study of several human diseases, because it is 
phylogenetically closer to humans than rodents. Rabbits 
remained nevertheless a model for studies in agronomic 
field. Among the 63 listed publications related to autophagy 
in rabbit, only 8 publications were selected, dealing with 
animal diseases (due to viral or bacterial infection), reproduc-
tion and toxicology.

Several examples illustrated the involvement of autophagy 
in pathogen infections in rabbits. Ferreira et al. provided 
pieces of evidence for the presence of autophagic vesicles 
during hepatocellular degeneration induced by the rabbit 
hemorrhagic disease virus (RHDV) [218]. A more recent 
study demonstrated that RHDV induced the formation of 
autophagosomes and autolysosomes, as well as the expres-
sion of several autophagy-related proteins or markers [219]. 
Such autophagic activity induced by the RHDV declined in 
late periods of infection in parallel to the increase in apop-
tosis. These results suggest that virally induced autophagy 
might contribute to limit cell death triggered by RHDV 
infection. Another example illustrates the involvement of 
autophagy in the host response to bacterial infection. Guo 
et al. characterized the rabbit NOD1 (rNOD1; nucleotide- 
binding oligomerization domain 1) member of the NOD-like 
receptors, involved in the mammalian innate immune system 
[220]. In particular, they showed that rNOD1 induced auto-
phagy in cells infected with E. coli. These findings could 
contribute to therapeutic strategies such as targets of new 
vaccine adjuvants or drugs. The implications are important 
due to the increasing use of rabbits for research and food 
production and the risk of further interspecies pathogen 
transmission.

Figure 7. Number of original articles related to autophagy in horse and rabbit 
according to agronomic fields.

1820 S. TESSERAUD ET AL.



In the field of reproduction, the sexual differentiation 
involves programmed cell death of epithelial cells in 
Mullerian and Wolffian ducts and the chronology of such 
event has been found to vary from one species to another in 
mammals. Two studies further provide important new 
insights concerning the role of autophagy in the process of 
progressing and regressing genital ducts in the rabbit 
[221,222]. In vivo, as well as in organ culture, the ultrastruc-
tural modifications observed in the epithelial cells during the 
sexual differentiation in genital ducts of fetal rabbit were an 
increase in lysosome numbers followed by subsequent accu-
mulation of autophagic vacuoles. In turn, the duct cell auto-
phagy can be stopped if the formation of lysosomes was 
prevented. These studies suggest that autophagy is involved 
in cell degeneration of the genital ducts.

Understanding the mechanism by which cells become sen-
sitive to toxicity of chemicals has important implications in 
veterinary medicine. The study of Bozzatto et al. demonstrates 
the occurrence of autophagic cell death processes in the tis-
sues of rabbits infested with Rhipicephalus sanguineus ticks 
and exposed to the action of different selamectin (an acari-
cide) concentrations [223]. Based on increased concentrations 
of hydrolytic enzymes (acid phosphatase) in tissues exposed to 
selamectin, the authors established that selactamin is a dose- 
dependent toxic agent.

Conclusion

Although research on autophagy expanded dramatically in the 
past 15–20 years, it has been mainly focused on rodent, 
particularly in the context of human diseases. Thus, due to 
the limited amount of information available for other verte-
brate taxa, it remains unknown whether the rodent autophagy 
genes repertoire as well as the related expression patterns, 
regulations and functions is even representative of the other 
vertebrate species. In this regard, recent findings demon-
strated that while 90% of the “autophagy core” genes are 
conserved across all eukaryotic species, those coding for pro-
teins involved in recognition of substrates to be degraded by 
autophagy (known as autophagy receptors) display rather low 
conservation in ancient taxa, suggesting a specialization of 
this function during evolution [224]. Concerning fish in par-
ticular, it is possible that the whole genome duplication 
occurred 300–350 million years ago in the common ancestor 
of teleosts (ray-finned fishes gathering 99.8% of current fish 
species) has strongly modulated the genetic structure and 
therefore the function of autophagy in this group of verte-
brates compared to mammals. It is, therefore, possible that 
some variations (even marginal) in the repertoire of autopha-
gy genes or their expression pattern, regulation and function 
between species may have important consequences in the 
development of phenotypes of agricultural interest that 
remains to be characterized and studied.

In latest years, the number of studies on autophagy in farm 
animals has increased significantly. The recent availability of 
the genome of these species allowed to characterize the main 
factors involved in this function and to establish a solid 
knowledge base on its regulation and role in these species. 
Thus, physiological functions supporting livestock animal

production (reproduction, growth, immune system, and 
meat maturation) have been shown to be regulated by auto-
phagy. However, much work is still needed to understand 
how autophagy works in these species and how to apply the 
acquired knowledge to improve animal development, growth 
and health, as the quality of their products, in the context of 
growing social and environmental challenges for agriculture. 
For example, while it is now clearly established in pig, cow or 
chicken that many viruses use the autophagosomal machinery 
to spread, the lack of precise data on the mechanisms involved 
prevents the definition of effective antiviral strategies. 
Similarly, a better knowledge of the mechanisms at play in 
the response of autophagy to environmental, nutritional and/ 
or oxidative stresses in these species would allow the defini-
tion of new strategies adapted to farming constraints and 
challenges. It will also be essential to decipher the respective 
role of the different autophagic route (macroautophagy, 
microautophagy and CMA) in the development of phenotypes 
of agricultural interest.

Improving our knowledge of the mechanisms involved in 
autophagy in farm animals will require the development of appro-
priate tools. Indeed, the lack or the limited tools available (e.g., 
specific antibodies) to study autophagy in these species represent 
the main limitation in the field nowadays. The ability to manip-
ulate or study autophagy as a dynamic process is also particularly 
limited in large animals due to financial, infrastructural and ethic 
constraints associated with the use of pharmacological agents and/ 
or genome editing tools in these species. In this context, one of the 
major challenges in the future will be the development of reliable 
tools or assays to accurately monitor and quantify in these species 
the different stages of the autophagic process as well as the differ-
ent subtypes of selective autophagy, including mitophagy or CMA, 
which have emerged these last few years as a major core compo-
nent in the control of cellular homeostasis and energetics but 
remain barely studied in livestock animals.

In the meantime, we strongly recommend authors to mul-
tiply the approaches and tools currently available to report the 
studied autophagic events, in accordance with the Guidelines 
for the use and interpretation of assays for monitoring auto-
phagy [52]. Below are some basic principles that we believe to 
be critical when designing studies and/or considering/review-
ing the literature on autophagy in farm animals:

● Be aware that the ability to study autophagy as a dynamic 
process in large animals is often limited because the use of 
inhibitors or transgenic animals is not feasible.

● Consider the alternative and/or complementary cell cul-
ture approach that allows manipulating or studying au-
tophagy as a dynamic process.

● Be aware that most of the measurements per se are not 
reflective of dynamic autophagy process as they rely on 
the interpretation of markers of different steps of this 
process (initiation or degradation of autophagosomes, 
for example), and therefore consider the use of different 
approaches/tools available for each species to report the 
studied autophagic events.

● Avoid the over-interpretation of the data obtained. 
For example, the induction of the expression of
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autophagy-related genes does not necessarily reflect 
induction of autophagy.
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