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ABSTRACT
We aimed to determine if the newborn gut microbiota is an underlying determinant of early life 
growth trajectories. 132 Hispanic infants were recruited at 1-month postpartum. The infant gut 
microbiome was characterized using 16S rRNA amplicon sequencing. Rapid infant growth was 
defined as a weight-for-age z-score (WAZ) change greater than 0.67 between birth and 12-months 
of age. Measures of infant growth included change in WAZ, weight-for-length z-score (WLZ), and 
body mass index (BMI) z-scores from birth to 12-months and infant anthropometrics at 12-months 
(weight, skinfold thickness). Of the 132 infants, 40% had rapid growth in the first year of life. 
Multiple metrics of alpha-diversity predicted rapid infant growth, including a higher Shannon 
diversity (OR = 1.83; 95% CI: 1.07–3.29; p = .03), Faith’s phylogenic diversity (OR = 1.41, 95% CI: 
1.05–1.94; p = .03), and richness (OR = 1.04, 95% CI: 1.01–1.08; p = .02). Many of these alpha-diversity 
metrics were also positively associated with increases in WAZ, WLZ, and BMI z-scores from birth to 
12-months (pall<0.05). Importantly, we identified subsets of microbial consortia whose abundance 
were correlated with these same measures of infant growth. We also found that rapid growers were 
enriched in multiple taxa belonging to genera such as Acinetobacter, Collinsella, Enterococcus, 
Neisseria, and Parabacteroides. Moreover, measures of the newborn gut microbiota explained up 
to an additional 5% of the variance in rapid growth beyond known clinical predictors (R2 = 0.37 vs. 
0.32, p < .01). These findings indicate that a more mature gut microbiota, characterized by increased 
alpha-diversity, at as early as 1-month of age, may influence infant growth trajectories in the 
first year of life.
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Introduction

A prominent concern with the obesity epidemic is 
the high rate of obesity present among children1,2 

which is especially evident among Hispanics, 
a disparity that is manifested in early life.1,3 

Childhood obesity may persist into adulthood, 
thereby contributing to widespread cardiometabolic 
comorbidities.4–6 Beyond maternal obesity,7,8 socio
economic status,9,10 and early life nutrition,7,11–13 

emerging evidence indicates that the infant gut 
microbiota may influence growth trajectories in the 
first year of life,14–17 which may in turn predict 
future obesity.3,18,19 Given that rapid infant growth 

is a potential determinant of overweight/obesity in 
school-age children,20 the developing gut microbiota 
may be an important predictor for rapid infant 
growth and childhood obesity.

Previous studies have shown that the composi
tion of the infant gut microbiota is associated with 
measures of infant growth and childhood obesity 
risk.14,21–26 For instance, a greater proportion of 
Staphylococcus aureus25 and elevated richness of 
Firmicutes26 in early infancy have been correlated 
with the development of overweight and obesity 
during childhood. To our knowledge, no previous 
studies have assessed the impact of the composition 
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of the infant gut microbiota on detailed measures of 
infant growth among Hispanic infants, a group 
with high rates of infant onset obesity.2 Therefore, 
the primary objective of this study was to determine 
whether the infant gut microbiota at 1-month of 
age was associated with rapid growth from birth to 
12-months of age in a subset of mother-infant 
dyads from the Southern California Mother’s Milk 
Study. We hypothesized that greater maturation of 
the newborn gut microbiota, characterized by 
increased alpha-diversity and beta-diversity,27 

would predict more rapid infant growth. As 
a secondary aim, we investigated whether gut bac
terial diversity and/or specific gut microbial taxa 
were associated with additional measures of infant 
growth (i.e., weight-for-age z-score [WAZ], weight- 

for-length z-score [WLZ], body mass index [BMI] 
z-score, anthropometrics).

Results

General characteristics

As shown in Table 1, mothers were evenly split by pre- 
pregnancy BMI status where 37 (28%) were normal 
weight, 50 (38%) were overweight, and 45 (34%) were 
obese. Overall, 54 (40%) infants exhibited rapid 
growth from birth to 12-months of age. Infants with 
rapid growth had a significantly lower birth weight 
(p < .001) and length (p < .001) compared to those 
without rapid growth. Among maternal and infant 
characteristics, only infant birth weight (OR = 0.03, 

Table 1. Characteristics of mother-infant dyads from the Southern California mother’s milk study at 1-month of infant age.
Overall 

(n = 132)
Rapid Growth 

(n = 54)
Non-Rapid Growth 

(n = 78)
Crude OR 
(95% CI)

Crude OR 
p-value

Maternal Characteristics
Age at Infant Birth (years) 29.5 ± 6.3 29.3 ± 6.2 29.7 ± 6.4 0.99 (0.94,1.0) 0.72
Pre-Pregnancy BMI (kg/m2) 28.4 ± 5.7 28.7 ± 5.4 28.1 ± 6.0 1.0 (0.96, 1.1) 0.51
Delivery (vaginala, cesarian, %vaginal) 98, 34, 74.2% 38, 16, 70.4% 60, 18, 76.9% 1.4 (0.64, 3.1) 0.40
SES Indexb 26.9 ± 12.2 26.2 ± 11.7 27.3 ± 12.6 0.99 (0.96, 1.0) 0.61
Pre-Pregnancy Weight Status
Normal Weight 37, 28.0% 12, 22.2% 25, 32.1% Ref Ref
Overweight 50, 37.9% 22, 40.7% 28, 35.9% 1.6 (0.68, 4.0) 0.28
Obese 45, 34.1% 20, 37.0% 25, 32.1% 1.7 (0.67, 4.2) 0.27
Weight Status at 1-Month Postpartum
Normal Weight 23, 17.4% 7, 13.0% 16, 20.5% Ref Ref
Overweight 48, 36.4% 20, 37.0% 28, 35.9% 1.6 (0.58, 4.9) 0.36
Obese 61, 46.2% 27, 50.0% 34, 43.6% 1.8 (0.67, 5.3) 0.25
Maternal Dietary Measures at 1-Month
Total energy intake (kcals) 1724.9 ± 534.73 1682.7 ± 404.06 1761.8 ± 609.9 1.00 (1.00, 1.00) 0.45
Fat intake (g) 58.55 ± 23.09 56.918 ± 19.272 59.687 ± 25.462 0.99 (0.98, 1.01) 0.50
Protein intake (g) 76.487 ± 23.305 74.555 ± 17.79 77.825 ± 26.288 0.99 (0.98, 1.01) 0.42
Carbohydrate intake (g) 229.5 ± 81.701 223.17 ± 66.787 233.89 ± 91.299 1.00 (0.99, 1.00) 0.45
Infant Characteristics
Age (days) 32.8 ± 5.2 33.4 ± 5.3 32.4 ± 5.2 1.0 (0.97, 1.1) 0.28
Infant Sex (femalea, male, %female) 72, 60, 54.5% 30, 24, 55.6% 42, 36, 53.8% 0.93 (0.46, 1.9) 0.84
Delivery
On-Time (n, %)a 64, 48.5% 26, 48.1% 38, 48.7%* Ref Ref
Late (n, %) 36, 27.3% 9, 16.7% 27, 34.6% 0.49 (0.19, 1.2) 0.12
Early (n, %) 32, 24.2% 19, 35.2% 13, 16.7% 2.1 (0.91, 5.2) 0.08
Birth Weight (kg) 3.4 ± 0.42 3.1 ± 0.36 3.6 ± 0.37*** 0.03 (0.006, 0.10) <0.001
Birth Length (cm) 50.5 ± 2.4 49.7 ± 2.3 51.1 ± 2.3*** 0.76 (0.63, 0.89) 0.001
Weight (kg) 4.6 ± 0.49 4.5 ± 0.48 4.7 ± 0.48** 0.36 (0.16, 0.75) 0.008
Length (cm) 54.2 ± 1.8 53.6 ± 1.8 54.6 ± 1.8** 0.74 (0.59, 0.90) 0.004
Weight for Length z-Score 0.65 ± 1.3 0.70 ± 1.4 0.62 ± 1.3 1.0 (0.81, 1.4) 0.73
Body Mass Index z-Score 0.59 ± 1.1 0.47 ± 1.1 0.67 ± 1.1 0.84 (0.60, 1.2) 0.29
Antibiotics at 1-month (noa/yes, %yes)c 116, 15, 11.5% 47, 7, 13.0% 69, 8, 10.4% 1.28 (0.42, 3.81) 0.65
Infant Dietary Measures
Breast Feedings/Day (≥8a, <8, % ≥8) 97, 35, 73.5% 37, 17, 68.5% 60, 18, 76.9% 1.5 (0.70, 3.4) 0.28
Formula Feeding/Day (yes/noa) 51, 81, 38.6% 18, 36, 33.3% 33, 45, 42.3% 1.5 (0.72, 3.1) 0.30
Age of Solid Food Introduction (months) 5.8 ± 1.5 5.7 ± 1.3 5.8 ± 1.6 0.93 (0.72, 1.2) 0.56

Table 1. Baseline (1-month) characteristics of 132 Hispanic mother-infant dyads from the Southern California Mother’s Milk Study. Pre-pregnancy BMI, infant sex, 
birth weight and birth length are also shown. Data are reported mean and standard deviation (SD) unless otherwise noted. Logistic regression was used to 
determine the crude odds ratio (OR) and 95% confidence intervals (CIs) for each baseline variable and rapid infant growth from birth to 12-months of age 
where the areference group is indicated. Total samples sizes include bn = 130 for the Hollingshead Four Factor Index as a measure of socioeconomic status 
(SES) (rapid n = 53 and non-rapid n = 77) and cn = 131 for infant antibiotic exposure in the first month of life. For continuous variables, independent 
parametric or non-parametric t-tests were used to test for differences between infants with rapid and non-rapid growth. For categorical variables, chi-square 
tests were used to test for differences between infants with rapid and non-rapid growth. Statistical significance between rapid and non-rapid growers 
corresponds to ***p < 0.001, **p < 0.01, and *p < 0.05.
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95% CI: 0.006–0.10; p < .001) and length (OR = 0.76; 
95% CI, 0.63–0.89; p = .001), infant weight (OR = 0.36; 
95% CI: 0.16–0.75; p = .008) and length at 1-month 
(OR = 0.74; 95%, CI: 0.59–0.90; p = .004) were asso
ciated with rapid infant growth. For example, there 
were no differences in maternal characteristics 
between rapid vs. non-rapid growers, including 
maternal age at birth, pre-pregnancy BMI, mode of 
delivery (vaginal vs. cesarian), socioeconomic status, 
or maternal diet at 1-month postpartum (Table 1: pall 
≥0.40).

Gut bacterial alpha-diversity was associated with 
rapid growth

While there were no observed differences in measures 
of beta-diversity, we observed significant differences 
in measures of alpha-diversity by infant growth status. 
Specifically, Faith’s PD (p = .01) and sOTU richness 
(p = .01) were higher among rapid- compared to non- 
rapid growers (Figure 1) where a higher Faith’s PD 
(OR = 1.41; 95%, CI: 1.05–1.94; p = .03) and richness 
(OR = 1.04; 95%, CI: 1.01–1.08; p = .02) also predicted 
rapid infant growth (Table 2). Greater maturation of 
the infant gut microbiota was associated with rapid 
infant growth after adjusting for birth weight and 
birth length. For example, infant gut microbial 
Shannon diversity at 1-month of age was associated 
with rapid infant growth from birth to 12-months 
(OR = 1.83; 95% CI, 1.07–3.29, p = .03). We per
formed several sensitivity analyses, adjusting for 
maternal BMI, infant exposure to antibiotics, and 
infant diet at 1-month of age and found the results 
largely unchanged by inclusion of these additional 

covariates. Results of these analyses suggest that 
these maternal and infant characteristics do not con
found the present results and are included in 
Supplemental Tables 1–8. Lastly, we were interested 
in determining if infant gut bacterial diversity 
improved our ability to predict rapid infant growth 
when compared to known clinical predictors, such as 
maternal age, pre-pregnancy BMI, delivery mode, 
measure of socioeconomic status (SES), infant age 
and sex, birth weight and length, breast feedings 
per day, formula consumption, age of solid food 
introduction, and time of delivery. Including 
Shannon diversity, Faith’s PD, or richness at 
1-month explained an additional 3% (R2 = 0.32 vs. 
0.29, p = .06), 2% (R2 = 0.31 vs. 0.29, p = .14), and 2% 
(R2 = 0.31 vs. 0.29, p = .09) of the variance in rapid 
infant growth compared to known clinical predictors, 
respectively.

Gut bacterial alpha-diversity was associated with 
measures of growth

Shannon diversity, Faith’s phylogenetic diversity 
(PD), and richness of gut bacteria at 1-month were 
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Figure 1. Gut bacterial alpha-diversity was higher in rapid compared to non-rapid growers at 1-month of age. Figure 1. Boxplots for 
infant gut bacterial Shannon diversity, Faith’s PD, and sOTU richness at 1-month of age is shown for Hispanic infants with rapid (n = 54) 
and non-rapid growth (n = 78). P-values obtained from the Wilcoxon rank sum test with continuity correction.

Table 2. Greater gut bacterial alpha-diversity were associated 
with rapid infant growth from birth to 12-months of age.

Adjusted OR 
(95% CI) p-value

Alpha-Diversity Indices

Shannon diversity 1.83 (1.07, 3.29) 0.03
Faith’s PD 1.41 (1.05, 1.94) 0.03
Richness 1.04 (1.01, 1.08) 0.02

Table 2. Multivariable odds ratios (OR) and 95% confidence intervals (CI) were 
calculated for these alpha-diversity indices, based on logistic regression 
with non-rapid growers as the referent, adjusting for birth length and birth 
weight. P-values in bold denote statistical significance for p < 0.05.
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all associated with a greater increase in WAZ, WLZ, 
and BMI z-score in the first year of life after adjusting 
for birth weight and birth length (Table 3). As an 
example, Faith’s PD at 1-month was associated with 
a greater increase in infant WAZ (β = 0.14, CI: 0.01, 
0.27; p = .03), WLZ (β = 0.14, CI: 0.02, 0.26; p = .03), 
and BMI z-score (β = 0.14, CI: 0.02, 0.27; p = .03) 
from birth to 12-months of age. Additionally, infant 
gut bacterial alpha-diversity metrics at 1-month were 
each associated with a greater infant weight and 
midthigh skinfold thickness at 12-months of age. 
Particularly, Shannon diversity (β = 0.27, CI: 0.05, 
0.49; p = .02), Faith’s PD (β = 0.13, CI: 0.005, 0.25; 
p = .04), and richness (β = 0.01, CI: 0.0003, 0.03; 
p = .045) at 1-month were each associated with 
a greater infant weight. Shannon diversity 
(β = 1.36, CI: 0.41, 2.32; p = .006), Faith’s PD 
(β = 0.58, CI: 0.05, 1.12; p = .03), and richness 
(β = 0.07, CI: 0.01, 0.13; p = .02) at 1-month were 
also associated with a greater midthigh skinfold 
thickness at 12-months of age.

The infant gut microbiota at 1-month of age 
predicted rapid growth

Using a multinomial regression-based approach, we 
identified groups of gut bacteria that differed in 
abundance between rapid compared to non-rapid 
growers at 1-month of age (Figure 2a, p = .03). We 
examined these taxa at the genus-level and noted 
specific gut bacteria that were associated with rapid 
(n = 18) and non-rapid growers (n = 19) (Figure 2b). 

Taxa whose abundances were positively associated 
with rapid growers included the genera 
Acinetobacter, Collinsella, Enterococcus, Neisseria, 
Parabacteroides, and an unclassified genus belonging 
to the family Ruminococcaceae. Taxa whose abun
dances were negatively associated with rapid growers 
include the genera Akkermansia, Bifidobacterium, 
Blautia, Eubacterium, and Ruminococcus. In parallel, 
we identified support for several of these taxa being 
associated with rapid growth using an uninformed 
approach (Figure 3), including negative associations 
involving Enterobacteriaceae sp. 3 and Clostridium 
perfringens, and positive ones involving 
Parabacteroides distasonis and Clostridium parapu
trificum. Moreover, including the adjusted abun
dances of the top 40% of taxa whose abundances 
were identified to be positively associated with 
rapid growers (i.e., normalized to be composition
ally-robust by taking the log-ratio of the abundances 
of those taxa with respect to the bottom 40%, and 
curated to exclude taxa not classified to at least the 
genus level and also genera present in bot top- and 
bottom groups) explained an additional 5% 
(R2 = 0.37 vs. 0.32, p < .01) of the variance in rapid 
infant growth compared to known clinical predic
tors, which included mother’s age, pre-pregnancy 
BMI, delivery mode, measure of SES, infant age 
and sex, birth weight and length, breast feedings 
per day, formula consumption, age of solid food 
introduction, and time of delivery. Next, we exam
ined the abundances of the taxa identified as impor
tant above in a subset of infants with available 

Table 3. Infant gut bacterial alpha-diversity was associated with measures of infant growth.
Shannon Diversity Faith’s PD Richness

Beta 
(95% CI) p-value

Beta 
(95% CI) p-value

Beta 
(95% CI) p-value

Growth Measures 
(Birth to 12-Months)

Weight-for-Age z-score 0.23 (−0.004, 0.47) 0.05 0.14 (0.01, 0.27) 0.03 0.01 (0.0003, 0.03) 0.045
Weight-for-Length z-score 0.21 (−0.01, 0.43) 0.06 0.14 (0.02, 0.26) 0.03 0.01 (0.002, 0.03) 0.03
BMI z-score 0.20 (−0.03, 0.42) 0.09 0.14 (0.02, 0.27) 0.03 0.02 (0.002, 0.03) 0.03
Anthropometrics 

(12-Months)
Weight (kg) 0.27 (0.05, 0.49) 0.02 0.13 (0.005, 0.25) 0.04 0.01 (0.0003, 0.03) 0.045
Length (cm) 0.29 (−0.21, 0.80) 0.25 0.07 (−0.20, 0.35) 0.60 0.005 (−0.03, 0.04) 0.73
Tricep Skinfold Thickness (mm) −0.13 (−0.64, 0.37) 0.60 0.07 (−0.21, 0.35) 0.62 0.01 (−0.02, 0.04) 0.53
Subscapular Skinfold Thickness (mm) 0.24 (−0.15, 0.64) 0.23 0.14 (−0.08, 0.36) 0.22 0.02 (−0.008, 0.04) 0.20
Suprailiac Skinfold Thickness (mm) 0.07 (−0.24, 0.37) 0.66 0.06 (−0.10, 0.23) 0.44 0.007 (−0.01, 0.03) 0.43
Midthigh Skinfold Thickness (mm) 1.36 (0.41, 2.32) 0.006 0.58 (0.05, 1.12) 0.03 0.07 (0.01, 0.13) 0.02

Table 3. Beta coefficients and 95% confidence intervals (CIs) from multivariable linear regression analysis used to examine the associations between measure of 
infant growth with measures of alpha-diversity. Models adjusted for birth weight and birth length. P-values in bold denote statistical significance for p-values 
<0.05.
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sequencing data at 6-months of age (n = 92). These 
results indicate a tendency for the gut microbes 
identified at 1-month to remain important regarding 
distinguishing rapid growers at 6-months of age 
(Supplemental Figure 1).

Our observation of increased ability to predict rapid 
infant growth using measures of the newborn gut 
microbiota is also supported by machine learning 
(Figure 4a), which shows that when predicting rapid 
vs. non-rapid growth, the discriminatory power of our 
random forest classifier (i.e., based on AUROC) 
increased to 0.77. This suggests that the newborn gut 
microbiota can be used to differentiate infants with 
rapid and non-rapid growth. Next, we examined the 
relative importance of the newborn gut microbiota 
compared to known clinical predictors for rapid infant 
growth. Based on variable importance (VIP) analysis 
we found that the adjusted abundances of the impor
tant taxa were ranked second (Figure 4b). 
Additionally, whereas infant birth weight had the 
highest VIP, other known clinical predictors were 
ranked lower than the adjusted abundances of impor
tant taxa, including mother’s age, pre-pregnancy BMI, 

delivery mode, SES, infant age and sex, birth length, 
breast feedings per day, formula consumption, age of 
solid food introduction, and time of delivery.

The infant gut microbiota at 1-month of age was 
associated with growth measures

The adjusted abundances of important taxa were sig
nificantly associated with additional measures of 
infant growth (Table 4). For example, the adjusted 
abundances of important taxa were associated with 
a greater increase in WAZ (β = 0.08, CI: 0.01, 0.15; 
p = .03) from birth to 12-months of age. Additionally, 
the composition of the newborn infant gut microbiota 
using these differential rankings was associated with 
a greater infant weight (β = 0.06, CI: 0.01, 0.12; p = .03) 
and skinfold thickness measures at 12-months. This 
included tricep (β = 0.13, CI: 0.0003, 0.26; p < .05), 
subscapular (β = 0.10, CI: 0.002, 0.21; p < .05), suprai
liac (β = 0.10, CI: 0.02, 0.18; p = .02), and midthigh 
(β = 0.23, CI: −0.01, 0.47; p = .06) skinfold thickness 
measures. Among the subset of infants with available 
sequencing data at 6-months of age (n = 92), the 
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Figure 2. The Composition of the Infant Gut Microbiota at 1-Month of Age was Associated with Infant Growth in the First Year of Life. 
Figure 2. (a) Comparison of the adjusted abundances of features associated with rapid- and non-rapid growth. The abundances were 
adjusted by taking the log-ratio of the top- and bottom 40% of features ranked based on their log-fold change with respect to rapid 
growth from our multinomial regression model. Selected features were additionally curated to exclude taxa not assigned to at least the 
genus level, and those assigned to genera present in both numerator (i.e., rapid growth) and denominator (i.e., non-rapid growth) 
groups. After curation, there were 25 and 27 features in numerator (i.e., rapid growth) and denominator (i.e., non-rapid growth) 
groups, respectively. Based on this selection, 110 of the 132 samples were included (83.3%). The multinomial regression model was 
additive, and adjusted for birth weight, birth length, and Faith’s PD. (b) The curated selection of the top- and bottom 40% of features 
(sOTU) grouped at the genus-level that were associated with infant growth. Taxa shared between groups are those excluded during 
curation in (A).
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adjusted abundances of taxa identified as important 
with respect to rapid growth 1-month of age were not 
associated with additional measures of infant growth 
(Supplemental Table 9).

Discussion

We found that 40% of Hispanic infants from the 
Southern California Mother’s Milk Study exhibited 
rapid infant growth from birth to 12-months of age, 
which is a known risk factor for childhood 
obesity.3,18,19 Results from this study identified 

aspects of the newborn gut microbiota that distin
guished rapid from non-rapid growers. 
Additionally, we found that higher gut microbial 
Shannon diversity and richness at 1-month pre
dicted rapid infant growth from birth to 12- 
months of age. Further, we observed differences in 
the adjusted abundances of specific taxa in rapid 
compared to non-rapid growers, which represent 
37 distinct bacterial genera. These differentially 
abundant taxa were also associated with greater 
increase in WAZ, WLZ, and BMI z-score from 
birth to 12-months of age. Lastly, gut bacterial 

Figure 3. Robust aitchison principal coordinates analysis supports that infant gut microbial features are associated with rapid growth in 
the first year of life. Figure 3. Robust Aitchison Principal Components Analysis (RPCA) biplot representing robust Aitchison distances 
between samples. Samples are colored based on rapid growth status. Arrows represent features, are colored by associations with rapid 
growth based on our multinomial regression model and annotated with their taxonomic classification (sOTUs lacking species-level 
classification were numbered within genera). Lengths of arrows correspond to correlations between feature loadings and the biplot 
axes. Samples near the arrow tips have strong correlations with respective features, and those near and beyond origins have negative 
correlations. Light-colored arrows indicate sOTUs with positive or negative associations with rapid growth, respectively, and dark 
arrows indicate sOTUs that were among the curated selection of the top- or bottom 40% of ranked associates, respectively. Note that 
axes 2 and 3 are represented (See Supplemental Figure 1 for axes 1 and 2). Results from permutational dispersion (PERMDISP) and 
multivariate analysis of variance (PERMANOVA) are shown.
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Shannon diversity, richness, and the adjusted abun
dances of important taxa were associated with 
increased infant weight as well as greater midthigh 
skinfold thickness measures at 12-months. These 

results provide the first evidence that the newborn 
gut microbiota may contribute to rapid infant 
growth among Hispanics in the first year of life. 
Additionally, we found that the newborn gut 
microbiota was ranked second in importance 
when predicting rapid infant growth when com
pared to known clinical predictors such as maternal 
age, pre-pregnancy BMI, delivery mode, SES, infant 
age and sex, birth length, breast feedings per day, 
formula consumption, age of solid food introduc
tion, and time of delivery.

There is growing evidence that the newborn gut 
microbiota is an underlying determinant of infant 
growth and childhood obesity14,21–26 through 
increased energy harvesting28–30 and/or production 
of gut bacterial derived metabolites that may con
tribute to obesity.31–38 As such, precocious matura
tion of the infant gut microbiota (e.g., increased 
diversity) may result in a more adult-like gut 
microbiome that is known to contribute to rapid 
growth.39 Increases in bacterial alpha-diversity may 
contribute to functional changes in the gut micro
biome, including an increase in short-chain fatty 
acid production,40 genes responsible for complex 
carbohydrate- and starch metabolism,41,42 and an 

Figure 4. The relative importance of the newborn gut microbiota in predicting rapid infant growth compared to known clinical 
predictors. Figure 4. (a) The area under the receiver operating characteristic (AUROC) curve using leave-one-out predictions for rapid 
growth using a random forest classifier. The AUROC is indicated in the legend. The metadata correspond to known clinical predictors, 
including maternal age at birth (years), pre-pregnancy BMI (kg/m2), delivery mode (vaginal, c-section), measures of socioeconomic 
status (SES), infant age and sex, birth weight (kg) and length (cm), breast feedings per day (≥8, <8), formula feeding (yes/no), age of 
solid food introduction (days), and time of delivery (on-time, early [>2 weeks before due date], late [>2 weeks after due date]). (b) 
Importance based on variable importance (VIP) scores where a higher importance score indicates a greater contribution of each 
variable in predicting rapid infant growth. The Songbird log-ratio corresponds to the curated selection of the log-ratio of the top- and 
bottom 40% ranked sOTUs that were differentially associated with rapid infant growth in the first year of life.

Table 4. The newborn gut microbiota was associated with mea
sures of infant growth.

Differentially Abundant 
Gut Microbes*

Beta 
(95% CI) p-value

Growth Measures 
(Birth to 12-Months)

Weight-for-Age z-score 0.08 (0.01, 0.15) 0.03
Weight-for-Length z-score 0.05 (−0.04, 0.14) 0.28
BMI z-score 0.06 (−0.02, 0.13) 0.17
Anthropometrics 

(12-Months)
Weight (kg) 0.06 (0.01, 0.12) 0.03
Length (cm) 0.03 (−0.11, 0.17) 0.66
Tricep Skinfold Thickness (mm) 0.13 (0.0003, 0.26) <0.05
Subscapular Skinfold Thickness (mm) 0.10 (0.002, 0.21) <0.05
Suprailiac Skinfold Thickness (mm) 0.10 (0.02, 0.18) 0.02
Midthigh Skinfold Thickness (mm) 0.23 (−0.01, 0.47) 0.06

Table 4. Beta coefficients and 95% confidence intervals (CIs) from multi
variable linear regression analysis used to examine the associations 
between measure of infant growth with gut microbial composition at 
1-month of age. *Differentially abundant gut microbes are defined as 
a curated selection of the log-ratio of the top- and bottom 40% ranked 
sOTUs that were differentially associated with rapid infant growth in the 
first year of life. P-values in bold denote statistical significance for those 
<0.05.
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increase in intestinal energy extraction from food.43 

Additionally, as infants develop, the gut microbial 
community becomes dominated by Bacteroidetes, 
Firmicutes, and Actinobacteria.44 Shifts to these 
dominant phyla include the addition of bacterial 
taxa involved in energy harvesting processes,14,39,45 

which may impact infant growth trajectories and 
increase risk for childhood obesity. Thus, specific 
developmental processes related to gut bacterial 
composition and function may contribute to 
increased infant growth and childhood obesity.46–48

We found that measures of gut bacterial matura
tion at 1-month were associated with increased 
infant growth trajectories in the first year of life. 
To our knowledge, this is the first study to find that 
increased measures of alpha-diversity (e.g., 
Shannon, Faith’s PD, richness) were associated 
with greater increases in WAZ, WLZ, and BMI 
z-score from birth to 12-months of age as well as 
a greater infant weight and midthigh skinfold 
thickness at 12-months of age, suggesting that 
beyond growth trajectories, the gut microbiota 
may contribute to differences in infant body com
position by 12-months of age. Our findings agree 
with most,16,17,22 but not all previous 
investigations.49,50 For example, higher 6-month 
Shannon diversity has been shown to be positively 
associated with changes in WAZ and WLZ from 6 
to 12-months of age.16 Furthermore, higher gut 
bacterial Shannon diversity and richness from 3 to 
4 months was associated with risk of overweight by 
12-months of age.17 However, two studies have 
either failed to find differences in microbial diver
sity metrics between obese and normal weight 
Hispanic preschool children,49 or observed that 
gut bacterial diversity was inversely associated 
with BMI z-score among children 6–16 years of 
age.50 Inconsistency in the literature may be due 
to differences in the age groups being examined or 
the timepoint in which the gut microbiota was 
assessed.

This study utilized a compositionally-aware mul
tinomial regression analysis51 to identify the top 40% 
of taxa whose abundances were positively associated 
with rapid infant growth in the first year of life. The 
adjusted abundances of these taxa were also asso
ciated with additional measures of infant growth, 
including greater increases in WAZ as well as 
a greater infant weight and skinfold thickness 

measures at 12-months of age. Next, we examined 
the 52 differentially ranked taxa at the genus level in 
order to gain a deeper insight into potentially impor
tant differences in gut bacterial composition among 
rapid compared to non-rapid growers. We found 
that rapid growers were already enriched at 
1-month of age in multiple genera that have been 
linked with obesity (e.g., Acinetobacter,15,52 

Collinsella,53,54 Enterococcus55–57). For example, 
two studies found an increased relative abundance 
of Collinsella among Mexican adolescents and chil
dren with obesity, respectively, compared to their 
normal weight peers.53,54 Additionally, studies 
examining Chinese children have observed a higher 
relative abundance of the Enterococcus genus among 
those with obesity.56,57 Non-rapid growers were 
enriched in genera linked with gut barrier 
integrity58 and immune maturation that may be 
protective against obesity in childhood (e.g., 
Akkermansia,59 Bifidobacterium,60 Blautia,61 

Eubacterium62). For example, studies have found 
an inverse association between the relative abun
dance of Blautia and Eubacterium and levels of 
adiposity in children.61,62 Lastly, since these gut 
microbes were detected early in life, we explored 
whether the relative importance of the bacteria per
sisted beyond 1-month of life. Thus, we examined 
the group of gut microbiota identified as important 
for rapid growth at 1-month, in a subset of infants 
with available sequencing data at 6-months of age. 
Overall, we found a tendency for the adjusted abun
dances of gut microbes identified as important at 
1-month to remain high in rapid- compared to non- 
rapid growers at 6-months of age. Whereas these 
results did not reach statistical significance 
(p-value = 0.2), these findings support the impor
tance of the gut microbes identified at 1-month of 
age among a larger group of bacteria distinguishing 
rapid growers at six months. Additional members of 
the distinguishing group at 6-months that were not 
detected at 1-month of age may represent taxa pre
sent at 1-month that were not initially important, or 
they may represent those that were absent at 
1-month but became established by 6-months of 
age. It is also possible that gut microbial profiles at 
1-month of age predict the trajectory of the devel
oping gut microbiome (composition and function), 
which may play a larger role in early life growth 
trajectories.
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The strengths of the current study include early 
assessment of the newborn gut microbiota at 
1-month of age and detailed longitudinal measures 
of infant growth trajectories among Hispanic 
infants that are at increased risk for childhood 
obesity. Additionally, this study included detailed 
information regarding potentially important con
founding variables (e.g., mode of delivery, time of 
delivery, SES, pre-pregnancy BMI, maternal age, 
maternal and infant diet, birth weight and length). 
Despite these strengths, some potentially important 
variables were not included in the Mother’s Milk 
Study. For example, the current study lacked 
genetic information and paternal BMI which may 
impact infant growth. Whereas all participants in 
this study self-identified as being of Hispanic eth
nicity, we did not directly assess country of origin, 
which may predict the composition of the gut 
microbiome.63 Some studies suggest that dietary 
intake during pregnancy may impact the maternal 
and infant gut microbiome.64–67 Since we did not 
have information regarding diet during pregnancy, 
we examined maternal macronutrient and energy 
intake at 1-month postpartum and did not observe 
any differences by infant growth status. The current 
study also did not examine human milk oligosac
charides that have been shown to impact the devel
opment of the infant gut microbiome.68–71 

However, we found that the associations between 
the infant gut microbiota and rapid infant growth 
were largely unchanged after adjusting for infant 
diet (i.e., breast feedings per day and infant formula 
feedings per day). Additionally, infant diet was not 
associated with rapid infant growth in the first year 
of life. Cessation of breast feeding was not analyzed 
in this analysis; however, at 1-month of age none of 
the infants had ceased breast feeding. This study 
was also limited in that we could not identify spe
cific gut bacterial species that may underlie the 
observed associations between the gut microbiota 
and increased infant growth trajectories. Lastly, the 
current study is limited in that it lacked repeated 
assessment of the infant gut microbiota throughout 
the first year of life;72 however, our results are 
consistent with previous studies that suggest that 
early developmental processes in the gut may con
tribute to childhood overweight and obesity.14,21–26

Our findings illustrate that the gut microbiota as 
early as 1-month of age predicts rapid infant growth 

and explains up to an additional 5% of the variance in 
rapid growth beyond known clinical predictors. These 
results suggest that the newborn gut microbiota may 
play an important role in the development of early life 
obesity in Hispanic children. Future work is needed to 
determine whether specific aspects of the infant gut 
microbiome (e.g., species, functional profiles) contri
bute to biological pathways known to be linked with 
obesity. Overall, findings from this study suggest that 
the gut microbiome should be examined as a potential 
target for childhood obesity prevention. For example, 
future studies should work to identify specific gut 
bacterial species that contribute to early life growth 
and development. Such studies may inform interven
tions aimed at modulating the gut microbiome at key 
developmental windows through the use of probiotics.

Methods

Participants

The study population was selected between 2016– 
2019 from the Southern California Mother’s Milk 
Study, which was designed to examine the association 
of breast milk factors on the infant gut microbiota and 
changes in infant growth among Hispanic mother- 
child dyads.73,74 At the time of this analysis, 135 
infants had gut microbiota data at 1-month and 92 
had gut microbiota data at 6-months. Infants who had 
microbiota data at 6-months did not differ substan
tially from those included in the 1-month sample 
(Supplemental Table 10). Study participants were 
recruited from clinics affiliated with the University of 
Southern California in Los Angeles County and other 
community clinics. The eligibility criteria included: 
healthy, term, singleton birth; self-identified 
Hispanic aged ≥18 years old at the time of delivery; 
1-month postpartum; and intending to breastfeed for 
at least 3 months postpartum. Participants were 
excluded if: diagnosed with any medical condition 
which could affect metabolism, nutritional status, phy
sical or mental health; taking medications that affect 
body weight/composition, insulin resistance, or lipid 
profiles; currently using tobacco or other recreational 
drugs; or diagnosed with fetal abnormalities. Written 
informed consent was obtained from all participants 
and the University of Southern California and 
Children’s Hospital Los Angeles Institutional Review 
Boards approved the study protocol.
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Study visits

Maternal weight was measured to the nearest 0.1 kg 
(Tanita, Model BC-549) and standing height was mea
sured to the nearest 1 mm (Seca GmBH & Co. KG, 
Model Seca 126) to calculate BMI.75 Self-reported 
height and weight were used to assess pre-pregnancy 
BMI (kg/m2). Maternal diet was assessed using 24- 
hour dietary recalls at 1-month postpartum.73,76 

Infant weight was measured in duplicate to the nearest 
5 g by net difference of the mother with and without 
baby on a Tanita scale. Infant length was measured to 
the nearest 0.1 cm using an infantometer.74 Infant 
umbilical circumference was measured to the nearest 
0.1 cm using a tape measure resistant to stretching.74 

Infant skinfold thickness was measured using a caliper 
at the tricep, subscapular, suprailiac, and midthigh 
regions.74 Birth weight and length were obtained 
from hospital records. The measured average weight 
and length were then used to calculate WAZ, WLZ, 
and BMI z-scores using the WHO Child Growth 
Standards.77 Rapid infant growth was defined as 
a WAZ change >0.67 between birth and 12 months 
of age.18,78,79 Infant breast feedings per day (≥8, <8), 
formula feeding (yes/no), age of solid food introduc
tion (months), and time of delivery (on-time, early 
[>2 weeks before due date], late [>2 weeks after due 
date]) were assessed using maternal questionnaires.74 

Lastly, information regarding parental education and 
occupation was collected in order to calculate indivi
dual socioeconomic status (SES) based off of 
a modified version of the four-factor Hollingshead 
Index,80 where students, stay-at-home parents, and 
unemployed persons were assigned a score of zero in 
order to keep them in the analysis.81

Gut microbiota

Infant stool samples were collected using OmniGene 
GUT kits at 1- and 6-months postpartum. DNA was 
extracted for 16S rRNA amplicon sequencing using the 
515/806 barcoded primer pair (515 F: 
GTGCCAGCMGCCGCGGTAA, 806 R: 
GGACTACHVGGGTWTCTAAT) and then standar
dized in accordance with the Earth Microbiome Project. 
The 515/806 barcoded primer pair has been used for 
cross-cultural analysis that included infants.82 Paired- 
end, 2x150bp, next-generation sequencing was per
formed on the Illumina MiSeq platform available in 

the Institute for Genomic Medicine at the University 
of California San Diego.83 Demultiplexed files were 
processed using Qiita (https://qiita.ucsd.edu).84 

Sequences were trimmed to a length of 150-bp, and 
examined using a reference-free method, Deblur,85 to 
remove suspected error sequences, provide amplicon 
sequence variants86 called sub-operational taxonomic 
units (sOTUs), and generate a feature-table with counts 
of each sOTU per sample. To generate a phylogeny, 
Deblur tag sequences were inserted into the 
GreenGenes 13_8 backbone phylogeny using SATÉ- 
enabled phylogenetic placement (SEPP),87,88 and all 
sOTUs not placed during SEPP were removed from 
the feature-table. sOTUs were assigned taxonomy89 

using the GreenGenes 13_8 database trimmed to the 
V4 region and the q2-feature-classifier classify-sklearn 
(from the Quantitative Insights into Microbial Ecology 2 
[QIIME2] tool).90

Statistical analyses

Gut bacterial community diversity

To normalize the sampling depth across samples, we 
rarefied the number of reads per sample to a read depth 
of 10,000, resulting in three samples being dropped. For 
alpha-diversity (within-sample diversity), we estimated 
sOTU richness, Shannon diversity, and Faith’s phyloge
netic diversity (PD).91,92 Differences in alpha-diversity 
were examined using a Wilcoxon rank sum test with 
continuity correction. We estimated beta-diversity 
(between sample diversity) using weighted UniFrac, 
unweighted UniFrac, and the robust Aitchison distances 
from robust Aitchison principal components analysis 
(RPCA).92 We visualized the latter using RPCA, which 
is robust to sparsity (e.g., taxa absent in a majority of 
samples) and compositionality inherent in microbiome 
datasets. Lastly, we ran permutational dispersion analysis 
(PERMDISP) and permutational multivariate analysis of 
variance (PERMANOVA) on each distance matrix to 
examine the effect of infant growth status on bacterial 
community composition (n = 999 permutations 
per run).

Descriptive statistics and infant growth analysis

Descriptive statistics (means and frequencies) of key 
variables were performed on the full sample and 
mean/frequency differences by growth status were 
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assessed. Unadjusted logistic regression analysis was 
used to determine whether maternal and/or infant 
baseline characteristics predicted rapid infant growth. 
These results were used to identify potentially impor
tant covariates to include in our adjusted models, 
which included birth weight and length as well as 
1-month weight and length. However, since birth 
weight and length were significantly correlated with 
1-month measures (both r = 0.57 and p < .0001), we 
only examined birth weight and birth length. Finally, 
we performed several sensitivity analyses by adjusting 
for maternal and/or infant factors that are known to be 
associated with the developing gut microbiome (e.g., 
maternal BMI, infant antibiotic exposure, and infant 
diet). Adjusted logistic regression analyses were then 
performed to determine the associations between 
alpha-diversity metrics and rapid infant growth from 
birth to 12-months of age after adjusting for covariates 
(Table 1). Lastly, multivariable linear regression ana
lyses were performed to determine if alpha-diversity 
was associated with measures of infant growth (e.g., 
WAZ, WLZ, anthropometric measures).

Songbird (v1.0.3)51 and Qurro (0.7.1)93 were used 
to calculate and display the differential ranks of sOTUs 
associated with infant growth status, respectively. 
Briefly, Songbird accounts for the compositional nat
ure of microbiome data and uses a multinomial 
regression model to estimate differential rankings for 
features with respect to model variables. Models were 
adjusted for birth weight and birth length as well as 
Faith’s PD in order to examine whether sOTUs were 
associated with infant growth status independent of 
gut bacterial diversity. The full list of feature rankings 
from this analysis are included in Supplemental 
Table 11. Using Qurro, we then selected the top- and 
bottom 40% of ranked sOTUs, corresponding to those 
40% of taxa whose changes in relative abundance 
across samples are most- or least-associated with 
rapid growth. Based on this selection, 110 of the 132 
samples were included (83.3%). We curated this selec
tion of sOTUs by excluding those lacking taxonomic 
classification to at least the genus level and also those 
genera that were present in both top- and bottom- 
ranked groups. A Wilcoxon rank-sum test was used to 
compare the log-ratio of the abundances of the curated 
selection of the top- and bottom ranked groups, 
between rapid- and non-rapid growers. We also 
examined the log-ratio of the same microbes for 
potential associations with measures of infant growth 

(e.g., WAZ, WLZ, anthropometric measures). 
Further, as a robustness check, we examined the 
sOTUs that were identified in the 1-month analysis 
at 6-months, for a subset of infants that had available 
sequencing data (n = 92). We found that there was 
a tendency for microbes identified at 1-month to 
persist at 6-months (see Supplemental Figure 2 and 
Supplemental Table 9).

Lastly, we determined whether assessment of the 
newborn gut microbiota could improve our ability to 
predict rapid infant growth beyond known clinical 
predictors using three approaches: 1) model fit based 
on McFadden pseudo R2 values and likelihood ratio 
tests, 2) microbiome-growth status associations using 
machine learning to in order to examine the area 
under the receiver operating characteristic (AUROC) 
curves using leave-one-out predictions for rapid 
growth with a random forest classifier, and 3) micro
biome-growth status associations using interpretable 
machine learning variable importance (VIP) scores 
(vip package in R). Analyses were conducted using 
QIIME2 v.2020.11 and R (Version 3.6.2). Statistical 
significance was defined as a p-value<0.05 and 95% 
confidence intervals (CIs) are reported with effect 
estimates.
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