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Genome of a middle Holocene 
hunter-gatherer from Wallacea

Selina Carlhoff1,2,15, Akin Duli3,15, Kathrin Nägele1,2, Muhammad Nur3, Laurits Skov2, 
Iwan Sumantri3, Adhi Agus Oktaviana4,5, Budianto Hakim6, Basran Burhan7, 
Fardi Ali Syahdar8, David P. McGahan7, David Bulbeck9, Yinika L. Perston7, Kim Newman7, 
Andi Muhammad Saiful6, Marlon Ririmasse4, Stephen Chia10, Hasanuddin6, 
Dwia Aries Tina Pulubuhu11, Suryatman6, Supriadi3, Choongwon Jeong12, Benjamin M. Peter2, 
Kay Prüfer1,2, Adam Powell2, Johannes Krause1,2,16 ✉, Cosimo Posth1,13,14,16 ✉ & Adam Brumm7,16 ✉

Much remains unknown about the population history of early modern humans in 
southeast Asia, where the archaeological record is sparse and the tropical climate is 
inimical to the preservation of ancient human DNA1. So far, only two low-coverage 
pre-Neolithic human genomes have been sequenced from this region. Both are from 
mainland Hòabìnhian hunter-gatherer sites: Pha Faen in Laos, dated to 7939–7751 
calibrated years before present (yr cal bp; present taken as ad 1950), and Gua Cha in 
Malaysia (4.4–4.2 kyr cal bp)1. Here we report, to our knowledge, the first ancient 
human genome from Wallacea, the oceanic island zone between the Sunda Shelf 
(comprising mainland southeast Asia and the continental islands of western 
Indonesia) and Pleistocene Sahul (Australia–New Guinea). We extracted DNA from the 
petrous bone of a young female hunter-gatherer buried 7.3–7.2 kyr cal bp at the 
limestone cave of Leang Panninge2 in South Sulawesi, Indonesia. Genetic analyses 
show that this pre-Neolithic forager, who is associated with the ‘Toalean’ 
technocomplex3,4, shares most genetic drift and morphological similarities with 
present-day Papuan and Indigenous Australian groups, yet represents a previously 
unknown divergent human lineage that branched off around the time of the split 
between these populations approximately 37,000 years ago5. We also describe 
Denisovan and deep Asian-related ancestries in the Leang Panninge genome, and infer 
their large-scale displacement from the region today.

Modern humans crossed through Wallacea (Fig. 1a) to Sahul5–8 at least 
50 thousand years ago (kya)9, and possibly by up to 65 kya10. Presently, 
however, the earliest archaeological evidence for our species in Walla-
cea dates to at least 45.5 kya for figurative art in Sulawesi11, and 47–43 kyr 
cal bp for a behavioural shift at Liang Bua (Flores, Indonesia)12. The old-
est Homo sapiens skeletal remains date to 13 kya13. The route modern 
humans used to enter Sahul is not known14. Demographic models infer 
a population split between the ancestors of Oceanian and Eurasian 
groups approximately 58 kya, whereas Papuan and Aboriginal Austral-
ian groups separated around 37 kya5. Within this time interval, modern 
humans admixed multiple times with groups related to Denisovans15–23, 
and potentially other unknown hominins24,25. The genetic ancestry 
of the two Hòabìnhian-associated foragers from Pha Faen and Gua 
Cha1 shows the highest similarity to modern Andamanese peoples. 

These ancient and present-day peoples lack substantial amounts of 
Denisovan-related ancestry, suggesting that the Hòabìnhian-associated 
and Onge-related lineage diverged before the main archaic human 
introgression events1. Current Wallacean individuals carry larger 
proportions of Denisovan-related ancestry, but at substantially lower 
frequencies than is the case in Papuan and Indigenous Australian indi-
viduals20. This is probably due to admixture with the East Asian Neo-
lithic farmers (‘Austronesian peoples’) who arrived in Wallacea around 
4 kya20,26.

The Toalean burial from Leang Panninge
The most distinctive archaeological assemblages associated with 
Holocene hunter-gatherers in Wallacea belong to the Toalean 

https://doi.org/10.1038/s41586-021-03823-6

Received: 27 November 2020

Accepted: 13 July 2021

Published online: 25 August 2021

Open access

 Check for updates

1Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany. 2Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. 3Departemen 
Arkeologi, Fakultas Ilmu Budaya, Universitas Hasanuddin, Makassar, Indonesia. 4Pusat Penelitian Arkeologi Nasional (ARKENAS), Jakarta, Indonesia. 5Place, Evolution and Rock Art Heritage Unit, 
Griffith Centre for Social and Cultural Research, Griffith University, Gold Coast, Queensland, Australia. 6Balai Arkeologi Sulawesi Selatan, Makassar, Indonesia. 7Australian Research Centre for 
Human Evolution, Griffith University, Brisbane, Queensland, Australia. 8Independent researcher, Makassar, Indonesia. 9Archaeology and Natural History, School of Culture, History and 
Language, College of Asia and the Pacific, Australian National University, Canberra, Australian Capital Territory, Australia. 10Centre for Global Archaeological Research, Universiti Sains Malaysia, 
Penang, Malaysia. 11Departemen Sosiologi, Fakultas Ilmu Sosial, Universitas Hasanuddin, Makassar, Indonesia. 12School of Biological Sciences, Seoul National University, Seoul, Republic of 
Korea. 13Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany. 14Senckenberg Centre for Human Evolution and Palaeoenvironment, 
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technocomplex (8–1.5 kya)3,4,27,28. Found only in a 10,000 km2 area of 
South Sulawesi3 (Fig. 1b), Toalean cultural assemblages are generally 
characterized by backed microliths and small stone projectiles (‘Maros 
points’)4 (Extended Data Fig. 1a–c). In 2015, excavations at Leang Pan-
ninge in the Mallawa district of Maros, South Sulawesi (Fig. 1b), uncov-
ered the first relatively complete human burial from a secure Toalean 
context (Extended Data Figs. 1–5, Supplementary Information). The 
individual was interred in a flexed position29 in a rich aceramic Toalean 
stratum. Exposed at a depth of around 190 cm, the burial has an inferred 
age of 7.3–7.2 kyr cal bp obtained from 14C dating of a Canarium sp. seed 
(Extended Data Figs. 2, 3, Supplementary Table 1). Morphological char-
acters indicate that this Toalean forager was a 17–18-year-old female 
with a broadly Australo-Melanesian affinity, although the morphology 
does not fall outside the range of recent Southeast Asian variation 
(Supplementary Information).

Genomic analysis
We extracted ancient DNA from bone powder obtained from the petrous 
portion of the temporal bone of the Leang Panninge individual. After 
library preparation, we used a DNA hybridization capture approach to 
enrich for approximately 3 million single-nucleotide polymorphisms 
(SNPs) across the human genome (1240K and archaic admixture cap-
ture panels30) as well as for the entire mitochondrial genome (mtDNA 
capture31). We retrieved 263,207 SNPs on the 1240K panel, 299,047 
SNPs on the archaic admixture panel and the almost complete mtDNA 
sequence. Authenticity of the analysed ancient DNA was confirmed 
by short average fragment length, elevated damage patterns towards 
the molecule ends, and low autosomal and mtDNA contamination 
estimates (Supplementary Fig. 1). We confirmed that the individual 
was genetically of female sex. Analysis of the polymorphisms present 
in the reconstructed mtDNA sequence suggests a deeply divergent 
placement within mtDNA haplogroup M (Supplementary Table 17, 
Supplementary Fig. 2).

We initiated our genomic investigation by principal component anal-
yses (PCAs), comparing the Leang Panninge genome with present-day 
individuals from East Asia, southeast Asia and Near Oceania (com-
prising Indigenous Australia, Papua New Guinea and Bougainville) 
genotyped on the Human Origins SNP panel18,32–34. The newly generated 
genome and relevant published genomes from ancient individuals 
from eastern Eurasia were then projected on the PCA1,34–38. Leang Pan-
ninge falls into PCA space not occupied by any present-day or ancient 
individuals, but is broadly located between Indigenous Australian 
peoples and the Onge (Fig. 2a, Extended Data Fig. 6). F3-statistics33 
of the form f3 (Mbuti; Leang Panninge, X), where X is replaced with 

present-day Asian-Pacific groups, indicated that the new genome 
shares most genetic drift with Near Oceanian individuals (Fig. 2b). We 
confirmed these results with f4-statistics33, suggesting similar affinity 
of Leang Panninge and Papuan individuals to present-day Asian indi-
viduals, despite Near Oceanian groups forming a clade to the exclu-
sion of Leang Panninge (Extended Data Fig. 7a, b). All present-day 
groups from the region, with the exception of the Mamanwa and the 
Lebbo26, carry only a minor contribution of Papuan-related ancestry 
(Supplementary Fig. 4).

To investigate the presence and distribution of genetic contribu-
tions attributable to Denisovan-related groups39, we calculated the 
statistic f4 (Mbuti, Denisova; Leang Panninge, X), where X are groups 
from present-day Island Southeast Asia, Near Oceania and the Anda-
mans, as well as ancient Asian-Pacific individuals1,37,38. Positive values 
calculated for Near Oceanian groups suggest higher proportions 
of Denisovan-related ancestry than the Leang Panninge individual 
(z-scores of >3.19), while the Onge and the remaining ancient indi-
viduals returned negative values, indicating a lower proportion of 
Denisovan-related ancestry (Extended Data Fig. 7c, Supplementary 
Fig. 3). We also calculated f4-ratio statistics to estimate the Deniso-
van proportion using SNPs from the 1240K capture panel and Han 
individuals from East Asia as a baseline18. We confirmed that Indig-
enous Australian and Papuan individuals carry a similar amount of 
Denisovan ancestry (approximately 2.9%)18,21,40, whereas the Leang 
Panninge individual has a lower value of approximately 2.2 ± 0.5% (Sup-
plementary Tables 18–20). The Denisovan admixture proportion in the 
Leang Panninge individual is higher than in the Hòabìnhian individu-
als from Pha Faen and Gua Cha1, suggesting that groups ancestral to 
hunter-gatherers from Wallacea and Sunda were involved in different 
introgression events with archaic hominins. In addition, we performed 
D-statistics on a set of SNPs designed to measure the contribution 
of archaic ancestry in modern humans (archaic admixture capture 
panel). The Leang Panninge individual shares fewer Denisovan-related 
alleles with Papuan individuals, but has more such alleles than most 
tested groups, including the Tianyuan individual from Late Pleisto-
cene China38. Neanderthal allele sharing is similar across all tested 
present-day non-African groups (Supplementary Tables 21–23). Finally, 
we ran admixfrog41 on the set of archaic admixture SNPs and measured 
22.4 Mb (±1.9 Mb) of Denisovan-related ancestry in 33 fragments distrib-
uted across the Leang Panninge genome. This contribution accounts 
for around half of what is found in Papuan groups, but there is a sig-
nificant correlation between the Denisovan fragments in the Leang 
Panninge genome and those in present-day Near Oceanian groups, 
suggesting shared introgression events (Fig. 2c, Extended Data Fig. 8, 
Supplementary Fig. 5).

To investigate whether the apparent PCA shift of Leang Panninge 
away from Near Oceanian groups is due to genetic drift alone, we per-
formed a multidimensional scaling plot based on genetic similarities 
measured as 1 − f3 (Mbuti; Leang Panninge, X). The multidimensional 
scaling positioning of the Leang Panninge individual recapitulates the 
PCA with an intermediate placement between Papuan and Asian indi-
viduals (Extended Data Fig. 9). We then used f4-statistics and qpWave33 
to formally test for the presence of additional genetic sources in Leang 
Panninge other than the Papuan-related ancestry. This identified a 
marginal affinity towards ancient Asian genomes (Extended Data 
Fig. 7d), and a minimum of two streams of ancestry when Denisova37 
and/or ancient Asian groups1,37,38 were included in the qpWave refer-
ence groups (Supplementary Table 24). On the basis of these results, 
we used qpAdm33 to identify potential sources for an Asian-related 
ancestry in the genome alongside the Papuan-related component (Sup-
plementary Table 25). Using a rotating approach among different Asian 
groups1,37,38, we were able to model the Leang Panninge genome as a 
mixture between Papuan and Tianyuan (51 ± 11%) or Onge (43 ± 9%) 
(Fig. 3a, Supplementary Table 26). Further exploration with admixture 
graphs built in qpGraph33 and TreeMix42, including present-day groups 
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Fig. 2 | The Leang Panninge genome within the regional genetic context.  
a, PCA calculated on present-day individuals from eastern Eurasia and Near 
Oceania, projecting key ancient individuals from the region1,34–38. b, Shared 
genetic drift of present-day groups with the Leang Panninge individual, as 
calculated using f3 (Mbuti; Leang Panninge, X) mapped at the geographical 
position of the tested group. WGA, whole genome amplification. c, The amount 

of introgressed Denisovan sequence in fragments longer than 0.05 cM in 
present-day (Simons Genome Diversity Project) individuals and longer than 
0.2 cM in ancient individuals (measured with admixfrog). Each bar represents 
the posterior mean estimate from a single genome and the whiskers indicate 
2 s.d. (estimated from 200 samples from the posterior decoding).
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and relevant ancient individuals37,38,40,43, provided evidence for the 
presence of deep Asian ancestry (Fig. 3b, c, Supplementary Figs. 6–11). 
In TreeMix, the first admixture edge represents archaic introgression 
from Denisovan-related groups into the common ancestor of Leang 
Panninge and present-day Near Oceanian peoples. This is followed by 
an East Asian-related gene flow into Leang Panninge departing basally 
from the Qihe lineage, an early Neolithic genome from southeastern 
China37 (Fig. 3b, Extended Data Fig. 10, Supplementary Fig. 6). The 
qpGraph analysis confirmed this branching pattern, with the Leang 
Panninge individual branching off from the Near Oceanian clade after 
the Denisovan gene flow, although with the most supported topology 
indicating around 50% of a basal East Asian component contributing 
to the Leang Panninge genome (Fig. 3c, Supplementary Figs. 7–11).

Discussion
Genome-wide analyses of the Leang Panninge individual show that 
most genetic drift is shared with present-day groups from New Guinea 
and Aboriginal Australia (Fig. 2b, Extended Data Fig. 7a). However, 
this Toalean-associated genome represents a previously undescribed 
ancestry profile, one that branched off after Onge-related and 
Hòabìnhian-related lineages but around the time that Papuan and 
Indigenous Australian groups split (Fig. 3b, c, Extended Data Fig. 8, 
Supplementary Figs. 6–9). It is possible that this Toalean individual 
carries a local ancestry that was present in Sulawesi before the initial 
peopling of Sahul at least 50 kya9, although whether this population 
produced the Late Pleistocene rock art in the south of the island11,44,45 
is unknown.

The Toalean individual carries substantial Denisovan-related ances-
try, probably sharing the archaic admixture event with present-day Near 
Oceanian groups (Fig. 2c, Extended Data Figs. 7c, 10, Supplementary 
Fig. 5, Supplementary Tables 21–23). This provides strong support 
for the main Denisovan-related gene flow happening before modern 
humans reached Sahul, making both Wallacea and Sunda equally likely 
locations for this archaic introgression event. However, previously 
published hunter-gatherer genomes from Sunda carry almost no 
Denisovan-related ancestry (Supplementary Tables 18–20), suggesting 
either a Hòabìnhian-related spread into southeast Asia after the afore-
mentioned gene flow or that Wallacea was indeed the crucial meeting 
point between archaic and modern humans. The apparent presence 
of a long-established population of archaic hominins in southwestern 
Sulawesi46 provides a possible source for the introgression event. Two 
previous studies have suggested that two deeply divergent Denisovan 
lineages admixed into the ancestors of Papuan individuals17,22, but our 
genomic data currently do not have enough resolution to distinguish 
among one or multiple introgression pulses.

The lower amount of Denisovan ancestry in the Leang Panninge indi-
vidual than in Papuan and Indigenous Australian individuals could 
result from: (1) an additional admixture with Denisovan ancestry 
into the common ancestors of Near Oceanian groups, or (2) a dilu-
tion of the Denisovan-related ancestry in the Leang Panninge genome 
through admixture with lineages carrying less or no such ancestry. 
Our allele frequency-based analyses do not support the first scenario 
(Supplementary Fig. 11), but they do favour the latter. The scarcity of 
pre-Neolithic genomes from across Asia prevents us from defining 
the exact source and admixture proportions of this gene flow event. 
It is noteworthy, however, that despite the reconstructed population 
trees (TreeMix and qpGraph) suggesting a genetic influence on middle 
Holocene Sulawesi from mainland East Asia, our qpAdm modelling 
cannot rule out a southeast Asian contribution from a group related 
to present-day Andamanese peoples (Fig. 3, Supplementary Figs. 6–11, 
Supplementary Table 26). This is consistent with a recent study that 
describes widespread admixtures across Asia between Onge-related 
and Tianyuan-related ancient populations47. However, the presence 
of this type of ancestry in a middle Holocene forager from Wallacea 

suggests that the Asian-related admixture could have taken place long 
before the expansion of Austronesian societies into the region.

We could not detect evidence for the Leang Panninge ancestry in 
any tested present-day groups (Supplementary Fig. 4). This could be 
owing to the overall limited proportion of Near Oceanian-related ances-
try in Wallacea or large-scale genetic discontinuity between earlier 
hunter-gatherers and modern groups. The latter scenario would sug-
gest that any genetic signal related to the Leang Panninge individual 
was obscured by later demographic processes, including the Austrone-
sian expansion1,20,26,48. Higher coverage genetic data from present-day 
populations in Sulawesi, and additional Toalean ancient genomes, 
are needed to further investigate this unique ancestry profile and the 
genetic diversity of hunter-gatherers from Wallacea more generally.
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Methods

Archaeology
Leang Panninge was first identified as a site with high archaeological 
potential during a 2013 survey by A.B., B.H. and B.B. Since this time, the 
limestone cave has been the focus of several excavations undertaken 
by different teams (Extended Data Fig. 2, Supplementary Information). 
The first, the excavation of a 1-m2 test pit (labelled TP1), was conducted 
by Balai Arkeologi Sulawesi Selatan (Balar Sulsel) in 2014 (ref. 2). This 
was followed in 2015 by three excavations (of 1-m2 test pits MLP/A.1’/13, 
MLP/A.2’/13 and MLP/B.3′/1) spread across the cave, including one just 
outside the mouth, by Balai Pelestarian Cagar Budaya (BPCB) Sulawesi 
Selatan. The purpose of these excavations was to assess the importance 
of the site (the resultant report concluded that it be listed on the BPCB 
cultural heritage database). Later the same year, Balar Sulsel returned 
in collaboration with Universitas Hasanuddin (UNHAS) and Universiti 
Sains Malaysia to excavate a trench in the northern end of the cave 
(contiguous units S8T5 and S8T6) and in the central floor area (contigu-
ous units S16T6 and S17T6). Part of a human skull in a burial context 
was discovered towards the end of this excavation. Owing to time and 
financial constraints, the burial was covered with plastic sheets and 
the trench backfilled to protect it for subsequent excavations. Balar 
Sulsel continued work further into the cave in 2016 (excavation unit 
S30T9). Squares S16T6 and S17T6 were reopened in 2018 to retrieve 
the human skeleton encountered at the base of the 2015 excavation. In 
2019, this trench was extended towards the back of the cave (forming 
contiguous units S16T7 and S17T7) by a joint Indonesian–Australian 
team from Griffith University and Pusat Penelitian Arkeologi Nasional 
(ARKENAS), UNHAS and Balar Sulsel. The primary objectives of the 
2019 fieldwork were to assess these adjacent deposits for other human 
skeletal remains, as well as to obtain samples of plant carbon and other 
materials with which to more precisely determine the age of the human 
burial first exposed in 2015. The 2019 investigations were conducted 
under a foreign research permit issued by Indonesia’s State Ministry of 
Research and Technology (permit no.: 154/SIP/FRP/E5/Dit.KI/VII/2017). 
The previous, Indonesian-led investigations at Leang Panninge were 
carried out under the terms of formal notifications to conduct research 
(Surat Pemberitahuan or Surat Penyampaian) lodged with local gov-
ernment authorities at various levels of administration, from regency/
municipality (kabupaten) to district (kecamatan) to village (desa).

The 2015 excavations were conducted in arbitrary 10-cm-thick spits 
and wet-sieved through a 3-mm mesh, to a depth of approximately 190 
cm, at which point the human skeletal remains were encountered in 
the southwestern corner of the excavation (spits 19 and 20, layer 4). In 
2019, deposits were excavated using the same method, only this time in 
5-cm spits; consequently, spit names in S16T7 or S17T7 originate from 
a depth half that of a spit with the same number in S16T6 or S17T6 (for 
example, spit 18 is 170–180 cm in the first case or 85–90 cm in the latter; 
see Extended Data Fig. 3). As noted, the skeleton was recovered from 
the site in 2018. Owing to the fragility of the skeletal remains, visible ele-
ments comprising the skull and pelvic areas were first consolidated with 
a hardening solution (Paraloid B72 acryl resin) and then removed from 
the deposit en bloc (Extended Data Fig. 4e). The ‘skull block’ and ‘pelvic 
block’ were both submitted to computer tomography (CT) at a hospital 
facility in Makassar, Indonesia (Balai Pengamanan Fasilitas Kesehatan 
Makassar), using the following CT parameters: collimation: 0.625 mm; 
pitch: 1/0.625; milliamperes and kilovolts: left alone; kernel: bone; retro 
reconstruction: 0.3-mm interslice. After CT scanning, the two sediment 
blocks were excavated under laboratory conditions to remove the 
skeletal remains. The sediment block containing the skull consisted of 
an intact portion of the original grave fill located immediately adjacent 
to and below the cranium, mandible and dental elements. The thickest 
part of this sediment block measured approximately 100 mm. During 
the ‘skull block’ excavation, we recovered the right petrous portion of 
the human temporal bone and thereafter submitted it for DNA analysis 

at the Max Planck Institute for the Science of Human History (MPI-SHH) 
in Jena, Germany. We also recovered stone artefacts and faunal remains, 
as well as a burnt Canarium sp. seed located a few centimetres from the 
main cluster of cranial bones (Supplementary Information). This seed 
yielded an accelerator mass spectrometry (AMS) 14C age of 7264–7165 
yr cal bp (Wk-48639) (Supplementary Table 1).

Morphological documentation
The Leang Panninge human remains (Supplementary Table 2) are 
stored at the Archaeology Laboratory of the Archaeology Department 
(Departemen Arkeologi Fakultas Ilmu Budaya) at UNHAS, Makassar, 
South Sulawesi, Indonesia. In 2019, D.B. reconstructed and described 
the human remains under the stewardship of M.N. and I.S. Joins were 
effected using Tarzan’s Grip along with plasticine for missing bone. 
Skeletal weights were taken with a scale accurate to 1 g. Measurements 
were taken with a Kincrome electronic calliper accurate to 0.01 mm 
(generally rounded off to the closest tenth of a millimetre). Teeth were 
measured for their maximum mesiodistal and buccolingual diameters 
and also these diameters at the cementoenamel junction. The dental 
morphological features recorded were those of the Arizona State Uni-
versity system51, including reference to standard plaques illustrated in 
that work, and in ref. 52 for photographs of some other standard plaques. 
Other sources for recording measurements and anatomical character-
istics are described in Supplementary Information.

Ancient DNA processing
Sampling, extraction, library preparation and indexing were per-
formed in a dedicated clean room for ancient DNA at the MPI-SHH. 
We obtained bone powder from the right pars petrosa of the Leang 
Panninge individual by cutting along the margo superior and drill-
ing near the cochlea53. DNA was extracted using a modified version 
of the ancient DNA protocol described in ref. 54. From the extract, we 
built a double-stranded library after partial uracil-DNA glycosylase 
treatment55 to reduce C>T transitions to the first two base pairs and 
a single-stranded library on an automated liquid handling system56. 
After double indexing with unique index combinations57, the librar-
ies were shotgun-sequenced for a depth of approximately 4 million 
reads on an Illumina HiSeq 4000 at MPI-SHH using a 75-bp single-read 
configuration for initial quality assessments.

After further amplification, the libraries were hybridized in-solution 
to enrich for the complete mitogenome (mtDNA capture31) and twice for 
a targeted set of 2,986,592 SNPs across the human genome (two rounds 
of ‘1240K’ and ‘archaic ancestry’30 captures). The capture products were 
then sequenced on an Illumina HiSeq 4000 at MPI-SHH using a 75-bp 
single-read configuration. After AdapterRemoval as implemented in 
EAGER v.1.92.5658, the mtDNA-enriched reads were aligned to the mito-
chondrial reference genome (rCRS) and the reads from the genome-
wide captures to the human reference genome (hg19) using a mapping 
quality filter of 30 for the circularmapper v.1.93.5 and BWA59 aligner, 
respectively. Duplicates were removed with DeDup v.0.12.2 (https://
github.com/apeltzer/DeDup). Contamination of the single-stranded 
sequences was assessed with AuthentiCT v.1.060.

We reconstructed the mitochondrial consensus sequence and esti-
mated mitochondrial contamination to 2 ± 1% using schmutzi61. The 
mitochondrial haplogroup was ascertained with Haplofind62. After 
merging with published data using mafft v.7.30563, we constructed 
a maximum parsimony tree in MEGA X64. On the basis of the misin-
corporation pattern determined by mapDamage v.2.0.9 as imple-
mented in EAGER v.1.92.5658, we trimmed 2 bp off the 1240K-captured 
double-stranded library data and genotyped the trimmed and 
untrimmed sequences individually for the 1240K panel using samtools 
v.1.3 (https://github.com/samtools/samtools) and pileupCaller v.1.4.0.2 
(https://github.com/stschiff/sequenceTools), which randomly calls one 
allele per SNP site. The untrimmed and trimmed genotypes were then 
combined, retaining only transversions from the untrimmed genotype 
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and transitions from the trimmed genotype to maximize information 
from the trimmed ends. The single-stranded library data were instead 
genotyped using the single-stranded mode of pileupCaller and the two 
genotypes merged using a custom script. The resulting coverage was 
suitable for population genetics analyses with 263,207 SNPs on the 
1240K and 135,432 SNPs on the Human Origins panel (HO). We also 
genotyped single-stranded and double-stranded data individually 
after filtering with PMDtools v.0.665.

Population genetic analyses
PCAs were performed using smartpca with shrinkmode and lsqmode 
enabled66, calculating the principal components from present-day East 
and southeast Asian and Oceanian individuals genotyped on the Human 
Origins panel18,32–34 and projecting all ancient genomes.

All f3-statistics and f4-statistics were calculated using qp3pop v.420 
(inbreed: YES) and qpDstat v.721, respectively33. For f3-statistics, we 
used East and southeast Asian and Oceanian groups from the Human 
Origins dataset to include more comparative populations, whereas for 
f4-statistics, we used a more restricted dataset containing data from the 
Simons Genome Diversity Project (SGDP49) genotyped on the 1240K 
panel to maximize the number of overlapping SNPs with the Leang 
Panninge individual. The results of f3-statistics were plotted in the geo-
graphical location of the test group using ggplot2 v.3.3.3 in RStudio 
v.1.2.1335. To investigate the proportion of Denisovan-related ancestry 
(α), we calculated f4-ratio statistics using qpF4Ratio18,20,33, admixfrog41 
and D-statistics33 with a custom script. Using qpWave33, we investigated 
whether we could distinguish between the Papuan-like ancestry present 
in the Leang Panninge individual compared with present-day Papuan 
individuals. Admixture proportions were estimated with qpAdm (alls-
nps: YES)33. After file conversion with PLINK v.1.967, we ran TreeMix 
v.1.1242 setting the Denisovan genome39 as the root and utilizing the 
parameters -k 150 and -global. Models were plotted using RColorBrewer 
v.1.1.2 in RStudio v.1.2.1335 and the fit was assessed by residual inspec-
tion after each additional migration edge was added. Admixture graphs 
with qpGraph33 were constructed (outpop: NULL, useallsnps: YES, 
blgsize: 0.05, forcezmode: YES, lsqmode: YES, diag: 0.0001, bigiter: 15, 
hires: YES, lambdascale: 1, initmix: 1,000, inbreed: YES) by adding one 
group after the other, moving from archaic humans over present-day 
groups to ancient samples and testing all possible one-way and two-way 
mixtures using a custom script. The decision on which model was cho-
sen to progress with the addition of another group was made based on 
the lowest worst z-score calculated for each proposed tree. Admixture 
time estimation was calculated with DATES v.75368.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The raw and aligned sequences are available at the European Nucleotide 
Archive under the accession number PRJEB43715.

Code availability
The custom scripts used in this study are available on request from the 
corresponding authors.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Toalean artefact types and excavations at Leang 
Panninge. a, b, Typical middle-to-late Holocene artefact types from Toalean 
assemblages in South Sulawesi; pressure-flaked stone ‘Maros points’ (both 
artefacts are from Leang Pajae, Maros) (a) and backed microliths (top: Leang 
Pajae; bottom: Leang Bulu Bettue, Maros) (b). c, Osseous points (left: from the 
layer 4 Toalean human burial, Leang Panninge; right: Leang Rakkoe, Maros).  
d–i, Excavation at Leang Panninge in 2019. Excavation of a trench placed 
adjacent to the rear wall in the west-facing cave entrance (d, e): viewed from 
northwest to southeast (note that the name of the cave site is incorrectly 

transcribed in this locally produced banner) (d); viewed from north to south 
(e); northwest to southeast (f); detail of the excavation work (g). Excavated 
trench faces at the end of the 2019 field season, following soil column-sampling 
(h, i): trench viewed from northeast to southwest, showing the intersection 
between the western walls of excavation squares S16T6 and S17T6 and southern 
walls of S17T6 and S17T7 (h); trench viewed from north to south, with the main 
stratigraphic section facing the viewer showing the northern walls of S16T6 and 
S16T7 (i). Image credits: Y. Perston (a–c); Leang Panninge research team (d–i).
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Site plan, stratigraphy and dating evidence at Leang 
Panninge. a–c, Plan views of the cave site showing the locations of previous 
excavation units and squares S16T6 and S17T6, where the Toalean burial was 
exposed in 2015. Excavations in the west-facing entrance (which is 10-m high 
and 28-m wide) yielded dense Toalean archaeological assemblages. Light 
grey, limestone bedrock; dark grey, speleothem column/pillar; grey with 
x, stalagmite. Contour levels are in centimetres. Acronyms and initialisms 
denoting Indonesian archaeological institutions and heritage departments are 
as follows: BALAR, Balai Arkeologi Sulawesi Selatan; BPCB, Balai Pelestarian 
Cagar Budaya Makassar; UNHAS, Universitas Hasanuddin. The 2015 trench was 
extended in 2019, forming squares S16T7 and S17T7. d, Section of the cave 
mouth. e, Stratigraphy and dating. L1, layer 1; L2, layer 2, and so on. Black dots 
denote the 3D-plotted positions of stone artefacts, faunal items (bone, teeth 
and shell), palaeobotanical remains, shells and other findings excavated in 
2019. Eight distinct archaeological layers of human occupation are evident: the 
uppermost cultural stratum, layer 1 (approximately 1.5 kyr cal bp), contains 
‘Neolithic’ pottery and Toalean backed microliths; layers 2–4 comprise 
aceramic Toalean occupation deposits. Maros points pre-date backed 
microliths and appear in the earliest Toalean level (see also ref. 27); layer 5 

(approximately 9.4–8.7 kyr cal bp) and underlying strata (layers 6–8) are pre-
Toalean. The deepest Toalean horizon, layer 4, a silty clay (7.9–5.1 kyr cal bp), 
contained the region’s only definite Toalean-associated burial. The burial was 
revealed in 2015 within the contiguous squares S16T6 and S17T6. In 2019, a 2 × 1 m  
trench excavated adjacent to these squares exposed undisturbed strata to a 
depth of 3 m without reaching bedrock (Extended Data Figs. 2, 3). Calibrated 
AMS 14C ages (95% probability) are shown on the right (Supplementary 
Information contains details on dating methods). Dated materials comprised 
samples of wood charcoal (N = 8) and charred Canarium sp. seeds (N = 3). The 
age inversion in layer 4 suggests a degree of post-depositional mixing that does 
not affect the inferred burial age. f, Toalean burial from layer 4 (3D image 
generated using PhotoScan). The individual was interred in a flexed position 
and covered with large cobbles (denoted 1–5). g, Fragmented cranium.  
h, i, Maros points recovered with the human remains. An atypical chert Maros 
point (h) was found just below the cranium. A classic chert Maros point (i) with 
a hollow base and serrated margins (tip is missing due to breakage) was found 
approximately 40 mm below the greater sciatic notch. Image credits: Leang 
Panninge research team (a–g); Y. Perston (h, i).
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Extended Data Fig. 3 | Stratigraphic section at Leang Panninge. Data 
distributions presented in the tables on the left, and calibrated AMS 
radiocarbon (14C) dates (shown projected onto the stratigraphic profile), are 
based on the results of the 2019 excavations. Calibrated AMS 14C ages are 

reported at 95% probability (Supplementary Information contains details on 
dating methods). The Toalean human skeleton was exposed in 2015 by a 
Universitas Hasanuddin (UNHAS) team in collaboration with Balar Sulsel and 
Universiti Sains Malaysia (see Supplementary Information).



Extended Data Fig. 4 | Toalean human burial from Leang Panninge. a, Single 
adult inhumation. The 17–18-year-old female was buried in a flexed position and 
partially covered with several large cobbles. b, Detail of the fragment clusters 
comprising the skull area. The skeleton is fragmentary (Supplementary 
Table 2), but the skull, although crushed post-mortem, is well represented by 
the mandible and mandibular dentition, maxilla and maxillary dentition, 
frontal bone, temporals, right parietal and occipital bone. The cranium was 

positioned between two large cobbles (denoted 1 and 2). c, Detail of the burial 
feature; cobble #1 was placed over one of the hands, cobble #4 was positioned 
over the left foot, and cobble #5 covered the pelvic region. d, Semi-complete 
pelves and left foot (plantar surface facing up). e, Sediment block containing 
the cranium, following removal from the archaeological trench and before 
excavation in the laboratory. Image credits: Leang Panninge  
research team (a–g).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Toalean stone tool types from the Toalean burial and 
associated contexts at Leang Panninge. a, b, Position of the chert Maros 
point (shown inset in a) found below the right pelvis during excavation of the 
sediment block containing the semi-complete pelves. The red arrows in a and b 
indicate the position of the Maros point amidst stone-flaking debris and other 
cultural artefacts (at the time these photographs were taken, the bones of the 
pelvic area had already been removed). c, Position of the non-classic chert 
Maros point (shown inset, original location highlighted by the blue arrow) 
found below the skull amidst other stone artefacts and cultural remains 

(human teeth are still visible at the top of the sediment block under 
excavation). d, Maros point exposed during the excavation. e–h, Examples of 
Maros points from layer 4, above the level of the Toalean human burial: square 
S16T6, spit 18 (Find #62) (e); square S16T6, spit 18 (Find #77) (f); square S17T6, 
spit 18 (Find #54) (g); square S17T6, spit 16 (Find #95) (h). i–k, Examples of 
Maros points from spits 19 and 20 within squares S16T6 and S17T6, where the 
Toalean human burial was located. l–p, Examples of Maros points from other 
excavated squares at Leang Panninge. Image credits: Leang Panninge research 
team (a–p).
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Extended Data Fig. 6 | Principal component analyses. Calculated on 
present-day groups18,32,33, projecting all ancient genomes1,34–38 including either 
all available SNPs or only damaged DNA fragments after PMD filtering of the 
single-stranded and double-stranded libraries of the Leang Panninge 

individual. a, Principal components calculated on individuals from East and 
southeast Asia where Papuan, Indigenous Australian and Nasioi (from 
Bougainville) groups are projected. b, Principal components calculated on 
individuals from East, southeast Asia and Near Oceania.



Extended Data Fig. 7 | The position of the Leang Panninge genome within 
the regional population genetic history. Tested with f4-statistics, where X 
denotes the tested group. a, The affinity of East Asian, South Asian, southeast 
Asian and Oceanian groups49 to Leang Panninge and Papuan individuals.  
b, Affinities between present-day Near Oceanian groups and the Leang 
Panninge genome49. c, The affinity of the Leang Panninge genome to the 

Denisovan genome compared to present-day and ancient individuals from the 
region26,36–38. d, The affinity of the Leang Panninge genome to ancient genomes 
from the region26,36–38 in comparison to Papuan groups49. Data are presented as 
exact f4-values ± one and three standard errors indicated as dark and light grey 
lines, respectively; statistics with z-scores above |3| are displayed in green.
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Extended Data Fig. 8 | Permutation test on the overlap of introgressed 
Denisovan sequence in the Leang Panninge individual and present-day 
groups. After 500 permutations where the Denisovan sequence is distributed 
randomly across the genome. The dotted vertical line is the observed overlap 

in the non-permuted data. The empirical p-value indicates how many 
permutations show more overlap than the observed overlap in the 
non-permuted data.



Extended Data Fig. 9 | Multidimensional scaling plot. Visualizing the pairwise difference between Leang Panninge and East and southeast Asian and Near 
Oceanian groups18,32–34 as calculated from 1 − f3 (Mbuti; Leang Panninge, X) on the Human Origins dataset.
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Extended Data Fig. 10 | The genetic relationship of Leang Panninge with 
other Asia-Pacific groups. Data for other Asia-Pacific groups from  
refs. 37–39,43,49. a–d, Maximum likelihood trees after incrementally adding one 

migration event (from zero to four) as inferred by TreeMix42; corresponding 
residuals of individual models are presented on the right (Supplementary 
Fig. 6).
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Alignment files of the nuclear and mitochondrial DNA sequences for the newly sequenced Leang Panninge individual are available at the ENA database under the 
accession number PRJEB43715. These were made public on June 19, 2021.
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Life sciences study design
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Sample size All genomic analyses were based on genetic material extracted from the petrous portion of the temporal bone of the Leang Panninge 
individual, a partial skeleton of a 17-18 year old adult human female excavated from middle Holocene archaeological deposits at the 
limestone cave of Leang Panninge in the Mallawa district of South Sulawesi, Indonesia. Therefore, no statistical methods were used to 
determine ancient DNA sample size a priori.

Data exclusions No data were excluded.

Replication Replication is achieved by comparing the results obtained with the shotgun and the nuclear capture datasets, as well as the single- and 
double-stranded sequencing data, which was successful.

Randomization Since the data derive from a single individuals, no randomization was performed.

Blinding No blinding was performed, as experimental group assignment is not relevant for this type of population genetic analyses. The genotypes of 
the single- and double-stranded libraries were combined after confirmation of similar statistical behaviour.

Reporting for specific materials, systems and methods
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Palaeontology and Archaeology
Specimen provenance The human skeletal remains that yielded the ancient genome were initially uncovered during University of Hasanuddin-led 

excavations at the limestone cave of Leang Panninge in 2015. They were found at a depth of 2 m below the surface in stratified 
archaeological deposits of middle Holocene age (~7.3-7.2 kya). The individual was buried in a shallow pit and partially covered with 
rocks. Artefacts characteristic of the middle to late Holocene Toalean technocomplex were recovered in association with the skeleton 
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and in adjacent and overlying deposits. Owing to the fragmentary condition and fragility of the skeletal remains, both the skull and 
pelvic areas were removed (during Indonesian-led fieldwork) in intact sediment blocks for excavation under laboratory conditions. 
The petrous bone was recovered during this process and later sent for DNA analysis at the Max Planck Institute for the Science of 
Human History (MPI-SHH) in Jena, Germany. Joint Indonesian-Australian excavations were conducted at Leang Panninge in 2019 in 
order to clarify the stratigraphic context of the burial and to collect additional samples for radiocarbon dating. This field research and 
related work was conducted in collaboration with Prof. Adam Brumm's primary institutional counterpart, the Pusat Penelitian 
Arkeologi Nasional (ARKENAS) in Jakarta, under the terms of a foreign research permit issued to Brumm by Indonesia’s State Ministry 
of Research and Technology (Permit No: 154/SIP/FRP/E5/Dit.KI/VII/2017).

Specimen deposition Skeletal remains attributed to the Leang Panninge individual are curated in the archaeology department (Departemen Arkeologi 
Fakultas Ilmu Budaya) at the University of Hasanuddin in Makassar, Sulawesi (Indonesia). The remaining portion 
of the petrous bone sampled for DNA analysis is stored at the MPI-SHH under the curation of Prof. Johannes Krause. Requests to 
access the skeletal material for research should be directed to Prof. Akin Duli (akinduli@yahoo.co.id) at the University of Hasanuddin.

Dating methods For the study we obtained 13 new Accelerator Mass Spectrometer (AMS) radiocarbon dates on in situ plant charcoal (N = 8), seeds (N 
= 3), and freshwater gastropod shells (N = 2) excavated from Leang Panninge, including three samples associated directly with the 
human burial context. Conventional radiocarbon ages were calibrated using the OxCal 4.4 program and a mix_curve IntCal20/
SHCal20 calibration curve, with uncertainties reported at 95% confidence interval. Two radiocarbon dating labs were used: 
DirectAMS (USA), and the Radiocarbon Dating Laboratory at the University of Waikato (New Zealand). Pretreatment processes, 
quality control protocols, and dating methods used by both labs are provided in Supplementary Information (see especially SI Table 
1).

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight No ethical approval or guidance was required by Griffith University as the research did not involve human participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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