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Abstract

Objectives: The aim of this study was to assess the utilization of low tube potentials for coronary 

computed tomography angiography (CCTA) in worldwide clinical practice and its influence on 

radiation exposure, contrast agent volume and image quality.

Background: CCTA is frequently employed in clinical practice. Lowering of tube potential is a 

potent method to reduce radiation exposure and to economize contrast agent volume.

Methods: CCTAs of 4,006 patients from 61 international study sites were analyzed regarding 

very-low (≤80-kVp), low (90–100-kVp), conventional (110–120-kVp) and high (≥130-kVp) tube 

potentials. The impact on dose-length product (DLP) and contrast agent volume was analyzed. 

Image quality was determined by evaluation of the diagnostic applicability and assessment of the 

objective image parameters signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR).

Results: When compared to conventional tube potentials, low tube potentials were used in 56% 

of CCTAs (≤80-kVp: 9%; 90–100-kVp: 47%), which varied among sites from 0% to 100%. 

Tube potential reduction was associated with low cardiovascular risk profile, low body-mass-index 

(BMI) and new-generation scanners. Median radiation exposure was lowered by 68% or 50%, 

and median contrast agent volume by 25% or 13% for tube potential protocols of ≤80-kVp or 

90–100-kVp when compared to conventional tube potentials, respectively (all p<0.001). With 

the use of lower tube potentials, the frequency of diagnostic scans was maintained (p=0.41), 

while SNR and CNR significantly improved (both p<0.001). Considering BMI eligibility criteria, 

58% (n=946) conventionally scanned patients would have been suitable for low tube potential 

protocols, and 44% (n=831) of patients scanned with 90–100-kVp would have been eligible for 

very-low tube potential CCTA imaging of ≤80-kVp.

Conclusions: This large international registry confirms the feasibility of tube potential reduction 

in clinical practice leading to lower radiation exposure and lower contrast volumes. The current 

registry also demonstrates that this strategy is still underutilized in daily practice.

Keywords

Coronary Computed Tomography Angiography; CCTA; Cardiac imaging; Radiation dose; Tube 
potential; Dose-saving strategies

Introduction

Coronary CT angiography (CCTA) has emerged as favorable diagnostic tool with high 

accuracy in the detection and exclusion of obstructive coronary artery disease (1–3). 

Furthermore, its use has been associated with a significant reduction in mortality and 

non-fatal myocardial infarction (4). The downside of CCTA imaging is the adverse 

exposition to potentially harmful ionizing radiation (5). The safety of CCTA has improved 

considerably during the last decade and median radiation exposure decreased by 78% as 
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recently described in the PROTECTION VI study (6). Reduction in tube potentials from 

the conventional 120 kVp is a major contributor to this dose reduction. Several studies 

demonstrated the feasibility of a reduced potential to 100 kVp with maintenance of image 

quality (7–10). Additional experimental studies with limited number of patients suggested 

very-low tube potentials down to 80 kVp or below with maintenance of diagnostic value 

and quantitative image quality parameters (11–14). The body mass index (BMI) has been 

acknowledged as an eligibility criterion for the application of reduced tube potentials in 

CCTA. In this regard, patients with a BMI below 30 kg/m2 should be selected for tube 

potential reduction from conventional 120 kVp to 100 kVp (10,15). The possibility of tube 

potential reduction in obese patients with a BMI above 30 kg/m2 has also been described, 

but only in small patient populations (16). An escalation of low tube potential imaging 

towards 80 kVp or below was proposed in several studies for patients with a BMI below 

25 kg/m2 (12–14,17,18). However, the frequency in application and the magnitude of tube 

potential reduction in worldwide clinical practice are currently unknown. This predefined 

sub-analysis of the international, prospective, multicenter PROTECTION VI study has been 

designed to analyze the application of tube potential reduction protocols and their impact on 

radiation dose, contrast agent volume, and image quality in CCTA imaging.

Methods

Study protocol

The methods of the PROTECTION VI study were described previously (19). In brief, 61 

international study sites provided image data and scan protocols of consecutive CCTAs 

performed during 1 month in 2017. Image data and CCTA study details were collected and 

analyzed in a central CCTA core laboratory. The selection of the CCTA scan protocol 

including the tube potential and the volume of iodinated contrast medium was at the 

discretion of the performing physician and was carried out according to local standard 

of clinical care. Each study site consulted the local ethics committee to evaluate the study 

protocol prior to patient enrolment. All patients gave written informed consent as required 

at the individual sites. An Executive Steering Committee composed of a group of physicians 

with expertise in CCTA, clinical research and statistics supervised the study. The study is 

registered at clinicaltrials.gov (NCT02996903).

Image quality

For standardization of quantitative image quality analysis, the axial data sets were 

reformatted in 1.0 mm slice thickness. Signal intensity, image noise, contrast, signal-to

noise ratio (SNR) and contrast-to-noise ratio (CNR) were determined in a central core 

laboratory as described (20). Local investigators graded the diagnostic image quality using 

a simplified image quality score. Each coronary artery (left main, left anterior descending, 

left circumflex, and right coronary artery) was determined to be of either diagnostic or non

diagnostic image quality. Non-diagnostic quality was defined by severe vessel blurring or 

vessel discontinuity secondary to reconstruction artifacts, which did not allow the exclusion 

of obstructive coronary lesions. CCTAs were considered as non-diagnostic when at least one 

coronary artery was of non-diagnostic image quality.
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Estimation of radiation dose

The collected parameters relevant to radiation dose included the volume CT dose index 

(CTDIvol) and dose-length product (DLP), which were both obtained from the CT scan 

protocol. The DLP was the primary study outcome parameter. The calculation of the 

effective dose is based on the product of the DLP and an organ weighting factor for the 

chest k = 0.014 mSv/mGy x cm (21) or alternatively a proposed conversion factor for CCTA 

imaging k = 0.026 mSv/mGy x cm (22).

Statistical analysis

Variables are expressed as counts with percentages or medians with interquartile ranges. 

Comparison of groups was performed with the Wilcoxon-Mann-Whitney U-test or 

chi-square test as appropriate. Multiple comparisons of non-parametric variables were 

conducted with the Kruskal-Wallis chi-squared test, subsequent post-hoc analysis was 

performed with the Dunn’s test and p values were adjusted with the Holm method. A p

value < 0.05 was considered to be statistically significant. Statistical analysis was performed 

using R version 3.4.1.

Results

CCTA tube potential selection in current clinical routine

In the PROTECTION VI study, a total of 4,006 patients from 61 different study sites 

underwent CCTA. Among these, 377 patients (9%) were scanned with a very-low tube 

potential protocol of ≤ 80 kVp, and 1,889 patients (47%) were scanned with a reduced 

tube potential of 90–100 kVp (Figure 1). Conventional tube potential of 110–120 kVp was 

selected for 1,662 patients (42%) and tube potential was increased (≥ 130 kVp) in 78 cases 

(2%). The selection of reduced tube potential protocols varied significantly between study 

sites (Figure 1). Accordingly, the selection of reduced tube potential ≤ 100 kVp ranged from 

0% to 100% of CCTAs in study sites. On the one end, five study sites (8% of all sites) 

scanned the majority of patients (> 50%) with a very-low tube potential of ≤ 80 kVp. On the 

other end, 28 study sites (47% of sites) exclusively scanned > 80 kVp.

The application of tube potential reduction varied between vendors (Figure 2). Low tube 

potential protocols of 90–100 kVp were less frequently utilized with GE scanners (42% of 

CCTAs), when compared to all other vendors (Toshiba: 45%, Philips: 49%, Siemens: 50%; 

p < 0.05). The rate of very-low tube potential imaging of ≤ 80-kVp was significantly higher 

in Siemens scanners (17% of CCTAs) when compared to all other vendors (GE: 1%, Philips: 

3%, Toshiba: 4%; p < 0.001). Regional differences in the application of low tube potential 

protocols are listed in Supplementary Table S1.

Patient and scan characteristics for all 4 groups of tube potential protocols (≤ 80-kVp, 

90–100-kVp, 110–120-kVp and ≥ 130-kVp) are summarized in Table 1. While patient 

age did not vary between groups, very-low kVp was favored in female patients and 

patients with lower BMI. A reduced cardiovascular risk was significantly associated with 

the selection of lower tube potential, as observed by reduced frequency of hypertension, 

diabetes, dyslipidemia and smoking history in CCTAs performed with ≤ 80 kVp protocols. 

Stocker et al. Page 4

JACC Cardiovasc Imaging. Author manuscript; available in PMC 2021 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Site experience expressed as the median duration of CCTA scanning in years varied between 

11 to 12 years. The proportion of modern CT scanners (≥ 128-slices) was significantly 

increased with low tube potential scanning. Iterative image reconstruction as an additional 

dose reduction strategy was more frequently used with very-low tube potential scanning 

(98% vs. 82% for ≤ 80-kVp vs. 110–120-kVp; p < 0.001), while the proportion of 

prospective scan techniques was similar (86% vs. 88% for ≤ 80-kVp vs. 110–120-kVp; 

p = 0.39).

Reduction of radiation dose and contrast agent in low tube potential CCTA

When using conventional tube potential (110–120 kVp), the median CTDIvol added up to 

22.8 [13.2 to 34.4] mGy. Application of low tube potential protocols significantly lowered 

the median CTDIvol to 11.1 [6.3 to 16.6] mGy or 6.9 [2.8 to 10.6] mGy using 90–100 

kVp or ≤ 80 kVp protocols, respectively (p < 0.001). The median DLP for conventional 

110–120-kVp scanning resulted in 310 [182 to 468] mGy x cm and was reduced by 50% 

(156 [88 to 236] mGy x cm) or even 68% (98 [46 to 160] mGy x cm) with the use of 90–

100 kVp or ≤ 80 kVp tube potential protocols (both p < 0.001; Figure 3A). Consequently, 

median radiation dose for conventional tube potential imaging was estimated to 4.3 (8.1) 

mSv when using the dose conversion factor k = 0.014 (or alternatively k = 0.026). The 

estimated median radiation dose was lowered to 2.2 (4.1) mSv or even 1.4 (2.5) mSv with 

the application of 90–100 kVp or ≤ 80 kVp tube potential protocols (both p < 0.001). In 

addition to the reduction of radiation dose, significantly less contrast agent volume was used 

with tube potential reduction. For CCTAs with a conventional tube potential of 110–120 

kVp, median contrast agent volume added up to 80 [70 to 100] ml and could be reduced 

by 13% (70 [60 to 80] ml) or even 25% (60 [55 to 79] ml) using 90–100 kVp or ≤ 80 kVp 

protocols, respectively (p < 0.001; Figure 3B).

Maintenance of image quality in low tube potential CCTA

Quantitative image quality parameters including median image noise, SNR, and CNR in 

reference to the selected tube potential are displayed in Table 2. Reduction of tube potential 

to 90–100 kVp or ≤ 80 kVp increased image noise by 6% or 23%, when compared to 

conventional 110–120 kVp CCTAs (both p < 0.001). However, the median SNR improved 

with tube potential reduction by 20% or 31% for 90–100 kVp or ≤ 80 kVp compared to 

110–120 kVp scanning (both p < 0.001). Similarly, CNR improved by 25% or 39% with 

the utilization of 90–100-kVp or ≤ 80-kVp protocols (both p < 0.001). Importantly, the 

frequency of diagnostic scans was similar between all groups (97.6%, 98.4%, 97.8% and 

97.4% for ≤ 80-kVp, 90–100-kVp, 110–120-kVp and ≥ 130-kVp; p = 0.41).

Capacity for tube potential reduction in clinical practice using BMI eligibility criteria

To assess the capacity for further tube potential reduction in clinical practice, we analyzed 

the application of the different tube potential protocols by BMI eligibility criteria (Figure 

4A). The majority of patients had a BMI < 30 kg/m2 (n = 2,940) and was eligible for the 

application of tube potential reduction. In fact, 67% of these patients were scanned with 

low tube potential protocols (90–100 kVp: 55%; ≤ 80 kVp: 12%). Patients with a BMI ≥ 

30 kg/m2 (n = 1,030) were mostly scanned with conventional tube potentials between 110 

and 120 kVp (68% of patients), however, 26% of these patients were also scanned with low 
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tube potentials (90–100 kVp: 24%; ≤ 80 kVp: 2%). A considerable subpopulation of patients 

had a BMI < 25 kg/m2 (n = 1,363). Only 19% of these patients (n = 256) were selected 

for eligible very-low tube potential protocols of ≤ 80 kVp. In an additional analysis, we 

calculated the BMI distribution by tube potential protocol (Figure 4B). In the conventional 

group without tube potential reduction (110–120 kVp), we identified 58% of patients (n = 

946) with a BMI < 30 kg/m2 that would have been eligible for tube potential reduction to at 

least 100 kVp. In the group of CCTAs performed with 90–100-kVp, we identified 44% of 

patients (n = 831) with a BMI < 25 kg/m2 that would have qualified for additional escalation 

of tube potential ≤ 80 kVp.

Discussion

CCTA has evolved to an important non-invasive tool for the evaluation of coronary 

artery disease in clinical routine. However, safety concerns remain in terms of exposure 

to ionizing radiation and the need for iodinated contrast agent with potential kidney 

damage. Consequently, several techniques to reduce radiation exposure and contrast agent 

volume have been developed during the last decade. The recently finalized international 

PROTECTION VI study revealed a median DLP of 195 mGy x cm for CCTA in 

current clinical practice with a considerable variation in dose between study sites (6). 

The PROTECTION VI study evaluated predictors for the magnitude of CCTA radiation 

exposure and identified body weight, heart rate and rhythm, iterative image reconstruction, 

high-pitch helical scan technique, and tube potential reduction as independent predictors (6). 

The reduction of tube potential is extremely effective due to the exponential reduction of 

radiation dose. Additionally, iodine absorption is increased at lower tube potential settings, 

giving rise to advantages in iodinated contrast enhanced CCTA imaging (23).

The current analysis of the PROTECTION VI study assessed the utilization of tube potential 

reduction in worldwide clinical practice and analyzed the impact of different tube potential 

reduction protocols on radiation dose, contrast agent volume and image quality. Specifically, 

this study is the first report analyzing the worldwide feasibility and efficacy of very-low tube 

potential protocols down to 80 kVp and below in clinical routine imaging. The utilization of 

very-low tube potentials of ≤ 80 kVp was associated with a reduction of the mean DLP by 

68% compared to conventional scanning with 120 kVp tube potential protocols. Low tube 

potential protocols between 90 and 100 kVp still lowered the mean DLP by 50%. Likewise, 

tube potential reduction lowered median contrast agent volume by 25% or 13% with the 

application of ≤ 80-kVp or 90–100-kVp protocols. The reduction of iodinated contrast agent 

during CCTA helps to protect kidney function on the one hand. On the other hand, iodinated 

contrast has been demonstrated to amplify radiation induced DNA-damage, and thus the 

reduced contrast volumes add to the protection from radiation exposure (24).

Importantly, the feasibility of tube potential reduction regarding image quality was 

demonstrated in this study. As described in previous studies, low tube potential CCTA 

imaging leads to an increase of image noise, because of the reduced penetration of photons 

at lower energy (14). This increase in image noise is a potential disadvantage because of a 

decline of the overall image quality. However, tube potential reduction was associated with 

significant improvement of SNR and CNR due to the concomitant increase in signal and 
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contrast, despite of the reduced volume of contrast agent applied in low tube potential 

imaging. Hence, the reduction of tube potential may add to improved delineation of 

coronary lumen stenosis. Additionally, the rate of non-diagnostic CCTAs was unaffected 

by the selection of low tube potential protocols. However, low tube potential imaging 

with increased image noise might enhance blooming of coronary calcifications. Therefore, 

diagnostic accuracy of severely calcified coronary arteries with low tube potential imaging, 

particularly in combination with iterative image reconstruction, remains to be investigated.

This large registry revealed that a reduction of tube potential to 100 kVp or below was 

applied in 56% of CCTAs in current clinical routine. The majority of these patients were 

scanned with moderately reduced tube potential protocols between 90 to 100 kVp. In a way 

this can be interpreted as a success of the promotion of tube potential reduction strategies 

during recent years (7–10). However, we observed great variability in the application of 

low tube potential protocols ranging from 0% to 100%. Several sites followed a “one 

protocol fits all” strategy and excluded any variation in tube potential. In this regard, four 

participating sites in this study exclusively scanned using 120-kVp tube potential imaging. 

Very-low tube potential protocols of ≤ 80 kVp were applied in only 9% of CCTAs in clinical 

practice and are thus underrepresented in current clinical routine. Several contributing 

factors have been determined for the preference of very-low tube potential protocols of ≤ 

80 kVp. First, the selection of very-low tube potential protocols was significantly influenced 

by the vendor of the installed CT system. The results of this study were obtained by the 

use of multiple vendors with a variety of commercially available CT scanners and are thus 

representative for real-world clinical routine imaging. Nevertheless, some hospitals might 

not have access to modern CT systems that are a prerequisite for very-low tube potential 

imaging. These technical circumstances might have also affected the results of this study. 

Secondly, the education and conventions at the individual study sites seem to contribute 

to the magnitude of tube voltage reduction. Regional differences in the selection of tube 

potential protocols have been identified. Many study sites rarely consider the application of 

very-low tube potential protocols, while on the other hand several study sites demonstrated 

that the majority of patients could be scanned with protocols of 80 kVp and below in clinical 

practice. Finally, the study demonstrated that clinicians select individual patients for very

low tube potential imaging. Practitioners seem to prefer both women and healthier patients 

as expressed by lower cardiovascular risk profiles for very-low tube potential imaging. 

Additionally, low BMI was significantly associated with the reduction of tube voltage. 

However, analysis of the BMI distribution revealed that a significant portion of patients 

would have been eligible for application and escalation of low tube voltage protocols. In this 

perspective, only 19% of patients that would have been eligible for very-low tube potential 

protocols (BMI below 25 kg/m2) were actually considered for tube potentials ≤ 80 kVp. A 

strict implementation of BMI eligibility criteria with ≤ 80-kVp protocols for patients with a 

BMI below 25 kg/m2 and 90–100-kVp protocols for patients with a BMI between 25 and 30 

kg/m2 would have lowered the median DLP of the PROTECTION VI population by 23% to 

150 mGy x cm (interquartile range 84 to 275 mGy x cm). A clinical practice guideline for 

the selection of tube potential protocols that includes these BMI eligibly criteria is illustrated 

in Figure 5.
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Limitations

Although the diagnostic accuracy of CCTA with low and very-low tube potentials is high 

(25), the use of too strong iterative image reconstruction algorithms for counterbalancing 

image noise might result in too smoothened vessel delineation, which might result in 

concealing circumscriptive coronary stenosis. While the delineation of the coronary artery 

lumen still appears feasible at 100 kVp tube potentials in patients with extensive coronary 

calcifications, the increased blooming artifacts of large calcified plaques might impair the 

diagnostic reading at very-low tube potentials. Thus, in elderly patients with a higher 

probability of extensive coronary calcifications, it might be helpful to estimate the burden of 

coronary calcification calcium scoring before CCTA with very-low tube potentials. Finally, 

the impact of very-low kVp scan protocols on coronary plaque quantification, on assessment 

of plaque composition and on new CT technologies including CT-derived fractional flow 

reserve is currently unknown. Additional iterative reconstruction could have influenced the 

outcome parameters of the current study, however, only a very small fraction of low kVp 

scans was performed without iterative reconstruction. Statistical limitations are the lack of 

adjustments in patient characteristics for clustered observations between study sites.

Conclusions

This large international study demonstrates that a decrease of tube potential gradually 

improves patient safety by significantly reducing radiation dose and contrast agent volume. 

Low tube potential protocols are feasible in clinical routine and are non-inferior regarding 

image quality, when compared to conventional tube potential imaging. This study also 

demonstrates that tube potential reduction has been increasingly implemented during the 

last decade. Especially moderate tube potential reduction between 90 kVp and 100 kVp 

has gained popularity in clinical routine. However, the current study also demonstrates the 

need for additional and escalated tube potential reduction. In particular, the application of 

very-low tube potential protocols ≤ 80 kVp should be considered in clinical practice.
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Appendix

PROTECTION VI Investigators (sorted by country)

1. Patricia Carrascosa and Alejandro Deviggiano, Diagnóstico Maipú, Buenos 

Aires, Argentina

2. Christopher Naoum and John Magnussen, Macquarie University Hospital, 

Sydney, Australia

3. James Otton and Anthony Kaplan, Spectrum Radiology Liverpool, Sydney, 

Australia

4. Gudrun Feuchtner and Fabian Plank, Medizinische Universität, Innsbruck, 

Austria

5. Kristof De Smet and Nico Buls, Universitair Ziekenhuis, Brussel, Belgium

6. Roberto Caldeira Cury and Marcio Sommer Bittencourt, Delboni / DASA, Sao 

Paulo, Brazil

7. Cesar Higa Nomura and Roberto Nery Dantas Junior, Heart Institute – InCor, 

Sao Paulo, Brazil

8. Jonathon Leipsic and Philipp Blanke, University of British Columbia, 

Vancouver, Canada

9. Carl Chartrand-Lefebvre and Anne Chin, University of Montreal, Montreal, 

Canada

10. Gary Small and Benjamin Chow, University of Ottawa Heart Institute, Ottawa, 

Canada

11. Claudio Silva F, Clinica Alemana de Santiago, Santiago, Chile

12. Marcelo Godoy Z. and Claudio Silva F., Clinica Alemana de Temuco, Temuco, 

Chile

13. Xiang-Ming Fang and Wang Jie, Wuxi People’s Hospital, Wuxi, China

14. Alberto Cadena, Clínica de la Costa, Barranquilla, Colombia

15. Theodor Adla and Vojtech Suchanek, Motol University Hospital, Prague, Czech 

Republic

16. Erik Lerkevang Grove and Kamilla Bech Pedersen, Aarhus University Hospital, 

Aarhus, Denmark

17. Jess Lambrechtsen and Mirza Husic, OUH-Svendborg, Svendborg, Denmark

18. Juhani Knuuti and Teemu Maaniitty, Turku University Hospital, Turku, Finnland

19. Bernhard Bischoff and Elisabeth Arnoldi, Klinikum der Universität München, 

München, Germany
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20. Axel Schmermund and Joachim Eckert, Cardioangiologisches Centrum 

Bethanien, Frankfurt, Germany

21. Martin Hadamitzky and Tom Finck, Deutsches Herzzentrum München, 

München, Germany

22. Michaela Hell and Mohamed Marwan, Universitätsklinikum Erlangen-Nürnberg, 

Erlangen, Germany

23. Fabian Bamberg and Stefanie Mangold, Universitätsklinikum Tübingen, 

Tübingen, Germany

24. Thomas Schlosser and Johannes Ludwig, Universitätsklinikum Essen, Essen, 

Germany

25. Maria Mylona and Spyros Skiadopoulos, Olympion Hospital, Patras, Greece

26. Pál Maurovich-Horvat and Bálint Szilveszter, MTA-SE Cardiovascular Imaging 

Research Group, Heart and Vascular Center, Budapest, Hungary

27. Uday Jadav and Brian V. Pinto, MGM New Bombay Hospital, Vashi New 
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Perspectives

Clinical competencies (in Patient Care and Procedural Skills)

The clinical indications for CCTA imaging have significantly expanded during recent 

years and, likewise, the proportion of younger patients has increased. In this context, 

safety concerns in CCTA imaging and especially the exposure to potentially harmful 

radiation are increasingly recognized. Low tube potential imaging is a powerful method 

to lower radiation dose in eligible patients. Tube potential in CCTA imaging should be 

set as low as technically possible and reasonably achievable considering BMI eligibility 

criteria.

Translational outlook

Training programs for CT operators are necessary to improve CCTA image protocols 

and increase the proportion of low tube potential scans. Further improvements of 

software with implementation of automated tube potential selection on the basis of 

patient characteristics including height and body weight may add to dose reduction. The 

application of quality control programs should be recommended to guide patients in the 

identification of expert centers following recommendations for dose reduction in CCTA 

imaging.
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Central illustration, Figure 1: Application of tube potential protocols in current clinical routine 
CCTA imaging.
A: Frequency of different tube potential protocols aggregated to ≤ 80-kVp, 90–100-kVp, 

110–120-kVp and ≥ 130-kVp. B: Variation of tube potential protocol selection per study 

site.
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Figure 2: Tube potential protocol selection by CT vendor.
GE: General Electric Healthcare, Waukesha, Wisconsin. Philips: Philips Healthcare, 

Amsterdam, Netherlands. Siemens: Siemens Medical Solutions, Forchheim, Germany. 

Toshiba: Toshiba Medical Systems Corporation, Ōtawara, Tochigi, Japan.
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Figure 3: Impact of tube potential reduction on dose-length product and contrast agent volume 
in CCTA imaging.
Median dose-length product (A) and median contrast agent volume (B) per tube potential 

protocol. The middle horizontal line represents the median, the box shows the interquartile 

range (IQR), and error bars show the range of non-outlying data points (whiskers). The 

lower whisker shows the lowest data point within the 25th percentile minus 1.5 times IQR 

and the upper whisker shows the highest data point within the 75th percentile plus 1.5 times 

IQR.
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Figure 4: Capacity for low tube potential CCTA imaging by BMI eligibility criteria.
A: The application of respective tube potential protocols is demonstrated for different 

categories of body mass index (BMI) < 30 kg/m2 (left), ≥ 30 kg/m2 (middle) or < 25 

kg/m2 (right). B: BMI distribution of scanned patients ranging from 10 to 50 kg/m2 for 

the respective tube potential protocols of ≤ 80-kVp (left), 90–100-kVp (middle) and 110–

120-kVp (right).
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Figure 5: Clinical practice guideline for the selection of tube potential protocols in CCTA 
imaging.
Body mass index (BMI) eligibility criteria categorize the tube potential protocol. Additional 

factors may increase (red box) or reduce (green box) the ideal tube potential category. 

Coronary artery calcification (CAC).
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