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Abstract

Schizophrenia is a highly heritable, polygenic disorder. A growing list of common genetic variants 

have been associated with schizophrenia; there is a clear need to understand the role of these 

risk factors in the etiology of disease. The majority of these variants occur in non-coding regions 

of the genome, and are thought to regulate the expression of one or more genes in a cell type 

specific fashion. Recent advances in stem cell biology and molecular genetics have resulted 

in two invaluable advances: hiPSC technology makes possible the generation of donor-specific 

disease-relevant neural cell types, while CRISPR-based techniques can be applied to manipulate 

individual variants and/or their gene targets. New multiplexed gene manipulation and CRISPR 

screening techniques show great promise towards dissecting the complex interactions between 

the myriad disease-associated variants. This review outlines key advances in hiPSC and CRISPR 

technology, describing their applications and future potential in the field of schizophrenia research.

INTRODUCTION

Schizophrenia is a common yet severe neuropsychiatric disorder impacting approximately 

0.3% of the global population1. Twin-based studies have estimated its heritability to 
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be around 80–85%2,3. The polygenic genetic architecture of schizophrenia includes rare 

genetic variants of large impact (e.g. copy number variants (CNVs)), as well as hundreds 

of common variants of small effect (e.g. single nucleotide polymorphisms (SNPs))4–6. 

Although in isolation each SNP confers little disease risk, in aggregate a high polygenic 

risk score (PRS) substantially increases the risk of schizophrenia7. Most SNPs occur in 

non-coding portions of the genome8, and half (48.1%) colocalize variants linked to the 

expression of proximal gene targets in the brain (expression quantitative trait loci (eQTLs))9, 

although they frequently are thought to also regulate distal genes through trans mechanisms 

(such as the expression of diffusible factors)10 or cis mechanisms involving chromatin 

folding.11

There is a critical need to understand the impact of the hundreds of variants linked 

to schizophrenia, towards uncovering novel pathways and mechanisms underlying 

schizophrenia risk, and thus potential targets for therapeutic interventions. Here we discuss 

the most recent developments in stem cell-based technology as a model for studying 

the mechanisms and pathology underlying schizophrenia, with a particular focus on the 

potential for unravelling the common genetic variation linked to this disease using these 

models. We outline the current capabilities of hiPSC technology and further detail the state 

of the CRISPR field. We discuss the existing limitations and future potential of methods to 

engineer the genome in a donor-specific fashion across the major cell types of the brain. 

Overall, we consider impact of functional genomic studies attempting to capture the breadth 

and complexity of the genetic risk architecture linked to schizophrenia.

STEM CELLS AS A TOOL FOR STUDYING SCHIZOPHRENIA RISK

The advent of hiPSC technology resulted in a patient-specific platform to study development 

and disease in human cells of interest. hiPSC-derived brain cells can be used to identify 

disease-specific cellular phenotypes in patient derived lines12, as a platform for drug 

screening13 and to uncover the impact of genes and variants linked to disease risk, onset, 

progression, and treatment response14. New large collections pf patient-derived hiPSCs 

makes it possible to explore disease mechanisms in a cell-type-specific and donor-dependent 

manner.

It is now possible to generate all of the major cell types of the brain using hiPSCs, 

with most widely used protocols following one of two major approaches: i) recapitulation 

of the development signals that specify cell patterning in the developing human brain 

using morphogens and/or small molecules15,16, and ii) forced overexpression of one or 

more transcription factors critical to cell fate patterning17,18. These approaches permit the 

generation of many of the cell types implicated in schizophrenia pathophysiology, including 

glutamatergic15,17, GABAergic18,19 and dopaminergic neurons20,21, astrocytes22,23, and 

microglia24 (SEE FIGURE 1), with yields that vary across methodologies but that in some 

cases can exceed 95%17,25. Nonetheless, both cell type composition and functional maturity 

frequently vary between donors, and even hiPSC lines derived from the same donor, due 

to genetic background and stochastic differences between differentiations26. This inter- and 

intra-donor variability should be considered in the design and analysis of hiPSC-based 

studies. It is also worth noting that neurons derived from hiPSC lines typically adopt a 
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cellular identity and gene expression consistent with neurons in fetal tissue27, and so are 

often best suited to the study of the genetic risk during neurodevelopment.

hiPSC lines generated from schizophrenia cases possess all of genetic variants sufficient 

to result in a disease state, even if these are not yet understood. The impact of these 

genetic backgrounds can be seen in a number of schizophrenia-relevant cellular phenotypes. 

Neurons derived from schizophrenia patient hiPSC lines exhibit reduced neuronal 

connectivity and expression of synaptic proteins, decreases in neurite number, alterations 

in gene expression, deficits in mitochondrial function and increased oxidative stress12,28–31. 

These findings are consistent with many of the cellular phenotypes seen in previous animal

based models of schizophrenia and neuropathological studies of postmortem brain tissue 

from schizophrenia patients. In the former, both genetic and non-genetic mouse models of 

schizophrenia have found reductions in dendritic spine density and reductions in dendritic 

arbor size in the cortex (reviewed in detail in32) as well as increases in measures of oxidative 

stress in cortical interneurons (reviewed in33). In the latter, pyramidal neurons in key regions 

of the frontal and temporal cortices exhibit reduced dendritic spine density and dendritic 

field size (reviewed in detail in32,34,35). The transcriptional signatures seen in NPCs and 

neurons generated from schizophrenia patient hiPSC lines converge with those seen in 

postmortem cortical tissue from schizophrenia patients26.

Despite methods to ensure reproducibility of results, such as double blinding, being common 

in hiPSC-based studies28,31,36, many utilise distinct patient cohorts, differentiation protocols, 

and methods of cellular phenotyping, limiting the generalizability of findings from one study 

to another. That being said, decreased levels of the synaptic protein PSD95 found in the first 

hiPSC-based study of schizophrenia were subsequently replicated using hiPSC neurons from 

independent cases and controls12,37; moreover, decreased synaptic puncta density have been 

reported in idiopathic schizophrenia hiPSC lines and those from patients with mutations in 

the schizophrenia-linked gene DISC137,38,40,41. Increased oxidative stress was also broadly 

indicated across multiple studies27,29,39.

Nonetheless, the large genetic variation between individuals means that case and 

control cohort designs are underpowered to detect subtle phenotypes such as genome

wide differential gene expression and the molecular mechanisms underpinning cellular 

phenotypes26. The statistical power of hiPSC-based studies can be maximized by increasing 

the number of potential donors rather than clonal lines per donor, reducing intra-donor 

variation through the optimization of neuronal differentiation protocols, and reducing inter

donor heterogeneity by focusing on individuals with specific genetic variants42. This latter 

point can be stratified into approaches that focus on rare genetic variants with highly 

penetrant effects on cellular phenotypes, or those that focus on multiple common variants 

with low individual impact but high impact when combined (i.e. high polygenic risk)42. 

Both can be studied through patient-derived cell lines, though recent developments in 

genetic engineering have provided a means of directly inducing or modelling these variants 

without the requirement of a particular donor genetic background. Towards this, recent 

hiPSC-based studies apply genetic engineering to dissect individual and combinatorial 

disease risk factors in a single (isogenic) donor background, providing the opportunity to 

definitively resolve the causal impact of variants and genes on cellular phenotypes. Genetic 
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engineering has rapidly progressed from early work using zinc finger nucleases (ZFNs) 

and TALENs43 to CRISPR-Cas9 based systems and their derivatives44, offering myriad 

strategies to study variants and genes with a high degree of experimental flexibility.

CRISPR-BASED TECHNOLOGIES FACILITATE PRECISE ISOGENIC 

COMPARISONS OF CAUSAL FUNCTION

The rise of CRISPR-based platforms has been transformative for the study of disease-linked 

genetic variants in vitro. CRISPR-Cas9 can be targeted to a given sequence with great 

specificity, offering a higher degree of efficiency in editing, and capable of impacting 

multiple genes or loci simultaneously.45

The applications of CRISPR have grown from early guideRNA-targeted Cas9 nuclease

based gene knockouts (KO) of disease-relevant genes to newer methods that use Cas 

nickases or nuclease null mutants fused to effector domains to edit individual base pairs46, 

perform epigenetic modifications47, manipulate chromatin interactions48, directly activate or 

repress expression of target genes49 and cleave RNA50 (SEE FIGURE 2). The discovery of 

Cas9 orthologues with different PAM requirements permits greater flexibility in target sites 

for manipulation45, while systems such as RNA-targeting CasRX are capable of processing 

guideRNA arrays via a dedicated RNase domain50–52. Altogether, these many methods 

permit the high throughput assessment of gene and loci function53, critical for evaluating 

the sizable list of variants associated with complex polygenic disorders like schizophrenia. 

We discuss below two CRISPR-based platforms that offer great potential for studying 

common variants: direct editing of SNPs using CRISPR DNA editors to generate isogenic 

hiPSC lines, and perturbation of gene expression through CRISPR activation or inhibition 

(CRISPRa/i).

i) DISSECTING COMMON VARIANTS USING DNA EDITING

CRISPR-Cas9-based genome editing offers a useful means of producing isogenic lines with 

specific genes and sequences removed. In the context of schizophrenia, this is useful for 

the study of large copy number variants and the function of genes associated with disease 

in an experimental system36. However, this form of genome editing lacks the precision or 

efficiency required to model the myriad common genetic variants at the level of individual 

base pairs. Towards this, CRISPR DNA editors offer a means to efficiently investigate the 

role of genetic variation in the etiology of disease at the resolution of individual SNPs.

CRISPR DNA editing is highly precise and offers the benefit of directly editing in the 

risk alleles for a given disease-associated locus, or conversely editing in non-risk alleles in 

hiPSC lines from patients with risk SNPs. It has previously been employed to determine 

the functional impact of common schizophrenia-associated variants: isogenic hiPSC lines 

have been generated for the schizophrenia-associated variant at rs4702, finding that even a 

single SNP can influence neuronal activity and morphology54. However, the use of edited 

hiPSC lines as a means of modelling all known schizophrenia-associated common variants 

is hindered by the time required to precisely target each individual SNP for editing. DNA 

editing also requires the knowledge of the specific SNP driving the association signal at 
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the locus, and fine mapping data is only rarely sufficient to establish a single candidate for 

editing55. These limitations can be partially addressed by prioritizing candidate SNPs which 

have strong evidence of being the causal variant and editing them in donor lines with varying 

degrees of polygenic risk to determine epistatic effects, focusing on SNPs which directly 

alter protein structure and/or highly penetrant de novo variants.

Overall, DNA editing techniques are highly useful for studying the precise impact of key 

variants linked to schizophrenia risk, but a faster and more scalable approach is often to 

simply manipulate the impact of known schizophrenia risk variants at the level of their gene 

targets.

ii) EVALUATING GENE TARGETS USING CRISPRA/I

When a single causal SNP is not after fine-mapping analysis of GWAS data, the 

identification of candidates for DNA editing experiments problematic. In schizophrenia, the 

GWAS signal appears to be largely driven by the eQTL signal56,57, and thus experimental 

models that assess the impact of altering the expression of proximal target genes may 

offer a valuable insight into the biological consequences of schizophrenia-associated genetic 

variation.

CRISPRa, CRISPRi, and CRISPR-based RNA cleavage can all be applied to model the 

impact of a given variant on the expression of specific genes in disease-relevant cell 

types. Studying gene targets directly bypasses the need for time-consuming generation 

of each DNA edit in a given hiPSC line individually. While schizophrenia associated 

genes were once investigated using siRNA-based knockdown58, CRISPR-based methods for 

manipulation of gene expression have higher specificity and adaptability. However, neither 

approach well models the impact of variants that alter complex gene splicing patterns rather 

than expression (splice QTLs). Furthermore, CRISPRa and CRISPRi-based methods lack 

the ability to precisely control the degree of perturbation in expression levels, in order to 

match the impact of the eQTL observed in vivo.

Moving forward, pooled CRISPR screens make it increasingly straightforward to manipulate 

large numbers of genes in parallel, alone and in combination. A broad selection of genes 

can be targeted in arrayed (“sets of genes”) or pooled (“CRISPR library”) formats, and then 

analyzed at the population levels or at single cell resolution, respectively.

COMBINATORIAL PERTURBATION OF COMPLEX GENETIC RISK

The study of the interactions between genetic is critical towards understanding the etiology 

of schizophrenia. A “sets of genes” approach, whereby a selection of disease-associated 

genes, potentially with a shared biological function, are analyzed in combination can reveal 

unexpected outcomes of combinatorial perturbations. Towards this, we recently queried 

the impact of four schizophrenia risk genes individually and in combination, in order to 

assess additive interactions between the genes54 (SEE FIGURE 3). Perturbing schizophrenia 

genes together resulted in a synergistic impact on expression of genes relating to synaptic 

function and others linked to rare and common variant genes for psychiatric disorders like 

schizophrenia and bipolar disorder. This finding suggests that common and rare genetic 
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variants convey biological effects that converge on specific pathways and genes, while 

raising the question as to the extent that these findings are generalizable beyond the set of 

four genes chosen for perturbation.

This approach is useful for dissecting phenotypes arising from specific subsets of eQTLs 

in detail. This method can be adapted with ease to a wide variety of phenotyping 

techniques, including morphology, synaptic density, neuronal activity and bulk RNAseq, 

due to perturbations occurring population-wide within cell cultures rather than on the level 

of individual cells. Nonetheless, this approach is constrained by the number of guideRNA 

and shRNA vectors that can be simultaneously delivered into a target cell. Towards this, 

new Cas12 and CasRX systems have guideRNA array cleavage capabilities, reducing the 

size of multiplexed guideRNA scaffolds50,52, and so could potentially increase the number 

of simultaneous gene perturbations possible in a given cell. Moreover, novel CRISPRa 

and CRISPRi systems utilise different guideRNA scaffold sequences, making possible new 

bi-directional, combinatorial perturbations of genes using CRISPRa and CRISPRi in the 

same cell.

Future extensions of this approach could be applied across pathways and cell types, further 

deciphering the additive impact of risk variants in schizophrenia pathophysiology, and 

potentially informing improved calculations of PRS. Moving forward, CRISPR screens 

offer a means of bypassing the time constraints associated with “set of genes” experimental 

design, scaling up the number of genes that can be simultaneously perturbed.

HIGH THROUGHPUT EVALUATION OF COMPLEX GENETIC RISK USING 

CRISPR SCREENS

Pooled CRISPR screens can greatly expand the number of variants or genes that can 

feasibly be examined. These approaches use pooled guideRNA libraries to transduce a 

population of cells, typically with a low multiplicity of infection (MOI) such that each cell 

receives one guideRNA only. Each cell undergoes a perturbation at a different locus, and the 

impact of this perturbation on one or more phenotypes can be evaluated by determining the 

relative prevalence of each guideRNA among bulk populations of cells using next generation 

sequencing. Phenotyping methods relying on assessments of guideRNA prevalence were 

originally limited to simple readouts based on cell frequencies such as proliferation, 

survival, and reporter gene expression (so-called “grow or glow”)59. However, new single 

cell RNA sequencing strategies can identify the guideRNA within a given cell, together with 

its transcriptome, by capturing individual cells in droplets containing barcoded beads that 

recognize scaffolding sequences on the guideRNA transcript60–62.

One of these techniques, ECCITE-seq, further combines direct guideRNA capture and 

transcriptome information with cell surface protein detection63. Antibody-mediated cell 

hashing permits sequencing of cells from multiple samples simultaneously, expanding the 

number of samples that can be analysed, but the detection of cell surface markers also 

offers a means to dissect subpopulations of cells from mixed cultures (SEE FIGURE 4). 

Moreover, the use of direct guideRNA capture allows multiple guideRNAs to be detected 
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within a single cell in protocols with an increased MOI, thus providing a means of dissecting 

combinatorial perturbations.

Applied to hiPSC-derived neurons and glia, ECCITE-seq can dissect the impact of genetic 

variants at scale. ECCITE-seq and other CRISPR screens are for the future study of 

complex polygenic disorders owing to their scalability and the expanding number of cellular 

phenotyping applications available.

FUTURE APPLICATIONS

The two approaches outlined above offer diverging strategies for studying the common 

genetic variation underlying schizophrenia risk. The “sets of genes” approach is best suited 

for detailed dissection of the interactions between risk genes, particularly their convergent 

pathways. This represents a platform to query all the known variants linked to a particular 

polygenic disorder simultaneously, serving as an important platform for drug screening 

and/or personalized medicine. CRISPR screening technologies also make it possible to 

study of the breadth of genetic variation linked to schizophrenia at scale. Moreover, new 

applications increase the flexibility of high throughput CRISPR screens to study the impact 

of variants and genes on transcriptomics, epigenomics, and cellular phenotypes in parallel, 

uncovering biologically-relevant phenotypes and pathways underlying schizophrenia.

CONCLUSIONS

The recent explosion in CRISPR-based techniques for the manipulation of the genome has 

provided numerous valuable tools for the study of common genetic variants in the context 

of schizophrenia, and the continual diversification and improvement of hiPSC-derived neural 

differentiation protocols has offered an ideal platform to deploy them in. DNA editing 

is a valuable technique for establishing isogenic lines for the study of key SNPs, while 

CRISPRa and CRISPRi are a flexible method for modeling the impact and interactions of 

disease linked eQTLs. Exciting new CRISPR screening techniques such as ECCITE-seq 

provide a scalable means of studying these eQTLs in bulk and may provide the way 

forward in capturing the true diversity of genetic variation linked to schizophrenia and the 

pathophysiology arising from it. These techniques may also be key in future studies of other 

psychiatric and neurological disorders with complex genetic etiologies.
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FIGURE 1: 
Key directed differentiation and reprogramming techniques for the generation of neural cell 

types relevant to schizophrenia disease modeling. AGS = astrocyte growth supplement; FBS 

= fetal bovine serum; LDN = LDN193189; SB = SB431542; SHH = sonic hedgehog. Info 

from refs16,18–25.
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FIGURE 2: 
Examples of key CRISPR effectors useful for probing schizophrenia-relevant mechanisms 

in hiPSC-derived neural cultures: the initial CRISPR/Cas9 targeted DNA cleavage system, 

CRISPRa, CRISPRi, CRISPR DNA editing systems, CRISPR DNA methylation and 

CRISPR histone modification. VPR = VP64-p65-Rta; KRAB = Krüppel associated box; 

CDA = cytidine deaminase; ADA = adenosine deaminase; TET = ten-eleven translocation 

methylcytosine dioxygenase; DNMT3A = DNA methyltransferase 3A; HMT = histone 

methyltransferase; HDM = histone demethylase; HAT = histone acetyltransferase; HDAC = 

histone deacetylase; HUbq = histone ubiquitinase. Info from refs46–49,64.
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FIGURE 3: 
Example of “sets of genes” experimental approach for studying eQTL function and synergy 

following combinatorial CRISPRa/RNAi in glutamatergic neurons. The synergistic effect for 

a given combination of perturbations is calculated by summing the impacts of individual 

perturbations on a particular phenotype and comparing them to the actual measured impact 

of combinatorial perturbation. Figure partially adapted from ref54.
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FIGURE 4: 
Two potential methods for using ECCITE-seq to determine eQTL function. Mixed 

neural cultures constitutively expressing CRISPR effectors are transduced with lentiviral 

guideRNA libraries targeting known eQTL genes. ECCITE-seq can be subsequently used to 

concatenate global gene expression data, cell identity data and guideRNA expression data 

in individual cells. Cultures infected with guideRNA libraries at a low MOI can be used 

to determine the impact of individual perturbations, while high MOI cultures can be used 

to investigate combinatorial perturbations and synergistic effects. ECCITE-seq schematic 

adapted from ref63.
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