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Abstract

The study of autophagy in the nervous system has predominantly centered on degeneration; 

however, evidence is now cementing crucial roles for autophagy in neuronal development 

and growth, especially in axonal and presynaptic compartments. A picture is emerging that 

autophagy typically promotes the growth of axons and reduces presynaptic stability. Nonetheless, 

these are not rigid principles, and it remains unclear why autophagy does not always display 

these relationships during axonal and presynaptic development. Recent progress has identified 

mechanisms underlying spatiotemporal control of autophagy in neurons and begun to unravel how 

autophagy is integrated with other cellular processes such as proteasomal degradation and axon 

guidance. Ultimately, understanding how autophagy is regulated and its role in the developing 

nervous system is key to comprehending how the nervous system assembles its stereotyped yet 

plastic configuration. It is also likely to inform how we think about neurodevelopmental disorders 

and neurodegenerative diseases.

Autophagy in the nervous system, an overview

Macroautophagy, which we will refer to simply as autophagy, is a core catabolic process 

that is conserved across eukaryotes and is used to recycle organelles and cellular contents. 

Autophagy involves a complex multistep process with membrane engulfment of organelles, 

proteins, RNA, and lipids within an autophagosome [1,2]. Autophagosomes fuse with 

lysosomes to create autolysosomes where enzymatic degradation of contents occurs 

[2,3]. Autophagy allows cells to remove damaged or unwanted components and provides 

fresh building blocks for new cellular material. This helps maintain cellular health and 

supports the appropriate abundance of organelles and proteins within a given subcellular 

compartment. Autophagy is important during starvation, stress, and aging, and deregulation 
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of autophagy figures prominently in neurodegenerative disease, autoimmune disease, and 

cancer [4–6]. While much autophagy research has focused on these disease contexts, there 

is clear evidence autophagy is also important during normal cell growth and development 

[7,8].

When one considers autophagy in the nervous system, it is essential to begin by noting 

that neurons have unique autophagic needs [9,10]. This principally stems from several 

characteristics. Neurons have unusual anatomy with subcellular compartments that are 

extremely far from the soma, which is particularly notable for axons. Neurons are post­

mitotic cells that need to manage highly organized structures, such as growth cones 

and synapses, which require complex structural reorganization and have high metabolic 

demands, as post-mitotic cell neurons must manage the turnover of organelles, proteins, 

and RNA over a lifetime — a daunting but critical task. Finally, neurons must regulate the 

autophagic response to starvation much differently than other cell types because the nervous 

system must continue to operate as long as possible during times of starvation. Collectively, 

these challenges place unusually high demands on autophagy in the nervous system and 

are likely why altered autophagy is a hallmark of numerous neurodegenerative diseases, 

including Alzheimer’s, Parkinson’s, and Huntington’s disease [4,10]. Along with this 

prominent role in neurodegeneration, a significant body of work has shown that autophagy 

is also essential for the development and growth of the nervous system with emerging 

roles in neurodevelopmental disorders [9,11,12]. Because this is somewhat counterintuitive 

(given the catabolic nature of the autophagic process), the role of autophagy in nervous 

system development has not been as widely recognized as its more heavily studied role in 

degeneration.

In this review, we discuss how autophagy affects axonal and presynaptic development and 

delve into recently discovered regulators of autophagy in these compartments. Importantly, 

new evidence indicates that regulation of autophagy is likely to be a notable difference 

between neurons and other cell types. These recent findings suggest that the keys to 

understanding how autophagy can be harnessed to treat neurodegenerative disease may lie 

within the developing nervous system.

Autophagy affects axon development

Axons are the most dramatically elongated compartment of any cell and require an 

intense capacity for regulated growth [13,14]. The growth cone facilitates this remarkable 

growth and sensing ability at the tip of an axon [15–17]. Presynaptic connections must be 

established with correct postsynaptic target cells, and axon growth must be terminated in an 

accurate and timely manner in order to ensure correct, efficient nervous system construction. 

Finally, synaptic contacts and axon integrity must be maintained over time. All these steps 

in nervous system construction are likely to require autophagic recycling of cellular contents 

that become damaged or are no longer needed. Autophagy in distal portions of the axon 

is likely to be important for repurposing materials for structural changes and growth far 

from the soma. As a result, specialized regulatory mechanisms would be required to control 

autophagy in neurons, and in particular in axonal and presynaptic compartments.
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Early evidence showed autophagosomes form in axon tips [18], indicating the initiation 

of autophagy constitutively occurs in distal axon regions. These axonal autophagosomes 

traffic retrogradely to the soma, where they fuse with lysosomes [19–23] (Figure 1). 

Retrograde trafficking of axonal autophagosomes is also influenced by synaptic activity 

[24]. Importantly, studies from Drosophila and Caenorhabditis elegans have shown that 

axonal autophagosomes and retrograde trafficking are evolutionarily conserved and occur in 

neurons in vivo [25–27]. In the intact Drosophila brain, autophagosomes have been detected 

at axon termination sites of photoreceptors prior to synapse formation [28]. Work in worms 

recently provided further in vivo evidence that axonal autophagosomes mature in the soma 

[29].

The constitutive initiation of autophagy and autophagosome biogenesis in growing, as well 

as mature axons, indicate that the recycling of proteins and organelles is important for 

axonal growth and maintenance. This idea is consistent with studies showing that loss of 

the core autophagy proteins Atg7 and UNC-51/ULK affect axon extension and morphology 

in vivo [30–34]. It should be noted that UNC-51/ULK displays autophagy-independent 

functions in neurons, including effects on axon guidance receptor trafficking [35–39]. Thus, 

ULK likely represents a key signal intersection in the regulation of axon development. Other 

early studies primarily observed axon degeneration in mice lacking the core autophagy 

genes Atg7, Atg5, and FIP200 [40–43]. These studies noted prominent axon degeneration 

and behavioral/motor deficits as early as postnatal day 14–19. Thus, axon degeneration in 

such young animals could be considered neurodevelopmental in nature.

Subsequent studies showed that impairing autophagy leads to abnormal axon development 

and nervous system disease in humans. This includes loss of function mutations in EPG5 
[44–47], TECPR2 [48–51], and AP4 [52–55]. In all three cases, agenesis of the corpus 

callosum, the largest axon tract in the human brain, was observed. Defects in corpus 

callosum development have been replicated in mice lacking Epg5 [45]. Thus, genetic 

changes that affect autophagy result in major abnormalities in axon development in the 

human and mouse brain.

Now, let us turn to the most recent observations made in different systems that indicate 

autophagy influences axon development. We draw the reader’s attention to an important, 

growing body of work showing that regulators and mediators of autophagy have a 

pronounced, evolutionarily conserved effect on axon development (Figure 1). We will start 

with cell-based systems and then discuss in vivo whole-animal models such as rodents and 

C. elegans.

Several studies with cell-based neuronal assays have reinforced the concept that altered 

autophagy leads to changes in axon growth. Cultured motor neurons with reduced Plekhg5, 

the GEF for the Rab26 GTPase that regulates autophagosome formation, have reduced axon 

outgrowth and impaired autophagy of synaptic vesicles [56]. In DRG neurons, chondroitin 

sulfate interacts with the protein tyrosine phosphatase receptor PTPRσ to regulate 

autophagosome-lysosome fusion in growth cones, and impairing autophagic flux prevents 

axon outgrowth [57]. Pharmacologically manipulating autophagy in cultured neurons also 

alters axon outgrowth. Peptides or low concentrations of drugs that increase autophagy 
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stimulate neurite outgrowth and promote regrowth of certain types of axons following 

injury [58]. Similarly, increasing autophagy with modest starvation or drugs increased axon 

outgrowth in cultured hippocampal neurons [59]. In contrast, pharmacological inhibition of 

autophagy [60] or genetic loss of VAMP7 [59] (which promotes membrane fusion during 

autophagosome formation) results in reduced neurite outgrowth.

Recent studies in mice have identified regulators and cargo mediators of autophagy that 

affect axon development in vivo. The first is Alfy/WDFY3, a scaffold protein that mediates 

cargo-selective macroautophagy [61]. Mice lacking Alfy display severe defects in the 

formation of all the major axon tracts of the brain and spinal cord, including dramatically 

reduced corpus callosum. Experiments with cortical explants showed that Alfy loss of 

function inhibits axon outgrowth in response to the trophic effects of Netrin-1 without 

impacting levels of the netrin receptor DCC. Thus, Alfy regulates autophagy to influence 

trophic-stimulated axon outgrowth without affecting axon guidance. An investigation into 

Mir505–3p, a micro RNA that affects axon tract thickness in mice, showed that the 

autophagy component ATG12 is a central Mir505–3p target [62]. Mir505–3p reduces Atg12 

levels to increase axon growth in cultured cortical neurons and callosal axons in vivo. Two 

independent studies found the opposite phenotype — thinner corpus callosum and failed 

axon extension — in mice lacking AP-4E [63,64], a positive regulator of autophagosome 

formation and trafficking [55]. Accompanying these defects was reduced trafficking and 

soma accumulation of Atg9, which is required for phagosome membrane extension. 

Consistent with evidence that AP-4E affects axon development via transport of Atg9, a 

recent study showed that brain specific-knockout of Atg9a results in embryonic dysgenesis 

of the corpus callosum and impaired axon outgrowth in cultured cortical neurons [65]. 

Collectively, these findings have solidified the role autophagy plays in axon development 

and provided important insight into mechanisms that regulate autophagy in the nervous 

system.

The invertebrate model system C. elegans has also proven extremely valuable in revealing 

the important, conserved role autophagy plays in axon development in vivo. One key 

advantage of the C. elegans system is its panoply of autophagy mutants that affect all core 

steps in the autophagic process [66]. This autophagic toolkit was initially leveraged to show 

that axon length is increased in the PVD sensory neurons of several autophagy mutants [27].

More recently, proteomic and genetic studies revealed that an E3 ubiquitin ligase, RPM-1/

MYCBP2, inhibits autophagy in the nervous system [67]. RPM-1 restricts autophagy by 

ubiquitinating and degrading the autophagy initiating kinase UNC-51/ULK1 in a subcellular 

compartment at the tip of the distal axon. RPM-1 inhibition of UNC-51/ULK and autophagy 

promotes axon termination and restricts axon growth in mechanosensory neurons. Whether 

RPM-1/MYCBP2 is a conserved inhibitor of autophagy awaits further investigation, but 

cell-based experiments indicate that human MYCBP2 (also called PAM) can trigger 

ubiquitination and proteasome-mediated degradation of human ULK [67].

mTOR is the principal inhibitor of ULK and autophagy initiation in non-neuronal cells. 

Whether mTOR inhibits initiation of autophagy in the nervous system remains disputed and 

is based almost entirely upon pharmacological approaches [9,68–70]. The discovery that the 
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RPM-1 ubiquitin ligase inhibits initiation of autophagy via UNC-51/ULK now provides a 

possible explanation for the inconsistent effects of mTOR signaling in the nervous system: 

neurons potentially deploy two mechanisms to restrict initiation of autophagy, RPM-1/

MYCBP2 and mTOR. It is also worth noting that there is evidence for further signaling 

links between MYCBP2 and mTOR in human cells and mice. MYCBP2 (Phr1 in mice) can 

ubiquitinate and inhibit the TSC complex that negatively regulates mTOR [71–73]. Recent 

findings using Hela cells indicate that a lysosomal ATPase associated with Parkinson’s 

disease, ATP13A2/PARK9, can influence MYCBP2 inhibition of TSC and mTOR to impact 

autophagy [74]. Thus, RPM-1/MYCBP2 may regulate autophagy directly via UNC-51/ULK 

and indirectly via the TSC complex. Whether these layers of signaling inhibit the initiation 

of autophagy in the nervous system remains unknown but is an intriguing possibility.

Other work from the worm model has implicated the L-type calcium channel EGL-19 in 

the regulation of axon termination and autophagy [75]. EGL-19 functions via Alfy/WdFY3, 

indicating an important, evolutionarily conserved function for Alfy in axon development. 

Thus, findings from C. elegans have accelerated the field’s understanding of how autophagy 

is regulated during axon development and revealed a molecular interface between the 

ubiquitin-proteasome system and autophagy.

Taken as a whole, work from several model organisms and different types of neurons 

highlights several general principles regarding the role of autophagy in axon development. 

Autophagosomes are present in axons, and their biogenesis occurs at and is regulated in 

distal axon tips. Both regulators of autophagy and core autophagic machinery affect axon 

development. Finally, and perhaps somewhat surprisingly, more severe phenotypes in axon 

development generally arise from disruption of autophagy regulators rather than loss of core 

autophagy components. Why this is the case remains unclear at present.

Differential effects of autophagy on axon growth

Whether autophagy primarily promotes or inhibits the growth of neuronal structures remains 

an open question. A growing body of work using cell-based and in vivo models has 

revealed differing effects of autophagy on axon development. We discuss this literature 

and emphasize that evidence across systems, in general, suggests that autophagy is typically 

required for axon growth and must be reduced to facilitate axon termination. However, it 

is important to note that the type of neuron and the time at which axon development is 

examined could be among the factors influencing whether autophagy functions in a pro or 

anti-growth capacity.

First, let us begin with the evidence that autophagy is required for axon growth/extension. 

Many studies have shown that deleting or impairing the autophagic machinery results in 

shorter axon length both in vivo and in cultured neurons [30,60,65]. Consistent with these 

findings, impairing positive regulators of autophagy (e.g. AP-4E, Alfy, Plekhg5, VAMP7, 

or PTPRs) results in loss of axon tracts in vivo and reduced axon outgrowth in cultured 

neurons [56,57,59,61,63,64]. Finally, removing an inhibitor of autophagy, RPM-1, leads to 

the opposite phenotype e failed axon termination and excess axon growth [67]. Further 
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support for this relationship between autophagy and axon growth has been observed during 

axon regeneration [58,76].

A smaller but significant number of studies have shown the opposite relationship: Loss or 

reduction in autophagy increases axon length [27,31]. Consistent with this, an excess of 

the autophagy inhibitor Mir-505p results in excess axon growth in vivo and in vitro [62]. 

Interestingly, a single study noted contrasting effects on neurite extension from knocking out 

the core autophagy component Atg5 compared to knocking out VAMP7 that is a positive 

regulator of early steps in autophagosome formation [59].

This apparent paradox in the field might have several explanations. (1) The most 

straightforward is that different types of neurons might have different needs for autophagy 

during axon development. For example, autophagy components can influence microtubule 

stability [77] and axon polarity [59], and different cell types display varying microtubule 

orientation and polarity arrangements. Together, these effects could help account for the 

variable results of autophagy on axon growth in different neurons. (2) It is plausible that 

axonal autophagy must be tightly balanced to facilitate axon development. As a result, 

impaired or excess autophagy might lead to failure in the same developmental steps. 

Alternatively, disturbing different components of the pathway might differentially affect 

such a precise autophagic balance. (3) Finally, and perhaps most interestingly, it is possible 

that manipulations affecting the regulation of autophagy in specific subcellular locations 

might yield different outcomes compared to the gross disruption of autophagy in the entire 

cell. Resolving these hypotheses now awaits a much greater understanding of spatiotemporal 

regulation of autophagy in the nervous system.

Presynaptic development is regulated by autophagy

The development, maintenance, and refinement of synapses are also influenced by 

autophagy, although the evidence is less extensive than for axonal development 

[11,69,70,78]. Indeed, a discussion of autophagy in the axon would not be complete 

without considering the effects of autophagy on presynaptic terminals, which are important, 

specialized subcellular compartments within the axon. A series of excellent studies in 

Drosophila and mice have shown that autophagy influences presynaptic transmission 

and responds to changes in metabolism and neuronal activity [25,79–83]. Here, we will 

discuss the role of autophagy in presynaptic development. However, it is important to 

note that autophagy is regulated at presynaptic terminals by largely different mechanisms 

during reductions in metabolic activity versus development. Nonetheless, it is clear that 

precise regulation and fine-tuning of autophagy are required for both correct presynaptic 

development and function.

Seminal genetic studies in Drosophila were the first to show that autophagy promotes 

presynaptic terminal growth using the fly neuromuscular junction (NMJ) as a model [84]. 

Two subsequent studies focused on the mammalian central nervous system showed that 

striatal dopaminergic neurons lacking the autophagy protein Atg7 have enlarged axon 

terminals and increased synaptic transmission [82,85]. Importantly, presynaptic enlargement 
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was apparent in dopaminergic neurons of 2-week-old mice, indicating a developmental role 

for autophagy [85].

The first study to examine the effects of autophagy on presynaptic development in C. 
elegans evaluated a striking collection of 18 autophagy genes and showed that loss of any 

step in autophagy disrupts presynaptic terminal formation in AIY interneurons in vivo [27]. 

It was also revealed that autophagy is initiated near presynaptic terminals with ATG-9 and 

the KIF1A kinesin controlling autophagosome transport (Figure 2). More recently, work 

using C. elegans demonstrated that developmental maintenance of glutamatergic presynaptic 

connections in mechanosensory neurons requires inhibition of autophagy initiation by the 

RPM-1/MYCBP2 ubiquitin ligase [67] (Figure 2). Presynaptic defects caused by loss of 

RPM-1 were prevented by removing the autophagy initiating kinase UNC-51/ULK, as 

well as other autophagy genes. These findings were confirmed using a UNC-51 dominant­

negative (DN) construct that circumvents UNC-51 effects on axon guidance. Importantly, 

behavioral habituation defects caused by loss of presynaptic connections in rpm-1 mutants 

[86,87] were suppressed by UNC-51 DN [67]. Thus, RPM-1 inhibition of UNC-51 and 

initiation of autophagy affects presynaptic maintenance and related behavioral outcomes.

RPM-1 is well known to localize at presynaptic terminals suggesting that it acts locally 

to regulate presynaptic maintenance and autophagy [88,89]. Notably, observations in flies 

indicate that the RPM-1 ortholog, Highwire, is degraded by autophagy [84,90]. Since 

RPM-1 directly inhibits initiation of autophagy, these observations in flies could reflect 

autophagy feeding back on Highwire. Whether fly Highwire or mammalian orthologs 

(mouse Phr1 and human MYCBP2/PAM) inhibit autophagy during presynaptic development 

remains unknown.

Synaptic phenotypes in the mechanosensory neurons of rpm-1 mutants examined by 

Crawley et al. arise primarily from failed presynaptic maintenance during development 

[67,88]. Consistent with this, work on mouse auditory cochlear synapses has also shown 

that pharmacologically increasing autophagy reduces presynaptic connections after initial 

synapse formation [91]. These findings are consistent with results in young mice, 

which showed that impaired autophagy leads to increased presynaptic size and increased 

presynaptic transmission in dopaminergic and glutamatergic neurons [82,83,85].

Extremely interesting links have recently emerged between the presynaptic active zone 

and autophagy (Figure 2). Both knockdown and knockout approaches in cultured 

hippocampal neurons showed that Bassoon, an important scaffold in the active zone, inhibits 

presynaptic autophagy by binding to Atg5, a ubiquitin ligase-like molecule that promotes 

protein conjugation to growing phagophore membranes [92]. Loss of Bassoon elevated 

autophagy at presynaptic boutons while strongly reducing synapse numbers. Consistent 

with these findings, pharmacologically reducing autophagy with wortmannin rescued 

increased autophagosome formation that occurred with loss of Bassoon. Independent studies 

confirmed that autophagosomes are present at presynaptic terminals [93] and increased 

in Bassoon knockout (KO) neurons [94]. Bassoon KO neurons also displayed increased 

autophagy of synaptic vesicles. Bassoon inhibition of presynaptic autophagy requires the 

Parkin E3 ubiquitin ligase, which is consistent with proteomic results showing that Bassoon 
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KO neurons have increased ubiquitination of numerous presynaptic proteins [94]. These 

studies highlight another important functional relationship between autophagy and the 

ubiquitin-proteasome system in presynaptic development.

Recent findings demonstrate that autophagy has an evolutionarily conserved role in the 

development of the active zone in the fly brain in vivo. Knocking down Atg9 and Atg5 core 

autophagy components in mushroom body neurons leads to increased levels of Bruchpilot 

(Brp)/ELKS, an active zone scaffold [95]. Electron and super-resolution microscopy 

revealed that impairing autophagy results in enlarged active zones. Altered active zone 

size was accompanied by impaired memory, consistent with the mushroom body’s role in 

learning and memory [95]. Interestingly, attenuating autophagy in mushroom body neurons 

affected Brp levels across the brain. How these noncell autonomous effects occur remains 

unknown, but further evidence from Drosophila and C. elegans indicates that autophagy 

can have noncell autonomous effects on neurons [96,97]. In the Drosophila eye, mutants 

for several autophagy components also resulted in abnormal presynaptic development 

[98]. Evaluation of Brp showed that Atg7, Atg6, and Atg18 mutants displayed greater 

numbers of presynaptic terminals in R1–6 and R7 photoreceptors. Presynaptic abnormalities 

resulted in increased photoreceptor neurotransmission and altered behavioral outcomes with 

increased visual attention. Impairing autophagy also caused R7 axon terminals to form 

ectopic synapses with incorrect postsynaptic neurons at inappropriate layers of the medulla. 

Elegant live imaging with intact fly brain indicated that excess synapse formation arises 

from developmental alterations in synaptic filopodia dynamics with autophagy promoting 

more dynamic filopodia, which allows more limited, correct postsynaptic partner choice 

[98].

Overall, these results point toward autophagy as a key process required for appropriate 

presynaptic terminal formation and maintenance. Loss of autophagy promotes stabilization 

of synaptic contacts and enlarged presynaptic morphology in both flies and mammalian 

neurons. Local inhibition of autophagy by the active zone scaffold Bassoon and the ubiquitin 

ligase RPM-1 provides spatiotemporal regulation of autophagy required for presynaptic 

maintenance. Importantly, there is evidence indicating that either defective or excess 

autophagy can cause incorrect presynaptic development depending on neuronal context. 

This suggests that a tight balance of presynaptic autophagy is essential for the precise 

configuration and maintenance of synaptic connections.

Conclusion

Results from a diverse group of experimental systems, including invertebrate models, 

rodents, and cultured neurons, have substantially driven forward our understanding of 

how autophagy affects axonal and presynaptic development. Recent findings have also 

begun to reveal how autophagy is regulated in subcellular axonal compartments to 

influence nervous system development. A perhaps surprising picture is emerging in which 

autophagy often promotes growth and overall length of axons, whereas, for presynaptic 

terminals, the pathway instead functions to limit the size and stability of contacts. This 

apparent contrasting relationship is logical given the developmental trajectory of an 

axon. Initially, an axon must continue growing and remain dynamic until correct target 
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cells and the termination location are reached. Growth of the primary axon then needs 

to be halted while appropriate synaptic contacts (via en passant boutons or collateral 

branches) are consolidated and maintained. In moving forward, several important questions 

remain unanswered. (1) How are more specific forms of autophagy, such as mitophagy 

or cargo-specific autophagy, regulated in the nervous system and in axons? (2) How 

do different autophagy regulators work together to influence axonal autophagy and 

presynaptic development? (3) How are several types of degradation/recycling machinery 

(i.e. autophagy, the ubiquitin-proteasome system, endo-lysosomal system) integrated and 

controlled to facilitate axon and synapse development? Addressing these questions will 

undoubtedly deepen our understanding of nervous system development and could provide 

valuable insight into how we think about and treat neurodevelopmental disorders and 

neurodegenerative diseases.
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Figure 1. Regulation of autophagy in the developing axon.
Schematic showing positive (upper) and negative (lower) regulators of axonal autophagy. 

Diagram integrates findings from a range of different model systems. Recently identified 

players include (1) Positive regulators AP-4E (adaptor protein complex component), Alfy/

WDFY3 (WD40 repeat and FYVE domain protein), and PLEKHG5 (Rab GEF). (2) 

Negative regulators RPM-1 (E3 ubiquitin ligase that degrades UNC-51/ULK autophagy 

initiating kinase) and Chondroitin Sulfate (CS)/PTPRs/cortactin pathway. mTOR inhibition 

of autophagy is noted with a question mark because its role in regulating autophagy in the 

nervous system generally and axon development remains disputed.
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Figure 2. Regulation of autophagy during presynaptic development.
Schematic showing how different molecular players regulate autophagy during presynaptic 

development. Shown are integrated findings from different model systems and cultured 

neurons. Positive regulators are the Kif1A kinesin that affects Atg9 presynaptic delivery 

and PLEKHG5, which is a GEF for Rab26. Negative regulators of presynaptic autophagy 

include the active zone scaffold Bassoon and the RPM-1 ubiquitin ligase. Also noted is the 

inhibitory role autophagy plays in regulating levels of BRP and active zone development.
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