Table 2.
Optimized hyperparameter and cross-validated MAE and R2 for both data sets.
Model | Cross-validated training MAE (GPa) | Cross-validated test MAE (GPa) | Cross-validated training R2 | Cross-validated test R2 | ||||
---|---|---|---|---|---|---|---|---|
Refractory and non-refractory dataset | Refractory dataset | Refractory and non-refractory dataset | Refractory dataset | Refractory and non-refractory dataset | Refractory dataset | Refractory and non-refractory dataset | Refractory dataset | |
Gradient Boosting | 0.42 ± 0.26 | 0.36 ± 0.16 | 10.37 ± 1.59 | 6.15 ± 1.19 | 0.99 ± 0.003 | 0.99 ± 0.007 | 0.71 ± 0.080 | 0.90 ± 0.036 |
XGBoost | 0.33 ± 0.28 | 1.04 ± 0.48 | 10.32 ± 1.50 | 6.68 ± 1.22 | 0.99 ± 0.003 | 0.99 ± 0.008 | 0.70 ± 0.076 | 0.89 ± 0.038 |
RF | 5.63 ± 0.59 | 5.54 ± 0.63 | 13.53 ± 1.50 | 9.00 ± 1.08 | 0.95 ± 0.009 | 0.96 ± 0.010 | 0.68 ± 0.076 | 0.89 ± 0.031 |
Ada Boost | 12.79 ± 0.94 | 5.54 ± 0.84 | 18.02 ± 1.57 | 9.31 ± 1.53 | 0.86 ± 0.021 | 0.97 ± 0.011 | 0.62 ± 0.080 | 0.88 ± 0.051 |
SVM | 14.78 ± 1.61 | 1.90 ± 0.57 | 17.83 ± 1.99 | 6.41 ± 1.39 | 0.64 ± 0.060 | 0.97 ± 0.013 | 0.54 ± 0.074 | 0.87 ± 0.053 |
Lasso regression | 19.29 ± 1.44 | 17.53 ± 1.14 | 21.09 ± 1.64 | 18.16 ± 1.41 | 0.60 ± 0.060 | 0.72 ± 0.049 | 0.51 ± 0.076 | 0.67 ± 0.172 |
Ridge regression | 19.37 ± 1.40 | 33.18 ± 3.32 | 21.24 ± 1.95 | 33.34 ± 3.26 | 0.60 ± 0.057 | 0.075 ± 0.007 | 0.51 ± 0.082 | 0.018 ± 0.065 |
Gaussian process | 33.52 ± 1.90 | 34.08 ± 3.28 | 33.81 ± 1.92 | 34.55 ± 3.32 | 4.95 E−6 ± 4.9 E−7 | 1.35 E−5 ± 2.2 E−6 | 0.04 ± 0.028 | 0.090 ± 0.067 |