Skip to main content
. 2021 Aug 25;11:17149. doi: 10.1038/s41598-021-96507-0

Table 2.

Optimized hyperparameter and cross-validated MAE and R2 for both data sets.

Model Cross-validated training MAE (GPa) Cross-validated test MAE (GPa) Cross-validated training R2 Cross-validated test R2
Refractory and non-refractory dataset Refractory dataset Refractory and non-refractory dataset Refractory dataset Refractory and non-refractory dataset Refractory dataset Refractory and non-refractory dataset Refractory dataset
Gradient Boosting 0.42 ± 0.26 0.36 ± 0.16 10.37 ± 1.59 6.15 ± 1.19 0.99 ± 0.003 0.99 ± 0.007 0.71 ± 0.080 0.90 ± 0.036
XGBoost 0.33 ± 0.28 1.04 ± 0.48 10.32 ± 1.50 6.68 ± 1.22 0.99 ± 0.003 0.99 ± 0.008 0.70 ± 0.076 0.89 ± 0.038
RF 5.63 ± 0.59 5.54 ± 0.63 13.53 ± 1.50 9.00 ± 1.08 0.95 ± 0.009 0.96 ± 0.010 0.68 ± 0.076 0.89 ± 0.031
Ada Boost 12.79 ± 0.94 5.54 ± 0.84 18.02 ± 1.57 9.31 ± 1.53 0.86 ± 0.021 0.97 ± 0.011 0.62 ± 0.080 0.88 ± 0.051
SVM 14.78 ± 1.61 1.90 ± 0.57 17.83 ± 1.99 6.41 ± 1.39 0.64 ± 0.060 0.97 ± 0.013 0.54 ± 0.074 0.87 ± 0.053
Lasso regression 19.29 ± 1.44 17.53 ± 1.14 21.09 ± 1.64 18.16 ± 1.41 0.60 ± 0.060 0.72 ± 0.049 0.51 ± 0.076 0.67 ± 0.172
Ridge regression 19.37 ± 1.40 33.18 ± 3.32 21.24 ± 1.95 33.34 ± 3.26 0.60 ± 0.057 0.075 ± 0.007 0.51 ± 0.082 0.018 ± 0.065
Gaussian process 33.52 ± 1.90 34.08 ± 3.28 33.81 ± 1.92 34.55 ± 3.32 4.95 E−6 ± 4.9 E−7 1.35 E−5 ± 2.2 E−6 0.04 ± 0.028 0.090 ± 0.067