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Abstract

Complex Regional Pain Syndrome (CRPS) is a musculoskeletal pain condition that often develops 

after limb injury and/or immobilization. Although the exact mechanisms underlying CRPS are 

unknown, the syndrome is associated with central and autonomic nervous system dysregulation 

and peripheral hyperalgesia symptoms. These symptoms also manifest in alcoholic neuropathy, 

suggesting that the two conditions may be pathophysiologically accretive. Interestingly, people 

assigned female at birth (AFAB) appear to be more sensitive to both CRPS and alcoholic 

neuropathy. To better understand the biobehavioral mechanisms underlying these conditions, we 

investigated a model of combined CRPS and alcoholic neuropathy in female rats. Animals were 

pair-fed either a Lieber-DeCarli alcohol liquid diet or a control diet for ten weeks. CRPS was 

modeled via unilateral hind limb cast immobilization for seven days, allowing for the other limb to 

serve as a within-subject control for hyperalgesia measures. To investigate the role of circulating 

ovarian hormones on pain-related behaviors, half of the animals underwent ovariectomy (OVX). 

Using the von Frey procedure to record mechanical paw withdrawal thresholds, we found that 

cast immobilization and chronic alcohol drinking separately and additively produced mechanical 

hyperalgesia observed 3 days after cast removal. We then examined neuroadaptations in AMPA 

GluR1 and NMDA NR1 glutamate channel subunits, extracellular signal-regulated kinase (ERK), 

and cAMP response element-binding protein (CREB) in bilateral motor and cingulate cortex 

across all groups. Consistent with increased pain-related behavior, chronic alcohol drinking 
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increased GluR1, NR1, ERK, and CREB phosphorylation in the cingulate cortex. OVX did not 

alter any of the observed effects. Our results suggest accretive relationships between CRPS and 

alcoholic neuropathy symptoms and point to novel therapeutic targets for these conditions.
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1. Introduction

Chronic pain impacts over 20% of the population [1] and exacts a heavy toll on both 

physical and mental health [2]. This relationship appears to be particularly true for people 

assigned female sex at birth (AFAB; [3]). Complex regional pain syndrome (CRPS) 

describes a post-traumatic neuropathic pain condition of the limb [4, 5], and according 

to the McGill Pain Index is one of the most subjectively painful conditions known. CRPS 

disproportionally affects AFABs and often develops following limb injuries that require 

casting or limb immobilization. Extending beyond a simple somatic pain disorder, CRPS 

patients often suffer from a range of affective disorders, suggesting a dysregulation of 

higher emotional brain centers [6]. A recent examination found that 60% of CRPS patients 

suffered from depression while 18% misused alcohol or other substances [7]. Moreover, pain 

catastrophizing and other elements of pain-related negative affect contribute significantly to 

CRPS-related disability [8, 9].

Many chronic pain patients report higher levels of alcohol drinking and suffer from alcohol 

use disorder (AUD) at rates higher than the general population [10, 11]. Chronic pain and 

AUD are characterized by similar behavioral attributes, including cognitive dysfunction 

and enhanced negative affect [12, 13]. The profound negative emotional state generated 

by chronic pain is proposed to increase the risk of development AUD [14]. Heavy alcohol 

drinking itself often exacerbates nociceptive hypersensitivity in both humans and animal 

models [15, 16]. Self-reports of alcohol use with intention of pain management are common 

[17, 18]. Moreover, problem drinkers not only report more severe pain symptoms compared 

to non-drinkers, but also report a higher incidence of using alcohol to manage their pain 

[19]. Such data also suggest that frequent drinking in the context of AUD may be motivated 

in part by a desire to alleviate enhanced nociceptive sensitivity, or hyperalgesia [20].

Strong evidence demonstrates that the neurobiological substrates associated with alcohol 

reward overlap considerably with the supra-spinal substrates of the emotional aspects of 

pain processing [21]. Specifically, the affective component of pain appears to be strongly 

mediated by the cingulate cortex [22]. A recent role for the cingulate in the social 

transfer of pain has also been elucidated [23]. Various types of chronic pain are associated 

with specific neuronal plasticity in the cingulate cortex that closely associates with the 

affective or emotional dimension of pain, including increases in glutamatergic signaling 

[24], extracellular signal-regulated kinase (ERK) activity [25, 26], and closely associated 

phosphorylation and transcriptional activation of nuclear cAMP response-element binding 

protein (CREB; [27]). Much less is known about how chronic alcohol drinking dysregulates 
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the cingulate cortex, although increases in glutamatergic activity and ERK phosphorylation 

are known to manifest throughout the brain in animal models of AUD [28, 29], indicating 

that this pathway may serve as a useful biomarker to interrogate how pain and alcohol 

interact to dysregulate nociceptive brain regions such as the cingulate.

To better understand the biobehavioral outcomes resulting from chronic alcohol drinking and 

limb immobilization, the objectives of the current study were to first examine mechanical 

nociceptive thresholds in a cast immobilization animal model of CRPS [30] in female 

rats exposed to an alcohol-containing diet. Half of the animals received ovariectomies 

(OVX) to determine the contributions of circulating ovarian hormones to development of 

CRPS. We also investigated resultant neuroadaptations in glutamatergic subunit (GluR1 

and NR1) and intracellular signaling protein (ERK and CREB) phosphorylation levels 

within the motor cortex (ipsilateral and contralateral to the casted limb) and the cingulate 

cortex, representing potential points of intersection between peripheral injury, central brain 

nociceptive processing, and alcohol-mediated plasticity.

2. Material and Methods

2.1 Animals

Adult female Fischer 344 rats (n=4–5/group), 3 months old upon arrival, were purchased 

from Charles River and single-housed in a temperature and humidity controlled vivarium. 

Rats were maintained on a 12-hour light/dark cycle throughout the duration of the study. 

Rats were given one week to acclimate to the colony room prior to the start of experimental 

procedures. All animal care, use, and procedures in this study were approved by Institutional 

Animal Care and Use Committee of Louisiana State University Health Sciences Center 

(LSUSHC) in New Orleans, LA, and were in accordance with the National Institute of 

Health guidelines. For experimental timeline, see Figure 1. We utilized rats of the age 

typically employed in similar studies (e.g., [31]). It should also be pointed out that CRPS 

can affect individuals of any age, with age of onset ranging from as low as 18 to as high as 

90 years of age [32].

2.2 Ovariectomy

At the start of the experiment, animals were randomly assigned to receive an ovariectomy 

(OVX) or sham surgery, as previously described [33]. Animals were anesthetized using 

ketamine/xylazine and were given a dose of slow-release buprenorphine prior to surgery. To 

perform the OVX, a bilateral skin and muscle incision were made and ovaries located in the 

fat pad were drawn out using blunt forceps. Ovarian blood vessels were ligated with 4–0 

silk, the ovaries were excised, and skin and muscle wall incisions were sutured separately. 

Animals receiving sham surgery underwent a similar procedure but did not receive clamping 

or excision of the ovaries. All animals were allowed to recover for three days. Ovarian 

hormone loss was confirmed via uterine weight at the time of sacrifice.

2.3 Lieber-DeCarli Liquid Diet

One week following surgery, animals were randomly assigned to receive either an alcohol

containing (ethanol diet F1258SP; Bio-Serve, Frenchtown, NJ, USA) or a pair-fed control 
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(control diet F1259SP; Bio-Serve) Lieber-DeCarli liquid diet for the duration of the 

experiment. Animals were transitioned onto the Lieber-DeCarli liquid diet over a five-day 

period of decreasing solid food and increasing the liquid diet. In a recent cohort of animals 

run in parallel with the current study (Levitt et al., 2020), administration of a Lieber-DeCarli 

diet produced average blood alcohol levels of 103.9 mg/dL (n=7, SEM = 15.5), consistent 

with other studies utilizing this model to examine alcohol-related neuropathy [34].

2.4 Hind Limb Immobilization

Previous work has demonstrated that hind limb immobilization produces mechanical 

hypersensitivity, even in the absence of bone fracturing [30], similar to that reported in 

clinical studies [35]. All animals underwent unilateral hind limb immobilization 9 weeks 

following OVX surgery. Animals were anesthetized using ketamine/xylazine and hind 

limbs were casted using plaster of Paris as previously described [33]. The casted leg was 

randomized across animals such that there was an equal number of right and left casted legs. 

Animals were casted with slight hip flexion and knee extension, with dorsal aspects of the 

ankle and the feet left un-casted to allow for movement and unobstructed blood flow. The 

animals were immobilized for seven days and allowed to recover for three days prior to 

mechanical hyperalgesia testing.

2.5 von Frey Filament Mechanical Hyperalgesia Testing

One day prior to sacrifice, mechanical sensitivity was determined by obtaining hind paw 

withdrawal thresholds, similar to what is described in [15]. Animals were first acclimated 

for 10 minutes to individual Plexiglas compartments set on top of a mesh stand. A series of 

nylon von Frey filaments were applied perpendicularly to the plantar surface of the hind paw 

until they buckled for 2 seconds, and a sharp withdrawal of the stimulated hind paw before 

or within the 2 seconds indicated a positive response. Testing was initiated with the filament 

corresponding to 15 grams of force and continued in accordance with the up- and-down 

method [36]. The 50% paw withdrawal threshold was determined by the formula Xf+kδ, 

where Xf = last von Frey filament used, k = Dixon value corresponding to response pattern, 

and δ = mean difference between stimuli.

2.6 Western Blot Analysis

Western analyses of brain tissue were performed as previously described [37]. Briefly, all 

animals were sacrificed by decapitation under light isofluorane anesthesia procedures that 

permit detection of brain protein phosphorylation levels. Brains were rapidly dissected, 

snap-frozen in −30°C isopentane, and stored at −80°C until microdissection, during which 

time three 0.5mm thick regional punches were taken from coronal brain sections using a 

13 gauge needle (motor cortex dissections ranged from 4.0mm to 2.5mm from Bregma 

and cingulate cortex dissections ranged from 2.5 to 1.0mm from Bregma, Figure 1). 

A homogenization buffer consisting of 320 mm sucrose, 5 mm HEPES, 1 mm EGTA, 

1 mm EDTA, 1% SDS, protease inhibitor cocktail (diluted 1:100), and phosphatase 

inhibitor cocktails II and III (diluted 1:100) (Sigma, St. Louis, MO, USA) was added 

to brain punches prior to sonication to homogenize the tissue. Following sonication, 

tissue homogenates were heated to 90°C for 5 minutes, and total protein concentration 

was measured using a detergent-compatible Lowry protein assay (Bio-Rad, Hercules, 
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CA, USA). Aliquots of tissue homogenates were loaded into 10% acrylamide gels and 

samples of protein were separated by SDS-polyacrylamide gel electrophoresis using a 

Tris/Glycine/SDS buffer system (Bio-Rad). Gels were electrophorectically transferred onto 

polyvinylidene difluoride membranes (GE Healthcare, Piscataway, NJ, USA), and following 

transfer, membranes were blocked for 1 hour at room temperature in 5% non-fat milk. 

Primary antibody incubation for the following antibodies occurred overnight at 4°C in 

2.5% non-fat milk: phospho-ERK (1:5,000–1:10,000; Cell Signaling, Cat #9106), total 

ERK (1:5,000–1:10,000; Cell Signaling, Cat #9102), phospho-CREB (1:20,000; Millipore, 

Cat #06–519), total CREB (1:20,000; Millipore, Cat #06–863), phospho-NR1 (Ser897) 

(1:5,000; Millipore, Cat #ABN99), total NR1 (1:5,000; Cell Signaling, Cat #5704), 

phospho-GluR1 (Ser845) (1:2,000–1:5,000; Cell Signaling, Cat #8084S), total GluR1 

(1:2,000–1:5,000; Cell Signaling, Cat #13185S), and Tubulin (1:1,000,000; Santa Cruz 

Biotechnology, Inc., Cat #sc-53140). Membranes were then washed, incubated with species

specific peroxidase-conjugated secondary antibody (1:10,000; Bio-Rad) for 1 hour at room 

temperature, washed again, incubated in Immobilon® Crescendo Western HRP substrate 

chemiluminescent reagent (MilliporeSigma, Cat #WBLUR0500) and exposed to film. After 

films were developed, membranes were stripped for 20 minutes at room temperature 

(Restore; Thermo Scientific) and re-probed for either total protein levels or Tubulin. Band 

immunoreactivity was detected using densitometry (Image J 1.45S, Bethesda, MD, USA). 

Densitized phosphoprotein values were normalized to either total protein densitometry 

values to generate phosphorylated:total protein ratio values or to loading control Tubulin if 

significant changes were observed in total protein between experimental groups. Densitized 

values are expressed as a percentage of the mean of control (control diet-sham surgery) 

values for each gel to normalize data across blots.

2.7 Statistical Analysis

All data were analyzed using Prism 8 (GraphPad Software, Inc.; La Jolla, CA, USA). 

Behavioral data was analyzed using a three-way ANOVA (alcohol x OVX x limb). Two

way ANOVAs (alcohol x OVX) were used to measure the effects of each treatment and 

their interaction on phosphoprotein and total protein levels. Pearson’s r correlations and 

linear regressions were used to analyze the relationships between individual phosphoprotein 

levels and paw withdrawal thresholds. All data are presented as mean ± SEM. Statistical 

significance was established at p < 0.05.

3. Results

3.1 Hind limb cast immobilization and chronic alcohol separately and additively produce 
mechanical hyperalgesia.

Both hind limb cast immobilization and chronic alcohol induced mechanical hyperalgesia as 

measured by the von Frey test, indicating that we have successfully modeled both CRPS and 

alcoholic neuropathy (Figure 2). Three-way ANOVA indicated a significant main effect of 

alcohol (F1,30 = 5.721, p = 0.0232) and a significant main effect of casting (F1,30 = 8.318, p 
= 0.0072) to decrease mean paw withdrawal threshold. However, there was no effect of OVX 

(F1,30 = 0.1548, p = 0.6968) or alcohol x casting (F1,30 = 0.9746, p = 0.3314), alcohol x 
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OVX (F1,30 = 0.1836, p = 0.5595), or alcohol x OVX x casting (F1,30 = 0.2457, p = 0.6237) 

interaction on mechanical hyperalgesia.

3.2 Hind limb cast immobilization-induced mechanical hyperalgesia correlates with ERK 
phosphorylation in the contralateral motor cortex

We have previously examined within-subjects correlations between protein phosphorylation 

status and pain behavior as a marker of neurobiological signaling mechanisms underlying 

pain states [38]. Utilizing this approach, we discovered a significant positive correlation 

(r = 0.6211, p = 0.0045) between ERK phosphorylation in the motor cortex contralateral 

to the casted limb and mean paw withdrawal thresholds of the casted limb (Figure 

3A). Conversely, there was no correlation (r = −0.1020, p = 0.6777) between ERK 

phosphorylation in the motor cortex contralateral to the non-casted limb and mean paw 

withdrawal thresholds of the non-casted limb (Figure 3B). Because this correlation is only 

observed in the motor cortex corresponding to the immobilized limb, these data suggest 

reduced capacity for plasticity in association with immobilization-induced hyperalgesia.

3.3 Chronic alcohol increases total and PKA-phosphorylated levels of glutamate receptor 
channel subunits in the cingulate cortex

To determine if chronic alcohol in the context of CRPS altered excitatory signaling within 

the cingulate cortex, we first examined the phosphorylation status of glutamate receptors 

AMPA GluR1 and NMDAR1 at the serine 845 and 897 phosphorylation sites, respectively. 

Phosphorylation at these residues is specific to protein kinase A (PKA) and corresponds to 

increased AMPA and NMDA receptor currents and membrane trafficking. We observed a 

significant effect of alcohol to increase both phosphorylated and total levels of GluR1 (F1,16 

= 13.96, p = 0.0018; F1,16 = 5.157, p = 0.0395) and NMDAR1 (F1,16 = 7.502, p = 0.0146; 

F1,16 = 5.277, p = 0.0354; Figure 4). The observed increase in total GluR1 (Figure 4B) and 

NMDAR1 (Figure 4D) levels suggests that chronic alcohol produces an increase in GluR1- 

and NR1- containing AMPA and NMDA receptors in the cingulate cortex. However, when 

normalized to tubulin, we still observed an increase in receptor phosphorylation (Figure 

4A,C), suggesting an increase in receptor activity and glutamatergic signaling. There was no 

effect of OVX (F1,16 = 0.06364, p = 0.8041; F1,16 = 0.3746, p = 0.5491) or alcohol x OVX 

interaction (F1,16 = 0.9300, p = 0.3492; F1,16 = 0.009589, p = 0.9232) on phosphorylated or 

total levels of GluR1 or NMDAR1. Increases in phosphorylation of both AMPA GluR1 and 

NMDAR1 suggest an increase in excitatory glutamatergic signaling in the cingulate cortex 

following chronic alcohol use. Representative images are shown in Figure 6A.

3.4 Chronic alcohol increases intracellular activity markers ERK and CREB in the 
cingulate cortex

We next investigated the phosphorylation status of intracellular and nuclear activity markers 

in the cingulate cortex. We first examined ERK phosphorylation as a general marker of 

activity and observed a significant effect of alcohol (F1,16 = 5.649, p = 0.0303) to increase 

ERK phosphorylation in the cingulate cortex (Figure 5A). We observed a similar alcohol 

effect (F1,16 = 5.602, p = 0.0309) on phosphorylation of the transcription factor CREB 

at the serine 133 site, which initiates target gene transcription (Figure 5C). Alcohol also 

significantly increased total levels of ERK (F1,16 = 5.694, p = 0.0297, Figure 5B), but not 
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CREB (F1,16 = 2.899, p = 0.1080, Figure 5D). Neither ERK phosphorylation or CREB 

phosphorylation were affected by OVX (F1,16 = 0.00136, p = 0.9710; F1,16 = 0.5084, p = 

0.4861), and no alcohol x OVX interactions were observed (F1,16 = 0.03742, p = 0.8491; 

F1,16 = 8.011e-005, p = 0.9930). These findings indicate that chronic alcohol in the context 

of CRPS increases intracellular and nuclear activity within the cingulate cortex, further 

suggesting a widespread increase in cingulate cortex activity following chronic alcohol 

drinking. Representative western blot images are shown in Figure 6.

4. Discussion

Heavy alcohol use and chronic pain are highly comorbid [39, 40]. Moreover, chronic 

alcohol use is associated with increased risk of injury [41], and regular use of alcohol is 

frequently reported as an analgesic in both chronic pain and alcohol use disorder (AUD) 

patients [17, 42]. The current study sought to develop and validate an animal model of 

combined CRPS and alcoholic neuropathy and identify associated neuroadaptations in 

a key central pain-related brain area (the cingulate cortex). Of particular interest is the 

role of the cingulate cortex in organizing behavioral goals (such as avoiding pain) in the 

context of injury-associated nociception [43]. Evidence for this intersection in frontocortical 

regions, including the cingulate cortex, has been demonstrated in preclinical pain models 

[25, 27]. Thus, we hypothesized that significant neurobiological interactions would exist 

between chronic alcohol drinking and pain within the cingulate as reflected by altered 

neuronal activity (indexed via both synaptic and intracellular protein phosphorylation 

measures). Dysregulated cingulate activity has also been described in relation to pain 

processing by CRPS patients [44–46]. Based on its regulation of sympathetic outflow [47–

49], over-activation of the cingulate cortex may also underlie the characteristic autonomic 

symptoms of CRPS [50]. Indeed, increased cingulate cortex activity has been observed in 

several animal models of neuropathic pain [51, 52]. Further, glutamate-mediated long-term 

potentiation (LTP) in the cingulate cortex and glutamate receptor neuroadaptations have 

also been observed in animal models of neuropathic pain and following injury [53–55]. 

Interestingly, increased activity in the cingulate cortex also appears to serve as a risk factor 

for alcohol dependence [56]. Additional studies using this model are recommended to 

parse out neuroadaptations in excitatory (pronociceptive) versus inhibitory (anti-nociceptive) 

neurons within the cingulate cortex (e.g., by utilizing a c-Fos mapping strategy).

In addition to the observed change in the cingulate cortex, our results show a significant 

correlation between paw withdrawal thresholds and ERK phosphorylation levels in the 

motor cortex contralateral (but not ipsilateral) to the immobilized limb across all animals, 

indicating that hyperalgesia symptoms are linked to compromised ERK activity in the 

motor cortex. Although this may appear to conflict with clinical data suggesting decreased 

inhibition [57, 58] and increased activation in the CRPS-corresponding motor cortex [59], 

a limitation of the current level of analysis (Western blot) is the inability of discriminating 

ERK phosphorylation changes in excitatory pyramidal neurons vs. inhibitory interneurons 

(or other cell types) within the motor cortex. Our previous study confirmed a reduction in 

corresponding quadriceps muscle mass with hind limb immobilization [33]. The current 

findings extend these functional deficits into associated motor centers in the brain. 
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Interestingly, CRPS patients exhibit altered functional connectivity between motor and 

cingulate cortices that associate with neuropathic pain intensity [60].

CRPS and alcoholic neuropathy present with similar symptoms, including neurogenic 

inflammation, central and autonomic nervous system dysregulation, and peripheral 

hyperalgesia. While the bidirectional relationship between alcohol use and pain has been 

an intense area of recent research [18, 61], alcohol use in the context of CRPS remains 

under-investigated. Our current findings are consistent with other studies describing the 

development of mechanical and thermal hyperalgesia in animal models of AUD [15, 34, 

62]. Importantly, we observed hyperalgesia symptoms in animals continuously exposed to 

the Liber-DeCarli diet (even in the absence of alcohol withdrawal), consistent with previous 

studies [34]. Future studies should examine additional analgesic substances that may be 

frequently used by CRPS patients, including opioids. Interestingly, combined morphine 

and NMDA glutamate receptor antagonist treatment attenuates cingulate activation during 

movement of the affected limb in CRPS patients [63]. However, opioid therapy should be 

approached with caution as, similar to alcohol, chronic opioid use also gradually produces 

paradoxical hyperalgesia symptoms [15, 38]. Collectively, our findings suggest that alcohol 

drinking worsens CRPS-induced pain, in line with clinician recommendations for CRPS 

patients to avoid alcohol consumption.

Future studies should also examine how alcohol-drinking levels are altered in the casting 

model of CRPS. A recent study of C57BL/6J male and female mice that were in a state of 

chronic inflammatory pain and given continuous access to alcohol reported that male (but 

not female) mice consumed significantly more alcohol in the context of pain [64]. Another 

study in male rats suggested that relationships between alcohol drinking and hyperalgesia 

symptoms are altered over the course of time in an inflammatory pain state [65]. In humans, 

a confluence of studies appear to indicate that pain may be more likely to increase drinking 

and relapse in those who have begun the transition to AUD [19, 66–68]. Another transitory 

relationship exists between the analgesic efficacy of alcohol in humans relative to AUD 

status. While regular alcohol consumption is associated with reduced pain symptoms in 

most chronic pain sufferers [66, 69], alcohol appears to increase pain and pain-related 

disability in problem drinkers and those with an AUD diagnosis [19, 68, 70]. Our findings 

warrant additional longitudinal studies examining how CRPS-related pain affects alcohol 

physiology in subjects transitioning from non-dependent to alcohol-dependent states to 

better understand how these relationships change over time.

A recent meta-analysis of alcohol-mediated analgesia in human subjects discovered a linear 

relationship between alcohol dose and analgesia, with blood alcohol levels that corresponded 

to binge-like alcohol exposure (0.08 g/dL) producing a clinically relevant reduction in pain 

intensity [71]. Administration of a Liber-DiCarli alcohol diet approximates this level of 

drinking over an extended period, producing an average blood alcohol concentration of 

0.10 g/dL [33]. While alcohol produces reliable analgesia in rodent models [72], additional 

studies are necessary to determine the efficacy of alcohol to manage CRPS-related pain 

in either animal models or humans. However, binge alcohol exposure is also considered a 

primary risk factor for the eventual development of AUD based on its engagement of brain 

reward areas, including the cingulate cortex [73].
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In addition to shared overlapping symptomology, CRPS and alcoholic neuropathy also 

disproportionately affect people assigned female at birth (AFAB). CRPS is two to four 

times more prevalent in AFAB people [74], and AFAB individuals display both higher 

rates and more severe symptoms of alcoholic neuropathy [75]. Further, AFAB individuals 

report higher incidence of chronic pain, greater sensitivity to painful stimuli, and more 

frequent pain compared to their male counterparts [76, 77]. Additionally, AFAB individuals 

display more rapid progression from onset of drinking to dependence [78, 79], greater 

rates of alcohol-related health consequences [80], and are the fastest-growing population of 

alcohol users in the United States [81]. Based on these sex differences, the present study 

investigated only female animals and utilized ovariectomy (OVX) to determine the effects 

of circulating ovarian hormones on mechanical pain sensitivity and underlying neurobiology. 

We originally hypothesized that OVX would facilitate hyperalgesia symptoms, since AFAB 

individuals suffering from CRPS exhibit reduced estradiol levels [82]. It is possible that 

hyperalgesia produced by limb immobilization and chronic alcohol drinking precluded the 

expected OVX effects on pain sensitivity. The absence of OVX-related factors in the current 

study may also suggest that non-sex hormonal factors may disproportionately predispose 

individuals to CRPS, including psychosocial determinants of pain sensitivity, brain 

organizational factors, and/or sex differences in inflammation and oxidative stress status 

following immobilization-related injury [83]. Indeed, various genetic and psychosocial 

factors have been shown to influence the development of pain in AFAB individuals [84–

87]. The first and only study to date investigating the role gender identity on chronic pain 

found that transgender and cisgender women report similar pain summation and chronic 

pain severity, both of which were greater than their cisgender male counterparts [88]. This 

supports anecdotal evidence that gender identity plays a more significant role in pain than 

genetic sex. While the present study focused on an animal model of CRPS, these findings 

may also contribute to our understanding of other under-investigated pain syndromes that 

disproportionally affect AFAB individuals, as well as sex-dependent medication strategies 

for treating alcohol-induced hyperalgesia symptoms [89].

Some limitations of the current study should be pointed out. First, our measure of 

hyperalgesia was limited to von Frey analysis of mechanical hypersensitivity, and no 

morphological or electrophysiological measures were conducted to verify a neuropathic 

state. Future studies should examine additional pain modalities (e.g., thermal) as well 

as measures of unprovoked or spontaneous pain, such as pain-avoidance assays [90]. 

While the current design incorporated a within-subject control for the casted leg, future 

studies including a non-casted control could shed additional light on how alcohol drinking 

impacts CRPS-related symptoms. We did not track estrous cycle in the current study due 

to potentially confounding influences on the measured behavior. However, in relation to 

this, a case-control study of AFAB CRPS patients found no association between current 

or cumulative endogenous estrogen exposure and CRPS [91]. Finally, our study employed 

a relatively low number of animals. While we were able to detect clear main effects of 

some of the factors under investigation, future studies incorporating additional variables may 

require considerably more subjects to uncover valuable interactions.
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5. Conclusions

To our knowledge, this is the first study investigating pain behavior and neuroadaptations in 

a combined model of CRPS and alcoholic neuropathy. We found that 1) CRPS and alcohol 

drinking separately and additively produced mechanical hyperalgesia, 2) immobilization

induced hyperalgesia is associated with a potentially altered capacity for motor cortex 

plasticity, 3) chronic alcohol drinking in the context of CRPS appears to facilitate cingulate 

cortex hyperexcitability, and 4) circulating ovarian hormones do not affect mechanical 

hyperalgesia or associated neuroadaptations in our model of combined CRPS and alcoholic 

neuropathy. These findings suggest that the cingulate cortex may serve as a novel target for 

understanding the pathophysiology and treatment of these disorders.
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• Limb immobilization and alcohol increase mechanical nociceptive sensitivity

• Immobilization hyperalgesia correlates with motor cortex ERK 

phosphorylation

• Alcohol in the context of immobilization increases cingulate protein 

phosphorylation
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Figure 1: 
Experimental timeline and regional brain dissections for Western analyses.
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Figure 2: 
Hind limb cast immobilization and chronic alcohol separately and additively produce 

mechanical hypersensitivity. There was a significant main effect of alcohol (p=0.0072) and a 

significant main effect of casting (p=0.0232) to decrease paw withdrawal thresholds. There 

was no significant main effect of ovariectomy (OVX) or significant OVX interactions. Data 

were analyzed using 3-way ANOVA. Data are represented as mean ± SEM. Control diet + 

sham surgery, solid navy (n = 5); control diet + OVX, navy dotted (n = 5); alcohol diet + 

sham surgery, solid orange (n = 5); alcohol diet + OVX, orange dotted (n = 4).
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Figure 3: 
(A) CRPS-induced mechanical hyperalgesia correlates with ERK phosphorylation in the 

contralateral motor cortex (r = 0.6221; p = 0.0045). (B) There is no correlation between 

ERK phosphorylation in the motor cortex contralateral to the non-casted limb and paw 

withdrawal thresholds in the non-casted limb. Data were analyzed using Pearson’s linear 

regression. n = 4–5/group.
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Figure 4: 
Chronic alcohol increases both phosphorylated and total levels of glutamate receptor 

channel subunits in the cingulate cortex. There was a significant main effect of alcohol 

to increase GluR1 phosphorylation (A; p=0.0018), total levels of GluR1 (B; p=0.0395), NR1 

phosphorylation (C; p=0.0146), and total levels of NR1 (D; p=0.0354). Control diet + sham 

surgery, solid navy (n = 5); control diet + OVX, navy dotted (n = 5); alcohol diet + sham 

surgery, solid orange (n = 5); alcohol diet + OVX, orange dotted (n = 4).
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Figure 5: 
Chronic alcohol increases intracellular activity markers in the cingulate cortex. There was 

a significant main effect of alcohol to increase ERK phosphorylation (A; p=0.0303), total 

levels of ERK (B; p=0.0297), and CREB phosphorylation (C; p=0.0048). Alcohol did not 

increase total levels of CREB (D; p=0.1080). Control diet + sham surgery, solid navy (n = 

5); control diet + OVX, navy dotted (n = 5); alcohol diet + sham surgery, solid orange (n = 

5); alcohol diet + OVX, orange dotted (n = 4).
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Figure 6: 
Representative Western blots corresponding to Figure 4 (A) and Figure 5 (B).
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