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Respiratory sound classification 
for crackles, wheezes, and rhonchi 
in the clinical field using deep 
learning
Yoonjoo Kim1,5, YunKyong Hyon2,5, Sung Soo Jung1, Sunju Lee2, Geon Yoo3, 
Chaeuk Chung1,4* & Taeyoung Ha2*

Auscultation has been essential part of the physical examination; this is non-invasive, real-time, 
and very informative. Detection of abnormal respiratory sounds with a stethoscope is important in 
diagnosing respiratory diseases and providing first aid. However, accurate interpretation of respiratory 
sounds requires clinician’s considerable expertise, so trainees such as interns and residents sometimes 
misidentify respiratory sounds. To overcome such limitations, we tried to develop an automated 
classification of breath sounds. We utilized deep learning convolutional neural network (CNN) to 
categorize 1918 respiratory sounds (normal, crackles, wheezes, rhonchi) recorded in the clinical 
setting. We developed the predictive model for respiratory sound classification combining pretrained 
image feature extractor of series, respiratory sound, and CNN classifier. It detected abnormal sounds 
with an accuracy of 86.5% and the area under the ROC curve (AUC) of 0.93. It further classified 
abnormal lung sounds into crackles, wheezes, or rhonchi with an overall accuracy of 85.7% and a mean 
AUC of 0.92. On the other hand, as a result of respiratory sound classification by different groups 
showed varying degree in terms of accuracy; the overall accuracies were 60.3% for medical students, 
53.4% for interns, 68.8% for residents, and 80.1% for fellows. Our deep learning-based classification 
would be able to complement the inaccuracies of clinicians’ auscultation, and it may aid in the rapid 
diagnosis and appropriate treatment of respiratory diseases.

The stethoscope has been considered as an invaluable diagnostic tool ever since it was invented in the early 1800s. 
Auscultation is non-invasive, real-time, inexpensive, and very informative1–3. Recent electronic stethoscopes have 
rendered lung sounds recordable, and it facilitated the studies of automatically analyzing lung sounds4,5. Abnor-
mal lung sounds include crackles, wheezes, rhonchi, stridor, and pleural friction rubs (Table 1). Crackles, wheezes 
and rhonchi are the most commonly found among them, and detecting those sounds greatly aids the diagnosis 
of pulmonary diseases6,7. Crackles, which are short, explosive, and non-musical, are produced by patients with 
parenchymal lung diseases such as pneumonia, interstitial pulmonary fibrosis (IPF), and pulmonary edema1,8,9. 
Wheezes are musical high-pitched sounds associated with airway diseases such as asthma and chronic obstruc-
tive pulmonary disease (COPD). Rhonchi are musical low-pitched sounds similar to snores, usually indicating 
secretions in the airway, and are often cleared by coughing1.

Although auscultation has many advantages, the ability to analyze respiratory sounds among clinicians varies 
greatly depending on individual clinical experiences6,10. Salvatore et al. found that hospital trainees misidentified 
about half of all pulmonary sounds, as did medical students11. Melbye et al. reported significant inter-observer 
differences in terms of discriminating expiratory rhonchi and low-pitched wheezes from other sounds, poten-
tially compromising diagnosis and treatment12. These limitations of auscultation raised the need to develop a 
standardized system that can classify accurately respiratory sounds using artificial intelligence (AI). AI-assisted 
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auscultation can help a proper diagnosis of respiratory disease and identify patients in need of emergency treat-
ment. It can be used to screen and monitor patients with various pulmonary diseases including asthma, COPD 
and pneumonia13,14.

Recently, deep learning is widely applied to some medical fields including a chest x-ray or electroencephalo-
gram analysis15,16. There are several published studies on AI-assisted auscultation of heart and lung sounds13,17–20. 
AI was used to distinguish different murmurs and diagnose valvular and congenital heart diseases21. Auscultation 
of the lung is different from that of the heart in some aspects. First, the lungs are much larger than the heart; 
and lung sounds should be recorded at multiple sites of both lungs for an accurate analysis. Second, the quality 
of lung sound is easily affected by the patient’s effort to breathe.

There are several studies that tried to automatically analyze and classify respiratory sounds15,22–30. An interest-
ing study quantified and characterized lung sounds in patients with pneumonia for generating acoustic pneumo-
nia scores22. The sound analyzer was helpful for detecting pneumonia with 78% sensitivity and 88% specificity. 
In another study, crackles and wheezes in 15 children were applied to feature extraction via time–frequency/
scale analysis; the positive percent agreement was 0.82 for crackle and 0.80 for wheezing23. Tomasz et al. used 
neural network (NN)-based analysis to differentiate four abnormal sounds (wheezes, rhonchi, and coarse and 
fine crackles) in 50 children18. Intriguingly, the results showed that the NN F1-score was much better than 
that of doctors. Gorkem et al. used a support vector machine (SVM), the k-nearest neighbor approach, and a 
multilayer perceptron to detect pulmonary crackles24. Gokhan et al. proposed the automatic detection of the 
respiratory cycle and collected synchronous auscultation sounds from COPD patients28,31,32. Interestingly, they 
demonstrated that deep learning is useful for diagnosing COPD and classifying the severity of COPD with 
significantly high-performance rates28,29.

Another study employed a sound database of the international conference on biomedical and health infor-
matics (ICBHI) 2017 for classifying lung sounds using a deep convolutional NN. They converted the lung 
sound signals to spectrogram images by using the time–frequency method, but the accuracy was relatively low 
(about 65%)25. There are many feature extractors with CNN classifiers including inception V3, DenseNet201, 
ResNet50, ResNet101, VGG16, and VGG1933–38. In this study, we tried to combine pre-trained image feature 
extraction from time-series, respiratory sound, and CNN classification. We also compared the performances of 
these feature extractors.

Although this field has been being actively studied, it is still in its infancy with significant limitations. Many 
studies enrolled patients of a limited age group (children only), and some studies analyzed the sounds of a small 
numbers of patients. The studies that used the respiratory sounds of the ICBHI 2017 or the R.A.L.E. Repository 
database have a limitation in types of abnormal sounds. The ICBHI database contained crackles and wheezes 
only, and R.A.L.E. database lacked rhonchi39.

In this study, we aimed to classify normal respiratory sounds, crackles, wheezes, and rhonchi. We made a 
database of 1,918 respiratory sounds from adult patients with pulmonary diseases and healthy controls. Then we 
used transfer learning and convolutional neural network (CNN) to classify those respiratory sounds. We tried 
to combine pre-trained image feature extraction from time-series, respiratory sound, and CNN classification. 
In addition, we measured how accurately medical students, interns, residents, and fellows categorized breathing 
sounds to check the accuracy of auscultation classification in real clinical practice.

Results
The general characteristics of the enrolled patients and the collected lung sounds.  We recorded 
2840 sounds and the respiratory sounds were evaluated by three pulmonologists independently and classified. 
Then we made a respiratory sound database contained 1222 normal sounds (63.7%) and 696 abnormal sounds 
(36.3%) including 297 crackles (15.5%), 298 wheezes (15.5%), and 101 rhonchi (5.3%). Our database of classi-

Table 1.   Classification of abnormal lung sounds.

Mechanism of sound production Location Characteristics Acoustics Related diseases

Fine crackles Unrelated to secretions Peripheral lung
Discontinuous
High-pitched
Inspiratory

Rapidly dampened wave deflection
Frequency: about 650 Hz
Shorter duration (about 5 ms)

Interstitial lung fibrosis
Pneumonia
Congestive heart failure

Coarse crackles Intermittent airway opening, 
related to secretions Peripheral lung

Discontinuous
Low-pitched
Inspiratory

Rapidly dampened wave deflection
Frequency about 350 Hz
Longer duration (about 15 ms)

Same as fine crackles but usually 
more advanced disease

Wheezes Narrowed airway
Flow limitation Bronchi

Continuous
High-pitched
Expiratory > Inspiratory

Sinusoid
Frequency > 100–5000 Hz
Duration > 80 ms

Asthma
COPD
Tumor
Foreign body

Rhonchus Rupture of fluid films of secretions
Airway wall vibrations Bronchi

Continuous
Low-pitched
Expiratory > Inspiratory

Sinusoid
Frequency about 150 Hz
Duration > 80 ms

Bronchitis
Pneumonia

Stridor Narrowed airway Larynx, Trachea
Continuous
High-pitched
Inspiratory

Sinusoid
Frequency > 500 Hz

Epiglottitis
After extubation
Foreign body

Pleural friction rub Pleural inflammation Chest wall
Continuous
Low-pitched
Inspiratory and expiratory

Rhythmic succession of short 
sounds
Frequency < 350 Hz
Duration > 15 ms

Pleurisy
Pericarditis
Pleural tumor
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fied sounds was consisted of 1918 sounds from 871 patients in the clinical field. Their demographic and clinical 
characteristics are presented in Table 2. The mean patient age was 67.7 (± 10.9) years and 64.5% of patients were 
male. Sounds were collected from patients with pneumonia, IPF, COPD, asthma, lung cancer, tuberculosis, and 
bronchiectasis, as well as healthy controls. The proportions of COPD and asthma patients were 21% and 12.3% 
respectively, the pneumonia proportion 11.1%, the IPF proportion 8.0%, and the healthy control proportion 
5.9%. The location of auscultation was most common in both lower lobe fields. (Table 2).

Performance of AI‑assisted lung sound classification.  Discriminating normal sounds from abnormal 
sounds (crackles, wheezes, and rhonchi).  In clinical settings, distinguishing abnormal breathing sounds and 
normal sounds is very important in screening emergency situations and deciding whether to perform additional 
tests. Our sound database included 1222 normal sounds and 696 abnormal sounds. We first checked how accu-
rately our deep-learning based algorithm can classify abnormal respiratory sounds from normal sounds (Fig. 1). 
The precision, recall, and F1 scores for abnormal lung sounds were 84%, 80%, and 81% respectively (Table 3). 
The accuracy was 86.5% and the mean AUC was 0.93 (Fig. 2).

Categorization of abnormal sounds into crackles, wheezes, and rhonchi.  Next, we categorized abnormal sounds 
as specific types of sounds: crackles, wheezes, or rhonchi using deep learning. The sound database included 297 
crackles, 298 wheezes, and 101 rhonchi that were confirmed by specialists. The precision, recall, and F1 scores 
for crackles were 90%, 85%, and 87% respectively. In the case of wheezes, the precision, recall, and F1 scores were 
89%, 93%, and 91%. Finally, the precision, recall, and F1 scores for rhonchi were 68%, 71%, and 69% respectively 
(Table 4). The average accuracy was 85.7% and the mean was AUC 0.92 (Fig. 3).

Comparison of performances of different feature extractors with CNN classifier.  Respiratory 
sounds, especially abnormal sounds, have very complicated structures with noise, and positional dependency in 
time. In the sound analysis, particularly mathematical point of view, its 2-D spectral-domain has more informa-
tion rather than one dimensional time-series. Moreover, the deep learning structure gives an automatic feature 
extraction overcoming the difficulties on complicate data, especially image data. For this reason, we adopted 
CNN, which is a powerful method in image classification. To find out the most optimized strategy for the clas-
sification of respiratory sounds, we also compared the accuracy, precision, recall score and F1 score of each ana-
lytic method (Table 5). CNN classifier showed the best performance with VGG, especially, VGG16 rather than 
InceptionV3, DenseNet201, ResNet50, and ResNet101. Since VGG architecture has a better capability, especially 
in extracting image features for classification using transfer learning40,41, we adopted it for our AI models.

Additionally, we compared the performance between CNN and SVM classifiers in order to investigate clas-
sifier dependency of feature extractor. CNN showed better performance than SVM, and VGG16 was the best 
classifier for both CNN and SVM. Moreover, CNN was more efficient in computation time than SVM (Table 6).

Accuracy of auscultation analysis in real clinical practice.  To verify the accuracy of auscultation 
analysis in real clinical practice and to evaluate the need for deep learning-based classification, we checked how 
exactly medical students, interns, residents, and fellows categorize breathing sounds (Fig. 4). We made several 
test sets of normal sounds and three types of abnormal lung sounds: crackle, wheezes, and rhonchi. 25 medical 
students, 11 interns, 23 residents, and 11 fellows of the internal medicine department of four teaching hospitals 
were asked to listen to the sounds and identify them. Regarding each breath sounds, the mean correct answer 
rates of normal sounds, crackles, wheezes, and rhonchi were 73.5%, 72.2%, 56.3%, and 41.7%, respectively. The 
overall correct answer rates of medical students, interns, residents, and fellows were 59.6%, 56.6%, 68.3%, and 
84.0% respectively. The average correct answer rates for normal breathing were 67.1% for medical students, 
75.7% for interns, 73.2% for residents, and 87.7% for fellows, while those for crackles were 62.9% for medical 
students, 72.3% for interns, 76.0% for residents, and 90.3% for fellows. The accuracies for wheezes were 55.6% for 
medical students, 41.0% for interns, 57.4% for residents, and 69.1% for fellows respectively, while those for rhon-

Table 2.   Characteristics of respiratory sound database. RULF right upper lobe field, RMLF right middle lobe 
field, RLLF right lower lobe field, LULF left upper lobe field, LMLF left middle lobe field, LLLF left lower lobe 
field, COPD chronic obstructive pulmonary disease, ILD interstitial lung disease, IPF idiopathic pulmonary 
disease, ACO asthma-COPD overlap.

871 cases (recording sounds: n = 1918) Characteristics

Age, mean (years) 67.7 ± 10.9

Sex Male: 562 (64.5%), Female: 309 (35.5%)

Diagnosis

Pneumonia: 11.1%, IPF: 4.9%, COPD: 21%,
Asthma: 12.3%, Lung cancer/mass: 13.1%,
Healthy: 5.9%, Tuberculosis: 5.4%, Bronchiectasis: 4.4%
ILD except IPF: 8.0%, ACO: 0.3%
ETC: 13.5%

Respiratory sounds Normal: 1222 (63.7%), Crackles: 297(15.5%),
Wheezes: 298 (15.5%), Rhonchi 101 (5.3%)

Auscultation location RULF: 10.4%, RMLF: 6.9%, RLLF: 34.8%
LULF: 16.3%, LMLF: 9.0%, LLLF: 21.7%, Neck 0.9%
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chi were 42.5% for medical students, 15.0% for interns, 37.1% for residents, and 82.2% for fellows (Fig. 4). There 
was no significant difference between each group in analyzing normal breathing sound, but in all three types 
of abnormal breathing sound, the fellows showed the highest accuracy. Among the abnormal breath sounds, 
interns and residents classified crackles most accurately. Rhonchi was revealed to be the most difficult sound to 
discriminate (Fig. 4).

Discussion
The stethoscope has been considered an invaluable diagnostic tool for centuries2,3. Although many diagnostic 
techniques have been developed, auscultation still plays major roles1,7. For example, a pulmonologist can detect 
early-stage IPF or pneumonia based on inspiratory crackles even when the chest X-ray appears near-normal42. 
Changes in wheezes sometimes indicate the onset of asthma or COPD exacerbation. Therefore, early detection 
and accurate classification of abnormal breathing sounds can prevent disease progression and improve a patient’s 
prognosis.

Several studies have tried to automatically classify lung sounds. Chamberlain et al. classified lung sounds with 
a semi-supervised deep learning algorithm. The AUC were 0.86 for wheezes and 0.74 for crackles, respectively26. 
Guler et al. used a multilayer perceptron running a backpropagation training algorithm to predict the presence 
or absence of adventitious sounds27. They enrolled 56 patients and two hidden layers yielded 93.8% rated clas-
sification performance27.

Figure 1.   Scheme of the classification of respiratory sounds using deep learning. Lung sounds database 
contains normal sounds, crackles, wheezes, and rhonchi. Deep learning was used for two types of classification: 
The first step is the discriminating normal sounds from abnormal sounds. The second is to categorize abnormal 
sounds into crackles, wheezes, and rhonchi. (ER: Emergency room, ICU: intensive care unit).

Table 3.   The averages of Precision, Recall and F1 score in discriminating normal sounds from abnormal 
sounds.

Precision Recall score F1 score

Normal 0.88 0.91 0.89

Abnormal 0.84 0.80 0.81
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Figure 2.   ROC of the model for discrimination of abnormal lung sounds. Each plot illustrates the ROC of the 
algorithm on the independent testing set for abnormal lung sounds, with AUC of 0.93.

Table 4.   The averages of Precision, Recall and F1 score in discriminating crackles, wheezes, and rhonchi.

Precision Recall score F1 score

Crackles 0.90 0.85 0.87

Wheezes 0.89 0.93 0.91

Rhonchi 0.68 0.71 0.69

Figure 3.   ROC of the model for classifying abnormal lung sounds into crackles, wheezes, and rhonchi. Each 
plot illustrates the ROC of the algorithm on the independent testing set for crackles, wheezes, and rhonchi with 
the mean AUC of 0.92.
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Table 5.   Comparison of Performance among feature extractors with CNN classifier.

Feature extractor Accuracy Precision Recall score F1 score

InceptionV3 0.748 0.722 0.727 0.720

DenseNet201 0.786 0.749 0.735 0.729

ResNet50 0.783 0.747 0.738 0.738

ResNet101 0.809 0.787 0.766 0.769

VGG16 0.857 0.823 0.828 0.824

VGG19 0.848 0.814 0.817 0.814

Table 6.   Comparison of performance between CNN and SVM with feature extractors (Inception V3, 
DenseNet201, VGG16).

Classifier Feature extractor Accuracy Precision Recall score F1 score

CNN

InceptionV3 0.748 0.722 0.727 0.720

DenseNet201 0.786 0.749 0.735 0.729

ResNet50 0.783 0.747 0.738 0.738

ResNet101 0.809 0.787 0.766 0.769

VGG16 0.857 0.823 0.828 0.824

VGG19 0.848 0.814 0.817 0.814

SVM

InceptionV3 0.746 0.727 0.622 0.620

DenseNet201 0.754 0.733 0.616 0.604

ResNet50 0.747 0.768 0.599 0.569

ResNet101 0.749 0.757 0.607 0.589

VGG16 0.755 0.762 0.614 0.594

VGG19 0.750 0.752 0.617 0.609

Figure 4.   Accuracy of auscultation analysis in real clinical practice. (A) Mean correction answer rates for the 
overall sounds, normal sounds, crackles, wheezes, and rhonchi. (B) Mean correction answer rates of students, 
interns, residents, and fellows for overall sounds. (C) Mean correction answer rates of students, interns, 
residents, and fellows for normal sounds (D) Mean correction answer rates of students, interns, residents, and 
fellows for crackles (E) Mean correction answer rates of students, interns, residents, and fellows for wheezes. 
(F) Mean correction answer rates of students, interns, residents, and fellows for rhonchi. *p < 0.05, **p < 0.05 
***p < 0.001 (Student’s t-test).
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In this study, we used deep learning for the classification of respiratory sounds. Compared with several lung 
sound classification studies that applied machine learning or deep learning for lung sounds classification27,43–47, 
we modified the deep learning algorithm of Bardou’s study which applied SVM46. In our study, we utilized the 
transfer learning method, which is easy, fast and able to use various features, but one has to be careful in connect-
ing two deep learning networks, feature extractor and classifier. Moreover, there is a certain dependency between 
these two. We applied CNN instead of SVM because CNN is more efficient than a SVM for image classification.

Besides, our comparison of performances of different feature extractors demonstrated that CNN classifier 
showed much better performance with VGG, especially, VGG16 than InceptionV3 and Densenet201. The main 
contribution of this study is to develop the predictive model for respiratory sound classification combining 
pretrained image feature extractor of time-series, respiratory sound, and CNN classifier.

Our deep learning-based classification can detect abnormal lung sounds with an AUC of 0.93 and an accuracy 
of 86.5%. It has similar results in categorizing abnormal sounds into subcategorical sounds: crackles, wheezes, 
or rhonchi. Considering these are the result of analyzing the sounds recorded in a real clinical field with various 
noises, these are impressive results. We believe that these accuracies are adequate for primary screening and 
follow-up testing of patients with respiratory diseases.

Our test results showed that the auscultation accuracy of interns and residents were less than 80% in all four 
kinds of sounds and rhonchi was the most difficult sound to discriminate. The result of the test is not conclusive 
since the number of participants is small. However, it looks obvious that there are marked differences in the 
ability of each clinician to classify breathing sounds. This suggests that AI-assisted classification standardize the 
identification and categorization of breath sounds and greatly aid the diagnosis of pulmonary diseases.

There are several respiratory sounds in which two or more abnormal breath sounds are mixed. Such sounds 
are sometimes difficult even for experts and there may be disagreements between them. Few published studies 
have classified mixed abnormal breathing sounds, so research about these sounds is necessary. Also, since noises 
such as coughs, voices, heart sounds, and medical alarms are frequently recorded with breath sound, which 
reduces the accuracy of analysis, the technology for noise filtering is required.

Conclusion
We found that our deep learning-based classification could classify the respiratory sounds accurately. Utilizing 
the transfer learning method, combining pre-trained image feature extraction from respiratory sound and CNN 
classification, worked well and was helpful for improving the classification accuracy. Though the analysis of mixed 
abnormal sounds and filtering noises remain challenging, recent innovations in analytic algorithm and recording 
technology will accelerate the advance of respiratory sound analysis more rapidly. Soon, deep learning-based 
automated stethoscope is expected to be used in telemedicine and home care (Fig. 5).

Figure 5.   Summary of deep learning assisted classification of respiratory sounds. Respiratory sounds 
were corrected from the patients with pulmonary diseases. The sounds were validated and classified by 
pulmonologists. The sounds were converted to Mel-spectrogram and features were extracted by VGG16 
(transfer learning). Respiratory sounds were classified by CNN. Deep learning-based classification of respiratory 
sounds can be helpful for screening, monitoring, and diagnosis of pulmonary diseases.
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Methods
Patient selection and data collection.  Patients who visited an outpatient clinic or were hospitalized at 
Chungnam National University Hospital, regardless of the presence or type of respiratory diseases were enrolled 
from April 2019 to December 2020. The recording was proceeded in the actual clinical field (outpatient clinic, 
hospitalization room, emergency room, intensive care unit). Lung sounds were obtained from two to six sites 
of the posterior thorax using a Littman 3200 electronic stethoscope, downloaded to a computer, and converted 
into “wave” files. All sounds were carefully checked and validated by three pulmonologists. All patients gave 
written informed consent, and we obtained human research ethics committee approval of Chungnam National 
University Hospital Institutional Review Board (No. 2020-10-092). All methods were performed in accordance 
with the relevant guidelines and regulations. We recorded 2840 sounds and made a respiratory sound database 
containing 1222 normal breath sounds, 297 crackles, 298 wheezes, and 101 rhonchi.

AI models with transfer learning and CNN.  Overview of AI models.  Lung sounds were converted to 
Mel-spectrograms and features were extracted by VGG16. CNN was applied for the classification and fivefold 
cross-validation was used for prediction (Fig. 6).

Preprocessing of lung sounds.  Recorded sounds were ranged from a few seconds to several tens of seconds. We 
divided them into 6 s each with 50% overlapping. For example, the audio file is a 14.5-s audio file of wheezing, 
which is divided into 3 cycles according to the start and end times (Fig. 7). And, to process the feature extrac-
tion and use the 3-dimensional input data, we used Mel-spectrogram, average of harmonic and percussive Mel-
spectrogram, and the derivative of Mel-spectrogram using the Python library librosa47.

Feature extractor and classification.  We thought at least two or three cycles of respiratory sounds are needed for 
accurate analysis of lung sounds. Approximately, normal respiratory rate is 15–20 per one minute (three–four 
seconds per one respiratory cycle) and it tends to be more rapid at pathologic conditions. So, after testing several 
options, we finally have decided six seconds as the length of the respiratory sound.

We used pre-trained models VGG16 as feature extractors in transfer learning, which was built by Karen 
Simonyan48,49. VGG16 is a model with 16 layers trained on fixed-size images and the input is processed through 
a set of convolution layers that use small-size kernels with a receptive field 3 × 3. The default input size of VGG16 
is 224 × 224, but the input size for our model is 256 × 256 (Fig. 8). We used weights pre-trained on ImageNet by 
freezing all the five convolution blocks without fully-connected layer, and predicted the test sets with simple 
CNN with only one-layer.

Evaluation of our models.  To avoid overfitting, we utilized the fivefold cross-validation method34 (Fig. 9). The 
dataset has been chosen randomly to split into 80% training set and 20% test set, and 20% of training set is used 
for validation. The main idea of the fivefold cross validation is to split the training set into 5 partitions. Each 
time one of the 5 partitions are used for validating the model and the other 4 partitions are used for training the 

Figure 6.   Overview of our AI models.

Figure 7.   Process to obtain spectrograms. (A) Given lung sound, dividing lung sound files with overlapping 
during 3 s (B) Obtaining three types of Mel-spectrograms with log-scale.
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model. So, each instance in the data set is used once in testing and 4 times in training. All results of the differ-
ent metrics are then averaged to return the result. From results by our models, we obtained accuracy, precision, 
recall score and ROC curve.

Statistical analysis.  All values are presented as means ± standard deviation (SD). Significant differences were 
determined using GraphPad 5 software. The Student’s t-test was used to determine statistical differences between 
two groups. The receiver operating characteristic curve was plotted and the area under the curve was calculated 
with the 95% confidence intervals.
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