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Abstract

Bidirectional Encoder Representations from Transformers (BERT) and BERT-based approaches 

are the current state-of-the-art in many natural language processing (NLP) tasks; however, 

their application to document classification on long clinical texts is limited. In this work, we 

introduce four methods to scale BERT, which by default can only handle input sequences up 

to approximately 400 words long, to perform document classification on clinical texts several 

thousand words long. We compare these methods against two much simpler architectures – a 

word-level convolutional neural network and a hierarchical self-attention network – and show that 

BERT often cannot beat these simpler baselines when classifying MIMIC-III discharge summaries 

and SEER cancer pathology reports. In our analysis, we show that two key components of BERT 

– pretraining and WordPiece tokenization – may actually be inhibiting BERT’s performance on 

clinical text classification tasks where the input document is several thousand words long and 

where correctly identifying labels may depend more on identifying a few key words or phrases 

rather than understanding the contextual meaning of sequences of text.
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I. INTRODUCTION

Document classification is an essential task in clinical natural language processing (NLP). 

In the clinical setting, labels are often available only at the document level rather than at 

the individual word level, such as when unstructured clinical notes are linked to structured 
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data from electronic health records (EHRs), and thus document classification is an essential 

tool in practical automation of clinical workflows. Timely classification of key data elements 

from clinical documents is extremely important for applications such as precision medicine, 

population health surveillance, and research and policy. Unfortunately, in the clinical setting, 

human annotation of EHRs can be extremely time-consuming and expensive due to the 

technical nature of the content and the expert knowledge required to parse it; thus, effective 

automated classification of clinical text such as cancer pathology reports and patient notes 

from hospital stays can make meaningful contributions toward health-related outcomes [1].

Currently, Bidirectional Encoder Representations from Transformers (BERT) [2] and BERT

based approaches achieve state-of-the-art performance in many common tasks within the 

general NLP community such as question answering, natural language understanding, and 

text generation. BERT is a computationally expensive deep learning approach that is first 

pretrained on a very large corpus of unlabelled text on the order of 1 billion or more words 

– this pretraining step typically takes hundreds to thousands of GPU or TPU hours [3], [4] 

and allows the model to learn nuanced linguistic patterns that may be useful for downstream 

tasks. Once pretrained, the model is then fine-tuned on a specific task of interest. To limit the 

vocabulary size and generalize better to new words outside the training vocabulary, BERT 

utilizes subword-level WordPiece tokens rather that word-level tokens as input.

Adapting BERT to the task of clinical document classification poses non-trivial challenges. 

First, most BERT-based implementations have a maximum input length of 512 WordPiece 

tokens, which is roughly equal to 400 words. Unfortunately, clinical documents can very 

easily exceed this limit – the average discharge summary in the MIMIC-III dataset is 

approximately 2000 word tokens [5]. Second, to maximize performance, BERT-based 

models must be pretrained on a text corpus that is from a similar domain as the downstream 

application task. Therefore, clinical practitioners who wish to apply BERT-based models but 

do not have access to the compute or data necessary to pretrain their own models must rely 

on downloading existing pretrained models such as BioBERT [6] or BlueBERT [7]. Some 

recent work, such as the Reformer [8] and LongFormer [9] models, adapt BERT for longer 

input texts; however, at the time of this study, there exist no publicly available pretrained 

weights in the biomedical and/or clinical domain for these models. For this reason, we 

utilize BlueBERT, which is the original BERT model pretrained on sentences from Pubmed 

abstracts and MIMIC-III clinical notes, as the main model for this work.

In this work, we test different methods to adapt BlueBERT for text classification on 

long clinical documents – these methods consist of splitting long documents into smaller 

chunks, processing the chunks individually, and then combining the outputs using max 

pooling or attention-based methods. We apply these methods to both the single-label and 

multilabel classification settings. We compare the performance of BlueBERT against two 

strong baselines – a shallow, word-level convolutional neural network (CNN) [10] and a 

hierarchical self-attention network (HiSAN) [11], both of which have nearly two orders of 

magnitude fewer learnable parameters than BERT. We show that BERT actually achieves 

similar performance to the CNN and underperforms the HiSAN on many of the clinical 

document classification tasks that we test on. Our contributions are as follows:
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• We compare the effectiveness of different ways to adapt BERT for document 

classification on long clinical texts up to several thousand words in length

• We evaluate the effectiveness of BERT on clinical single-label and multilabel 

document classification against two other strong baselines – the CNN and the 

HiSAN

• We show that a much simpler deep learning model, the HiSAN, can obtain 

similar or better performance compared to BERT on many of our clinical 

document classification tasks

• To better understand the weaknesses of BERT in our tasks, we analyze the 

attention weights within the HiSAN and BERT to understand how each model 

identifies keywords and show that using WordPiece subword tokens may be 

more difficult than using word-level tokens

II. RELATED WORK

While BERT and BERT-based models have achieved state-of-the-art performance across 

a wide range of various NLP tasks including question answering [12], [13], information 

extraction [14], [15], and summarization [16], [17], their applications to long document 

classification tasks have been extremely limited. To our knowledge, there exists only one 

previous in-depth study on strategies to adapt BERT for long document classification: Sun et 

al [18] explore different techniques for using BERT to classify moderate-length documents 

from IMDb reviews, Yelp reviews, Sogou News, and other similar datasets. The study finds 

that the best overall classification accuracy is achieved by using only the first 128 and the 

last 382 tokens in each document as the input into BERT and dropping all intermediate 

content. While other works [19–21] have applied BERT to text classification related tasks, 

none explore the problem of long-document inputs that are longer than BERT’s default max 

input length of 512 WordPiece tokens.

There are several reasons that the findings from [18] may not hold in the clinical document 

domain. First, most of the datasets tested in [18] are moderate in length – for example, only 

12.69% of the documents in IMDb exceed 512 tokens in length, 4.60% in Yelp, and 46.23% 

in Sogou, and even in Sogou the average length is only 737 tokens. Thus, it is uncertain how 

BERT will perform on datasets such as MIMIC-III where the average discharge summary 

is over 2000 tokens long. Second, in clinical documents classification tasks, the presence 

of a specific label may be indicated by only a short phrase that appears only once in the 

entire document; therefore, using only the first 128 and the last 382 tokens may be more 

detrimental than in a task such as news classification or sentiment analysis, where context 

clues may be scattered throughout the document.

In the clinical and biomedical domain, BERT has been applied to various tasks that do 

not include document-level classification. BioBERT [6], which is pretrained on PubMed 

abstracts of PMC full-text articles, showed superior performance on biomedical named 

entity recognition, relation extraction, and question answering tasks. ClinicalBERT [22], 

which starts with BioBert and then further pretrains on MIMIC-III clinical notes, showed 

superior performance on clinical natural language inference tasks. BlueBERT [7], pretrained 

Gao et al. Page 3

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on PubMed abstracts and MIMIC-III clinical notes, achieved superior performance on 

biomedical and clinical sentence similarity, named entity recognition, relation extraction, 

and short document classification tasks. Two common characteristics of all these tasks 

are (1) input length is less than or equal to 512 WordPiece tokens and (2) understanding 

sequences of words in context is generally critical to the task. In [23], authors pretrained 

their own BERT model on Italian clinical text, applied it to Italian pathology report 

classification, and found that BERT underperforms more simple architectures, but the study 

focused on short inputs less than 512 WordPiece tokens in length. BERT has yet to be 

thoroughly tested under settings where the input document is several thousand words long 

and where correctly identifying labels may depend more on identifying a few key words or 

phrases rather than understanding the contextual meaning of sequences of text.

The current state-of-the-art approaches for clinical document classification are generally 

models that pre-date contextual word embedding-based approaches such as BERT. Clinical 

NLP approaches often lag behind those used in the general NLP community partly due 

to the legal challenges of releasing open research datasets to promote the development of 

new approaches [24], [25]. Recent approaches for clinical document classification include 

rule-based methods [26], [27], traditional machine learning [28], [29], convolutional neural 

networks (CNNs) [30], [31], recurrent neural networks (RNNs) [32], [33], and self-attention 

networks [11].

In this work, we compare different strategies to adapt BERT to long documents against 

existing strong baselines using discharge summaries from the MIMIC-III dataset and 

cancer pathology reports obtained from Louisiana Tumor Registry, Kentucky Cancer 

Registry, Utah Cancer Registry, and New Jersey State Cancer Registry. There are three 

multilabel classification tasks for MIMIC-III – diagnostic codes, diagnostic categories, and 

procedure codes – and six single-label classification tasks for the cancer pathology reports – 

identifying cancer site, subsite, laterality, behavior, histology, and grade.

III. MATERIALS AND METHODS

A. BERT for Document Classification

In this work, we begin with the assumption that end-users wish to apply BERT to their 

document classification tasks but lack the computational resources and/or training data on 

the order of 1B+ words required to pretrain BERT from scratch; thus, users must start 

from an available pretrained model. Because we are working with clinical text documents, 

we utilize BlueBERT [7], which is the BERT model pretrained on PubMed abstracts and 

MIMIC-III clinical notes. As the architecture of BERT has been widely described and 

explored in existing literature, we refer the reader to those studies [2], [34], [35] to learn 

about the base architecture of the BERT model.

Because the self-attention mechanism used in BERT has memory requirements that scale 

quadratically based off the sequence length, the original BERT model was primarily 

designed to handle sentence-length and paragraph-length inputs and has a maximum input 

length of 512 WordPiece tokens, or roughly 400 word tokens. As a result, subsequent 

BERT-based models pretrained on different corpora, including BioBERT, Clinical BERT, 
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and BlueBert, all share this same limitation on input length. To adapt BERT for long 

document classification, we explore the following strategies (illustrated in Figure 1):

1) First 510 WordPiece Tokens Only: For any input document, we convert the 

document into WordPiece tokens and use only the first 510 tokens. As standard practice 

for BERT-based models [2], each token sequence is prepended by the [CLS] token (used 

for classification) and appended by the [SEP] token (marks the end of an input sequence 

for one or more input sequences), making a total of 512 tokens, the maximum input length 

for BERT. As BERT is already preconfigured for a wide range of tasks including sequence 

classification [2], we use the standard sequence classification setup where the output of the 

[CLS] token is then fed into an intermediate dense layer and a final classification layer. 

For single-label classification, the output logits from the classification layer are fed into a 

softmax activation, whereas for multilabel classification, the logits are fed into a sigmoid 

activation.

We note that this strategy may discard a significant portion of content for each document 

that may be useful for classification; therefore, we expect that this strategy may perform 

poorly due to information loss. However, we include this strategy as it is useful to establish a 

baseline.

2) Max Pool Over Logits: In order to capture the content from the entire document, we 

utilize a hierarchical approach in which we split long documents into smaller chunks and 

then process each chunk individually using BERT. After converting an input document into 

WordPiece tokens, we split the document into k segments of 510 tokens each. Each segment 

is prepended by the [CLS] token and appended by the [SEP] token so that it is 512 in length. 

We then utilize the standard BERT classification setup on each of the k segments, wherein 

the first [CLS] token in each segment is passed to an intermediate dense layer and a final 

classification layer. This generates k logit vectors, one for each segment.

Prior to the softmax or sigmoid activation function, we apply a max pool operation across all 

k logits to reduce them into a single logit vector – this max pooled logit vector represents the 

maximum logit value for each possible class across each of the k segments. For single-label 

classification, this final max pooled logit vector is passed to a softmax activation to predict 

class probabilities, and for multilabel classification it is passed to a sigmoid activation.

We note that max pooling is performed on the logit vector because the size of the logit 

vector is always equal to the number of possible classes and a higher logit value for a given 

class will always indicate that particular class is more likely to be present. This cannot 

be said about any other intermediate representation generated by BERT, where a large 

negative value may be just as important as a large positive value in identifying the presence 

of a particular class. Thus, applying max pool to the logit vector minimizes unintentional 

information loss.

3) Target Attention: Similar to max pool over logits, we split the document into k 
segments of 510 WordPiece tokens each. Each segment is prepended by the [CLS] token and 

appended by the [SEP] token so that it is 512 in length. We then utilize the BERT model 
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without the classification setup such that for each of the k segments, we simply generate 512 

new contextual token embeddings. From this, we drop the first [CLS] and last [SEP] token 

embeddings from each of the k sequences, then concatenate the k embedding sequences 

to form E ∈ ℝl × d, where l is the total length of the document and d is the embedding 

dimension configured within BERT (768 in our case).

Next, we utilize an attention mechanism to identify the token embeddings within E that 

are most relevant to the target task. To do this, we utilize a modified version of scaled dot 

product attention [36], which is shown in Equation 1:

K = EW k + bk

V = EW v + bv

Target‐Attention(E, T ) = softmax(TK⊺

d )V
(1)

where W k ∈ ℝd × d and W v ∈ ℝd × d are learnable weight matrices and bk ∈ ℝd and bk ∈ ℝd

are learnable bias vectors. K ∈ ℝl × d and V ∈ ℝl × d are simple linear transformations of E. 

Finally, T ∈ ℝ1 × d is a randomly initialized vector that is learned through training – this 

vector represents the information to look for given the current task.

Essentially, our target attention operation compares each token embedding in E to the 

target vector T to identify the embeddings most relevant to the current task. The output 

of our target attention mechanism is D ∈ ℝ1 × d, the final document embedding used for 

classification, which is effectively a weighted average of the most important embeddings 

from E. We pass D to a final dense classification layer; as the previous strategies, the 

output logits from the classification layer are fed into a softmax activation for single-label 

classification and a sigmoid activation for multilabel classification.

4) Multilabel Attention: In the multilabel classification setting, we expand our target 

attention mechanism so that we use a separate parallel attention mechanism for each 

possible label. This increases the expressivity of the attention mechanism so that the same 

attention target vector does not need to capture information for hundreds or thousands of 

possible labels.

Once again, we split the document into k segments of 510 WordPiece tokens each. Each 

segment is prepended by the [CLS] token and appended by the [SEP] token so that it is 512 

in length. We use the same procedure from target attention to generate E ∈ ℝl × d, which 

represents the contextual embeddings generated by BERT for the all tokens in the document. 

We then pass E to a modified version of scaled dot product attention, shown in Equation 2:

K = EW k + bk

V = EW v + bv

Multilabel‐Attention(E, M) = softmax(MK⊺

d )V

Logits = (Multilabel‐Attention(E, M)W c)⊺ + bc

(2)
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where W k ∈ ℝd × i and W v ∈ ℝd × i are learnable weight matrices and bk ∈ ℝi and bk ∈ ℝi

are learnable bias vectors. K ∈ ℝl × i and V ∈ ℝl × i are simple linear transformations of E. 

Unlike in target attention where the embedding dimension of K and V are set to d, the same 

as E, in multilabel attention they are reduced to an intermediate dimension i as we found 

this reduces overfitting. M ∈ ℝc × i is a randomly initialized matrix that is learned through 

training, where c is the number of possible classes – each row of this matrix represents the 

most important information for one class.

While in target attention each embedding in E is compared to a single target vector to 

determine its relevance, in multilabel attention each embedding in E is simultaneously 

compared to a different vector for each possible class to determine its relevance for that 

class. The output of multilabel attention is a matrix O ∈ ℝc × i, which we pass to a dense 

layer with weights W c ∈ ℝi × 1 and bias bc ∈ ℝc to generate the logits. Because we only 

utilize multilabel attention in the multilabel classification setting, we pass the output logits to 

a sigmoid activation to obtain the final class probabilities.

B. Baseline Models

1) Convolutional Neural Network: Our first strong baseline is a shallow word-level 

CNN based off [37]. Although a relatively simple architecture that was originally developed 

in 2014, it is still widely used for biomedical and clinical text classification and has shown 

strong performance across a variety of tasks [10], [38–40]. For our CNN implementation, 

we represent each document using word level embeddings, which are passed to three parallel 

1D convolution layers; these examine three, four, and five consecutive words at a time to 

identify n-grams relevant to the given task. The outputs from the three convolution layers 

are concatenated and passed to a max pool operation that generates a fixed-length document 

vector composed of the most important n-grams in the document. This document vector is 

passed to a final dense classification layer that uses softmax for single-label classification 

and sigmoid for multilabel classification.

In multilabel classification settings, we also test a multilabel variant of the CNN, which 

we refer to as CNN-multilabel (CNN-ML). In this variant, after the outputs from the three 

convolution layers are concatenated, instead of using a max pool operation, we feed the 

output to the same multilabel attention setup that we use for BERT.

2) Hierarchical Self-Attention Network: Our second strong baseline is the HiSAN 

network [11], which to our knowledge is the current state-of-the-art in classifying cancer 

pathology reports. Like BERT, this architecture is also based off self-attention operations, 

but it is far simpler and has approximately 100x fewer learnable parameters. We use the 

exact same implementation as [11] – first, each document is represented using word level 

embeddings and then broken into chunks of ten words each. The HiSAN’s lower hierarchy 

uses a series of attention-based operations to generate a fixed-length vector representation 

for each ten-word chunk. These representations are then passed to the HiSAN’s upper 

hierarchy, which uses another series of attention-based operations to generate a fixed-length 

vector representation of the entire document. This document vector is passed to a final 
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dense classification layer that uses softmax for single-label classification and sigmoid for 

multilabel classification.

Like with the CNN, in the multilabel classification setting we test a multilabel variant 

of the HiSAN, which we refer to as HiSAN-multilabel (HiSAN-ML). In this variant, we 

replace target attention mechanism in the HiSAN’s upper hierarchy with the same multilabel 

attention setup that we use for BERT.

C. Datasets

1) MIMIC-III Discharge Summaries: The MIMIC-III dataset consists of unstructured 

clinical notes as well as structured tables related to 49,785 distinct hospital admissions of 

38,597 unique adult patients who stayed in the intensive care unit at Beth Israel Deaconess 

Medical Center between 2001 and 2012 [5]. Each unique admission is annotated by human 

experts with a set of ICD-9 codes that describe the diagnoses and procedures that occurred 

during that particular stay. Each unique admission is also associated with a discharge 

summary which summarizes the information from the stay in a single document. For this 

study, we utilize the discharge summaries for three multilabel classification tasks – (1) 

predict the set of 5-character diagnoses codes (DX 5-Char) associated with each discharge 

summary, (2) predict the set of unique 3-character (DX 3-Char) diagnoses categories 

associated with each discharge summary, which consists of the first three characters of the 

full 5-character diagnosis code, and (3) predict the set of procedure codes associated with 

each discharge summary.

We note that some admissions have one or more addenda in addition to the discharge 

summary; in these situations we concatenate the information from the addenda to the 

discharge summary. Following [31], we perform train/val/test splitting based off unique 

patient IDs so that the same patient does not appear in multiple splits. Statistics regarding 

this dataset are available in Table I.

2) SEER Cancer Pathology Reports: The National Cancer Institute (NCI) 

Surveillance, Epidemiology, and End Results (SEER) program works with cancer registries 

across the United States to collect and maintain cancer data in order to support national 

cancer surveillance. We obtained 1,201,432 cancer pathology reports from the Louisiana, 

Kentucky, New Jersey, and Utah SEER cancer registries. Each cancer pathology report is 

associated with a unique tumor ID; one or more cancer pathology reports may be associated 

with the same tumor ID. For each tumor ID, certified tumor registrars (CTRs) manually 

assigned ground truth labels for key data elements – including cancer site, subsite, laterality, 

behavior, histology, and grade; for a given tumor ID, labels were assigned based off all data 

available for that tumor ID. Because our ground truth labels are at the tumor level rather than 

the report level, there are cases where tumor IDs associated with multiple pathology reports 

have labels which do not match the content within one or more of the individual pathology 

reports. Therefore, in this study we only utilize tumor IDs associated with a single pathology 

report, yielding a total of 200,352 pathology reports. We utilize this dataset to perform six 

single-label document classification tasks, one for each manually annotated data element. 

Statistics regarding this dataset are available in Table I.
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IV. EXPERIMENTS

A. Evaluation Metrics

For multilabel classification tasks on the MIMIC-III dataset, we follow established metrics 

from previous work [30–32] and measure performance using precision, recall, and F1 score, 

where each possible text-code pair is treated as an independent prediction:

Precision = True Positive
True Positives + False Positives (3)

Recall = True Positives
True Positives + False Negatives (4)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall (5)

Similarly, for single-label classification tasks on the cancer pathology reports, we follow 

established metrics from previous work [10], [11], [33], [41] and measure performance 

using classification accuracy and macro F1 score, in which the F1 score is calculated for 

each possible class label and then averaged across all class labels:

Macro F1 = 1
|C| ∑Ci

C
F1(Ci) (6)

where Ci represents the subset of training samples belonging to class i, and |C| is the total 

number of possible classes. Because of the extreme class imbalance inherent in the cancer 

pathology report dataset, macro F1 score better captures model performance on minority 

classes.

For all metrics, we bootstrap samples from our test set using a procedure described in 

Appendix A to generate 95% confidence intervals. Since computation speed may also 

be a consideration in some applications, we report the average inference time for 1000 

documents for each method on the MIMIC-III dataset utilizing a single Tesla V100 GPU.

B. Dataset Cleaning

For both datasets, we lowercase all text, clean hex and unicode symbols, replace decimal 

values and integers larger than 100, and clean up any deidentification tokens; a more 

detailed description is available in Appendix B. For BERT-based approaches, we utilize 

the HuggingFace BERT tokenizer1 with the vocabulary associated with the pretrained 

BlueBERT model2. For the CNN and HiSAN, we train 300-dimensional word2vec 

embeddings on each dataset, replacing unique words appearing in fewer than five documents 

in each dataset with an “unknown_word” token.

1 https://huggingface.co/transformers/index.html 
2 https://github.com/ncbi-nlp/bluebert 
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C. Hyperparameter Optimization

For all BERT-based approaches, we start from pretrained weights from BlueBERT Base2 

and implement all models using the Huggingface library1. For the max pool over logits, 

target attention, and multilabel attention methods, we limit the number of segments per 

document k to a maximum of 10; we note that k is not a tuned hyperparameter but instead 

determined based off the average length of our documents and the memory capacity of our 

Tesla V100 GPUs.

Hyperparameters for all approaches are optimized using the validation set of each dataset. 

Due to the high computational cost of some of our models, we use a hill-climbing strategy in 

which we change a single hyperparameter at a time and then retrain until model performance 

stops improving. We choose the set of hyperparameters with the overall highest performance 

across all tasks (average F1 for MIMIC and average accuracy for pathology reports). We list 

the range of hyperparameters explored as well as the optimal hyperparameters in Table II.

D. Results

Figure 2 shows the results of our experiments on the MIMIC-II dataset dataset. First, we 

examine the performance of each model when limited to only the first 510 WordPiece 

tokens. We note that for models such as the CNN and HiSAN that use word token inputs, we 

convert the first 510 WordPiece tokens back into word tokens which results in approximately 

400 word tokens for each document. We use this first set of results to address two key 

questions: (1) how well does each method perform when using only the first 510 WordPiece 

tokens compared to the full document and (2) how well does BlueBERT compare to our 

strong baselines when adaptive methods to fit longer documents isn’t a performance factor?

Our results in Figure 2 suggest that even if we limit all models to short text segments that 

fit within BERT’s default 512 WordPiece input limit, BERT does not outperform our much 

simpler baselines in two of the three tasks. The CNN model consistently achieves the best 

precision scores by a wide margin on all tasks. We expect that this because the CNN is 

designed to memorize the 3-, 4-, and 5-gram word combinations associated with each label 

as opposed to learning more complex sequential patterns; this limits the ability of the CNN 

to generalize beyond the n-gram patterns it knows, but makes it very precise when it does 

encounter a previously seen n-gram. The HiSAN and BERT models can both learn more 

complex patterns than the CNN and achieve better recall than the CNN on all tasks at the 

cost of precision. The HiSAN model achieves the best recall and F1 scores on the diagnosis 

category and full code tasks, whereas BERT achieves the best recall and F1 score on the 

procedure task.

Second, we examine the performance of each model using full documents from the MIMIC

III dataset. We notice that compared to using only the first 510 WordPiece tokens, using the 

full document results in significantly improved performance across all metrics. This makes 

intuitive sense, as on average, the first 510 WordPiece tokens captures approximately only 

the first 25% of each document and critical information may be located in the remainder of 

the document.
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When using full documents on the MIMIC-III dataset tasks, our BERT-based approaches 

do not significantly outperform our much simpler baselines on any tasks. Once again, the 

CNN model consistently achieves the best precision scores by a wide margin on all tasks. 

The HiSAN-based approaches achieve the best recall and F1 scores on most tasks; while the 

BERT multilabel attention approach achieves the best recall score on the diagnostic category 

task, it is not significantly better than that of the HiSAN model.

When comparing the different methods for adapting BERT to longer text documents, the 

max over logits method consistently outperforms the target attention method in all tasks and 

metrics except for precision score in the diagnostic code task. Interestingly, using multilabel 

attention has mixed effects based on both task and model. For the CNN and BERT models, 

multilabel attention increases recall at the cost of precision, whereas for the HiSAN model it 

increases precision at the cost of recall. For all models, multilabel attention appears to help 

most in the diagnostic category and code tasks while having mixed results in the procedure 

task.

Figure 3 shows the results of our experiments on the cancer pathology reports dataset. After 

taking into account confidence intervals, BERT does not achieve statistically better accuracy 

or macro F1 scores than the HiSAN on any of the six tasks. Similar to our results from 

the MIMIC-III dataset, the max over logits approach almost always performs better than the 

target attention approach on all tasks and metrics.

Finally, Table III shows the average time in seconds to predict on 1000 full documents 

from the MIMIC-III dataset. We see that the BERT-based approaches are almost an order 

of magnitude slower than the base CNN and the HiSAN-based models. While inference 

time may not be the most critical factor for institutions that only need to perform a single 

prediction pass on their data, it may be important for institutions that have millions of 

documents or need to regularly retrain their models on incoming data.

V. DISCUSSION

Our experiments show that BERT generally does not achieve the best performance on our 

clinical text classification tasks compared to the much simpler CNN and HiSAN models. In 

this section, we provide evidence for two potential explanations for the weak performance of 

BERT – attention dilution and difficulty of subword tokens.

First, one of the key components of BERT’s previous success is the masked-language 

modelling pretraining process, in which the BERT model may learn subtle and complex 

word relationships between all possible words in a large unlabelled text corpus. However, 

in clinical text classification tasks on documents in which only very few words contribute 

toward a specific label, most of these subtle word relationships may not be necessary or even 

relevant to the task at hand. Therefore, BERT’s attention may actually be diluted away from 

the keywords most critical to the task.

To demonstrate this phenomena, we generated three different types of attention 

visualizations. First, we multiplied the attention weights through both hierarchies of the 

HiSAN to show exactly which words the HiSAN focuses on in each document (first 
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510 WordPiece tokens only). Second, using our fine-tuned BlueBERT model (first 510 

WordPiece tokens only), we visualized the attention weights from the very final layer that 

are associated with the [CLS] token used for classification; these weights represent the most 

important subword tokens after they have already incorporated contextual information from 

other subword tokens based off the 12 self-attention layers of the main BERT model. Third, 

using our fine-tuned BlueBERT model (first 510 WordPiece tokens only), we started from 

the attention weights from the very final layer that are associated with the [CLS] token and 

multiplied these attention weights through all 12 self-attention layers of the BERT model; 

these weights represent the most important subword tokens accounting for all the inter-word 

relationships captured during pretraining and fine-tuning. We provide an example of these 

visualizations in Appendix C.

After examining these attention weights over a large number of documents, we noticed 

that in general, (1) the attention weights in the final layer of BERT are more spread out 

and less focused on specific biomedical keywords than the attention weights from the 

HiSAN, and (2) the attention weights when accounting for all layers of BERT are even 

more diluted than those from the final layer of BERT. While there is usually some overlap 

in the attention weights of the HiSAN and BERT, we found that in a notable number 

of cases BERT places emphasis on less relevant tokens such as punctuation and [SEP]. 

These visualizations suggest that BERT’s attention is diverted toward word relationships 

learned during pretraining as opposed to the specific keywords relevant to the downstream 

classification task.

Second, while the HiSAN and CNN models utilize word-level tokens as input, BERT uses a 

WordPiece tokenizer that splits each word into one or more subword tokens. Whereas with 

word level tokens, the HiSAN and CNN can directly memorize keywords or keyphrases 

important to each label, there is an added layer of complexity with WordPiece tokens in that 

important keywords may be broken into multiple wordpiece tokens. Thus, critical keywords 

or keyphrases will always be longer when represented as WordPiece tokens compared to 

word-level embeddings, thereby increasing the complexity of the token combinations that a 

model must learn to recognize a particular label.

To test this hypothesis, we retrained the CNN and HiSAN models on the MIMIC-III dataset 

using the first 512 subword tokens generated by the final layer of the BlueBERT model 

(without any fine-tuning on the MIMIC-III dataset) instead of using word-level Word2Vec 

embeddings. Our results are shown in Figure 4. We see that compared to using word-level 

tokens as input, both the CNN and HiSAN trained on subword token inputs perform worse 

in overall F1 score across all three tasks. These results suggest that overall, it may be more 

difficult to use subword-level tokens for our MIMIC-III classification tasks than it is to use 

word-level tokens.

Finally, we examined differences in the vocabulary and tokenization setups between BERT 

and our baseline models as a source of performance discrepancy. In our main experiments, 

we used word embeddings trained directly on the target corpus for our baseline models, 

eliminating word tokens appearing fewer than five times, whereas for BlueBERT we 

tokenized using the associated WordPiece vocabulary pretrained on Pubmed abstracts and 
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MIMIC-III. Therefore, we tested (1) the performance of our baseline CNN and HiSAN 

when utilizing publicly available word embeddings pretrained on Pubmed and MIMIC-III 

[42], and (2) the performance of BlueBERT when eliminating rare words appearing fewer 

than five times in the target corpus (mirroring the original tokenization process for the 

CNN and HiSAN). The results of these experiments on the MIMIC-III dataset (first 510 

Wordpiece tokens) are shown in Figure 4. Using pretrained word vectors generally results 

in slightly worse F1 scores for the CNN and HiSAN, but both models still outperformed 

BERT in the same two out of three tasks. Eliminating rare tokens reduced BERT’s F1 score 

in two of the three tasks, and in all three tasks the F1 score was worse than that of the 

HiSAN. Ultimately, we see that BlueBERT still does not consistently outperform the CNN 

and HiSAN baselines under any of these alternative tokenization setups.

VI. CONCLUSION

In this work, we compared four methods for adapting BERT, which by default can only take 

inputs of up to 510 WordPiece subword tokens, to sequence classification on long clinical 

texts up to several subword tokens in length; these methods include using only the first 

510 WordPiece tokens, hierarchical max pool over logits, hierarchical target attention, and 

hierarchical multilabel attention. We compare these methods against two strong baselines, 

the CNN and the HiSAN. We evaluted these models on two datasets. The MIMIC-III 

clinical notes dataset has three multilabel classification tasks: diagnosis codes, diagnosis 

categories, and procedure codes; and the cancer pathology reports dataset has six single label 

classification tasks: site, subsite, laterality, histology, behavior, and grade.

Our results showed that on most datasets and tasks, the BERT-based methods performed 

equal to or worse than the simpler HiSAN baseline, and in some cases BERT performed 

equal to or worse than even the CNN. On the MIMIC-III dataset, when all models and 

baselines were limited to the first 510 WordPiece tokens of each document only, BERT 

outperformed in only the recall metric for the procedure code task. Once we utilized full 

length documents, BERT outperformed on only the recall metric for the diagnostic category 

task. On the cancer pathology report dataset, BERT was not statistically better than the 

HiSAN on any of the six tasks. Within the four different methods for adapting BERT 

to classification on long texts, hierarchical multilabel attention had the overall strongest 

performance on multilabel classification and hierarchical max pool over logits had the 

overall strongest performance on single label classification.

In our analysis, we presented evidence for two possible reasons why BERT underperforms 

in clinical text classification tasks. First, our tasks generally have a low signal-to-noise 

ratio, in that the presence of a few keywords may be enough to indicate a particular label. 

In BERT’s pretraining process, BERT learns complex and nuanced relations between all 

words in the pretraining corpus; however, many of these relationships may be irrelevant for 

the classification task and may actually divert attention away from the critical keywords. 

Second, BERT’s WordPiece tokenizer breaks each word token into one or more subword 

tokens. This increases the complexity of the classification task, as now the model must learn 

to associate a larger number of subword tokens to each label compared to a lower number of 

word-level tokens.
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Our results suggest that a pretrained BERT model such as BioBERT or BlueBERT may 

not be the best choice for clinical text classification tasks, and a simple CNN or HiSAN 

model may achieve comparable or better accuracy/F1. However, recent work may address 

some of BERT’s limitations that we illustrated. For example, [43] utilizes a novel pretraining 

technique that forces BERT to focus on learning knowledge about entities rather than 

learning generic syntax and grammar patterns; this may lead to better performance on 

downstream clinical and biomedical classification tasks which are often knowledge-oriented. 

Additionally, [8], [9] adapt BERT for long texts without requiring hierarchical splitting 

methods, which may allow the model to learn useful patterns over longer distances. Lastly, 

recent work [44] shows that a significant weakness of BioBERT and BlueBERT is that 

they utilize the original WordPiece vocabulary from BERT, generated from Wikipedia and 

BooksCorpus; building the WordPiece vocabulary directly on the domain of interest prevents 

important keywords from being split into multiple subtokens and leads to higher accuracy 

in downstream tasks. Unfortunately, these approaches have yet to be pretrained on clinical 

corpora and then released for public use, and thus we leave further evaluation of these 

methods for future work. The code used for the experiments in our paper will be made 

available online after peer review.
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Appendix

A. Bootstrapping Confidence Intervals

1. For each model/task, save the model’s predictions on the test set (hereon referred 

to as the original predictions)

2. Randomly select samples from the test set along with their predicted labels (with 

replacement) to create a new set of samples and predicted labels of the same size 

as the original test set (hereon referred to as bootstrapped set)

3. For cancer pathology reports, calculate accuracy and macro F1 score on 

bootstrapped set; for MIMIC-III, calculate precision, recall, and F1 score on 

bootstrapped set

4. Repeat steps (2) and (3) 1000 times, saving the scores each time

5. Calculate the 95% confidence interval for each metric by finding the 2.5 and 97.5 

percentile entry for that metric within the 1000 runs (since precision, recall, and 

F1 score are not normally distributed)
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B. Data Preprocessing

1. Replace hex and unicode characters with their string equivalents, removing any 

corrupted codes

2. For pathology reports, remove identifier segments (registry ID, patient ID, 

document ID, etc) and XML tags

3. For MIMIC-III, replace all deidentifier tokens (e.g., [**NAME**]) with the 

string “deindentified”

4. Lowercase

5. Replace all instances of decimal values with the string “floattoken”

6. Replace all integers higher than 100 with the string “largeinttoken”

7. Replace all nonalphanerics other than { . ? ! , : ; ( ) % / − + = } with a space

8. If the same non-alphanumeric character repeats consecutively, replace it with a 

single copy of that character

9. Add a space before and after every non-alphanumeric character
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C. Attention Visualizations

Fig. A1: 
Attention weights and predictions on an example document from the MIMIC-III dataset for 

the diagnostic category task. In this figure, we multiply the attention weights through both 

hierarchies of the HiSAN and show exactly which words the HiSAN focuses on in each 

document (first 510 WordPiece tokens only). For this visualization, we sum the attention 

weights across all attention heads.
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Fig. A2: 
Attention weights and predictions on an example document from the MIMIC-III dataset for 

the diagnostic category task. In the top, using our fine-tuned BlueBERT model (first 510 

WordPiece tokens only), we visualize the attention weights from the very final layer that 

are associated with the [CLS] token used for classification; these weights represent the most 

important subword tokens after they have already incorporated contextual information from 

other subword tokens based off the 12 self-attention layers of the main BERT model. In the 

bottom, we start from the attention weights from the very final layer that are associated with 
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the [CLS] token and multiply these attention weights through all 12 self-attention layers of 

the BERT model; these weights represent the most important subword tokens accounting 

for all the inter-word relationships captured during pretraining and fine-tuning. For this 

visualization, we sum the attention weights across all attention heads.
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Fig. 1: 
Process for splitting long documents into smaller chunks to feed into BERT and methods for 

combining the resulting BERT outputs from each chunk into a single classification decision.
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Fig. 2: 
Precision, recall, and F1 scores for each model on the MIMIC-III dataset. 95% confidence 

intervals are shown in red and calculated using a bootstrapping procedure detailed in 

Appendix A.
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Fig. 3: 
Accuracy (left) and macro F1 scores (right) for each model on the cancer pathology report 

dataset. 95% confidence intervals are shown in red and calculated using a bootstrapping 

procedure detailed in Appendix A.
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Fig. 4: 
F1 scores for alternative vocabulary/tokenization setups on the MIMIC-III dataset (first 510 

WordPiece tokens only). 95% confidence intervals are shown in red and calculated using a 

bootstrapping procedure detailed in Appendix A.
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TABLE II:

Hyperparameters explored for each model.

BERT

Multilabel Attention Dim 100, 200, 300*^, 400, 500

Batch Size 8, 16*^, 32, 64

Adam Learning Rate 5E-6, 1E-5, 2E-5*^, 5E-5

CNN

Filter Size 100, 300^, 500, 1000*

Dropout % 0, 10, 15*, 25, 50^

Multilabel Attention Dim 100, 200, 300, 400*^, 500

Batch Size 32, 64, 128*^, 256

Adam Learning Rate 5E-5, 1E-4*^, 2E-4, 5E-4

HiSAN

Attention Size 400, 512^, 768*, 1024

Attention Heads 4, 8*^, 16

Dropout % 0, 10*^, 15, 25, 50

Multilabel Attention Dim 100, 200, 300, 400*^, 500

Batch Size 32, 64, 128*^, 256

Adam Learning Rate 5E-5, 1E-4*^, 2E-4, 5E-4

*
Optimal hyperparameters are marked with a for the MIMIC III tasks

^
for the pathology report tasks.
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TABLE III:

Average time (in seconds) to predict on 1000 full documents from the MIMIC-III dataset. All timing is 

performed on a DGX machine using a single V100 GPU.

MIMIC-III DX 3 MIMIC-III DX 5 MIMIC-III Procedure

CNN 8.4413 8.4886 8.4537

CNN Multilabel 18.2624 22.5554 19.0566

HiSAN 8.0586 8.1274 8.1222

HiSAN Multilabel 8.4029 8.6632 8.4700

BlueBERT Base
75.1377 75.2986 75.2502

Max Over Logits

BlueBERT Base
75.8992 76.0667 75.9519

Target Attention

BlueBERT Base
75.8698 77.6511 76.1592

Multilabel Attention
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