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A B S T R A C T

Background: Normal airway microbial communities play a central role in respiratory health but are poorly
characterized. Cigarette smoking is the dominant global environmental influence on lung function, and
asthma has become the most prevalent chronic respiratory disease worldwide. Both conditions have major
microbial components that are incompletely defined.
Methods: We investigated airway bacterial communities in a general population sample of 529 Australian
adults. Posterior oropharyngeal swabs were analyzed by sequencing of the 16S rRNA gene. The microbiota
were characterized according to their prevalence, abundance and network memberships.
Findings: The microbiota were similar across the general population, and were strongly organized into co-
abundance networks. Smoking was associated with diversity loss, negative effects on abundant taxa, pro-
found alterations to network structure and expansion of Streptococcus spp. By contrast, the asthmatic micro-
biota were selectively affected by an increase in Neisseria spp. and by reduced numbers of low abundance
but prevalent organisms.
Interpretation: Our study shows that the healthy airway microbiota in this population were contained within
a highly structured ecosystem, suggesting balanced relationships between the microbiome and human host
factors. The marked abnormalities in smokers may contribute to chronic obstructive pulmonary disease
(COPD) and lung cancer. The narrow spectrum of abnormalities in asthmatics encourages investigation of
damaging and protective effects of specific bacteria.
Funding: The study was funded by the Asmarley Trust and a Wellcome Joint Senior Investigator Award to
WOCC and MFM (WT096964MA and WT097117MA). The Busselton Healthy Ageing Study is supported by
the Government of Western Australia (Office of Science, Department of Health) the City of Busselton, and pri-
vate donations.
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1. Introduction

The airways of the lung carry commensal microbiota that make
essential contributions to respiratory health [1,2]. The surface area of
the lungs is 40�80 m2, compared to 30 m2 in the gut [2], and the
respiratory microbiota have profound opportunities to affect mucosal
immunity. We have therefore investigated the ecology and structure
of normal airway microbial communities in the general population,
as a first step to defining organisms associated with health as well as
major respiratory diseases.

Cigarette smoking and asthma are global conditions with major
microbial components that are also incompletely defined. A quarter
of men and 5% of women in the world smoke cigarettes daily [3].
Smoking causes 11.5% of deaths globally [3] and chronic obstructive
lung disease (COPD) and lung cancer are its most common pulmonary
consequences. Smoking has distinctive effects on airway microbial
communities [4]. COPD, even in its early stages, is accompanied by
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Research in context

Evidence before this study

The airways of the lung carry commensal microbiota in a simi-
lar density to the microbiome of the small intestine. The large
surface area of the lungs and constant infective challenges
mean that the respiratory microbiota have profound opportuni-
ties to affect mucosal immunity. However, there is still uncer-
tainty as to what extent bacteria in healthy lungs are part of a
resident ecosystem, or whether their presence is transient and
driven stochastically by exposure. As yet there is no data as to
which human airway organisms underpin mucosal health.

We therefore investigated the ecology and structure of nor-
mal airway microbial communities in a general population
sample, as a first step to defining organisms associated with
health, in contrast to airway microbiota associated with the
major respiratory conditions of cigarette smoking and asthma.

Added value of this study

We found that the airway organisms were very similar
throughout the general population. Strong positive and nega-
tive correlations were seen between the abundances of differ-
ent taxa, revealing networks within the airway communities.
Smoking was associated with profound alterations to network
structure and expansion of Streptococcus spp. By contrast, the
asthmatic microbiota were selectively affected by loss of diver-
sity, an increase in Neisseria spp. and by reduced numbers of
low abundance but prevalent organisms.

Implications of all the available evidence

Our study shows that the healthy airway microbiota are con-
tained within a highly structured ecosystem, suggesting bal-
anced relationships between the microbiome and human host
factors. The marked abnormalities in smokers may contribute
to chronic obstructive pulmonary disease (COPD) and lung can-
cer. The narrow spectrum of abnormalities in asthmatics
encourages investigation of damaging and protective effects of
specific bacteria.
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recurrent infections [4,5] and airway bacteria may contribute to lung
carcinogenesis [6].

Asthma is an inflammatory disorder of the airways that has
become the most prevalent chronic respiratory disease worldwide
[7,8]. In numerous studies its rise has been linked to urbanization
and the loss of traditional rural environments [9�11]. When applied
to the airways, the “hygiene hypothesis” suggests that loss of micro-
bial exposure allows asthma to develop [12,13], but it is not known
how loss of bacterial diversity predisposes to asthma. Possibilities
include reduced signals from commensal organisms that normally
down-regulate mucosal immune responses [14]; and that inflamma-
tion follows intermittent mucosal damage by the pathobionts (poten-
tially pathogenic bacteria) that are in excess in asthmatic airways
[1,15�18].

Manipulation of the bowel microbiota has been successful in
treating several conditions [19], and it is reasonable to consider that
the airway microbiota might also be modified therapeutically [2].
However, there is uncertainty as to what extent bacteria in healthy
lungs are part of a resident ecosystem or whether their presence is
transient and driven stochastically by exposure [20]. As yet there is
no data as to which airway organisms underpin mucosal health.

We therefore sought to test airway community composition in a
general population sample from a cross-sectional community-based
prospective cohort study of 'Baby Boomers' (born from 1946 to 1964)
living in the Shire of Busselton, in South-Western Australia [21]. Bus-
selton is a coastal city with a warm-summer Mediterranean climate
and minimal air pollution. Tourism, services and retail are the pri-
mary sources of income. The prevalence of respiratory disease is sim-
ilar to other Australian centres [22,23].

We compared changes in diversity associated with the strong
environmental factor of smoking with more subtle alterations that
might influence asthma. We defined bacterial taxa by amplicon
sequencing of the 16S ribosomal RNA gene. However, 16S sequences
do not differentiate at all well between Streptococcus spp. [24] even
though they are abundant in the respiratory tract and exhibit high
rates of clonal diversity [25]. It has been shown that Streptococcus
spp. may be much better identified by variation in sequences from
selected other genes, including methionine aminopeptidase (map)
[24]. We therefore sequenced a map amplicon to further differentiate
between Streptococcus taxa [24].

Diseases with microbial components should be considered in the
context of the complex ecosystems formed by interactions between
the human microbiota themselves and with their host environment.
These interactions are fundamental to the beneficial or pathogenic
behaviour of individual taxa. Complex patterns of microbial abun-
dance have been reported in the bowel (where they are known as
enterotypes) [26], vagina [27], mouth [28], and skin [28], but not yet
in the airways.

The methodology for identification and characterization of major
patterns in microbiomes is not yet fixed [29]. Network analysis is
effective in revealing ecological interactions within microbial com-
munities [30], and so we applied weighted correlation network anal-
yses (WGCNA) [31] to our dataset. The analysis identifies positive
and negative correlations in abundance between different bacterial
taxa, alternatively suggesting mutual co-operation or inhibition. It
also specifies the OTUs that are most connected to others (i.e. that are
hubs in the networks), suggesting candidates for the strongest influ-
ences on community structure.

Direct sampling of the lung microbiota requires invasive proce-
dures, such as bronchoscopy, that are difficult in epidemiological
studies. The nasal microbiome differs significantly from the orophar-
ynx [32], perhaps because nasal environmental exposures are unfil-
tered and the nasal epithelium differs histologically and functionally
from lower airways [33]. Nevertheless, the nose may provide a source
for seeding pathogens into the lower airways. The oropharynx and
the intra-thoracic airways form a contiguous tract with air, mucus
and microbes moved in both directions by respiration and the muco-
ciliary ladder [20,34]. The lower airway microbiome is broadly similar
to that of the oropharyngeal airway [15,20,34], although the abun-
dance of pathogens in the lower airways of diseased subjects is
imperfectly reflected in the oropharynx [15,35]. Whilst recognising
these limitations, we sampled our population using posterior oropha-
ryngeal swabs taken beyond the tonsils and palate and near to the
top of the muco-ciliary ladder.

2. Methods

2.1. Ethics

The study has received ethics approval from the University of
Western Australia Human Research Ethics Committee (Number RA/
4/1/2203). All subjects gave written informed consent to participa-
tion in the study.

2.2. Subject recruitment

Through the Busselton Health Study in Western Australia, we
recruited 578 Caucasian adults. These subjects gave a 15% margin
above a minimum sample size of 500 subjects (power estimations
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described below in Statistical analysis) to cover uncertainty about
DNA extraction in London from samples collected in Australia. (DNA
extraction and downstream analyses subsequently proved to be
robust). Individuals with a diagnosis of cancer were excluded, but
otherwise no selection was made for subject status. Subjects com-
pleted a detailed questionnaire as previously described [21]. Subjects
were classified as asthmatic if they answered yes to the question
“Has your doctor ever told you that you have asthma”.

Samples for microbial analysis were taken under direct vision,
using sterile rayon swabs that were rubbed gently with an even pres-
sure around the posterior oropharynx five times, strictly avoiding
contact with tongue, tonsils, palate or nose. Swabs were immediately
frozen and stored at �80 °C prior to transportation on dry ice to
Imperial College London, UK.

2.3. 16S rRNA gene sequencing

DNA was extracted from swab heads using the MP Bio FastDNA
Spin Kit for Soil (http://www.mpbio.com). A single sample was exam-
ined for each subject.

PCR of the 16S rRNA V4 region was performed in quadruplicate
using a custom indexed forward primer S-D-Bact-0564-a-S-15 (50

AYT GGG YDT AAA GNG 30), reverse primer S-D-Bact-0785-b-A-18 (50

TAC NVG GGT ATC TAA TCC 30) and a high fidelity Taq polymerase
master mix (Q5, New England Biolabs, Massachusetts, USA). Primer
sequences were based on Klindworth et al. [36], with dual-barcoding
as per Kozich et al. [37] with adaptors from Illumina (California,
USA). A mock community [38] was included to assess sequencing
quality. PCR cycling conditions were: 95 °C for 2 min followed by 35
cycles of 95 °C for 20 s, 50 °C for 20 s and 72 °C for 5 min. Amplicons
were purified, quantified and equi-molar pooled and the library
paired-end sequenced (Illumina MiSeq V2 reagent kit) as previously
described [38]. Bacterial load was quantified by qPCR using KAPA Bio-
Systems SYBR Fast qPCR Kit with the same 16S rRNA V4 primers used
for sequencing.

Analysis of data was carried out in the R environment and details
can be followed on github: https://tinyurl.com/y2onjblt. Sequence
processing was performed in QIIME (Version 1.9.0) [39]. Community
level differences in alpha and beta diversity and Operational Taxo-
nomic Unit (OTU) level differences, were analyzed using Phyloseq in
R (Version 3.2.0). A phylogenetic tree was generated from the repre-
sentative sequences using the default parameters of the make_phy-
logeny command [39]. Taxonomy of OTUs was assigned by matching
representative sequences against release version 23 August 2013 of
the Silva database [40] using the default parameters of the assign_-
taxonomy command [39]. OTUs occurring in only one sample or with
less than 20 reads in the whole dataset were removed. Weighted and
unweighted UniFrac beta diversity measures and subsequent princi-
pal co-ordinates analysis of them was carried out using the beta_di-
versity_through_plots script [39]. For the purposes of alpha diversity
calculations, the raw counts tables were rarefied to a minimum of
6,543 reads. Significant differences in alpha diversity between data-
sets were assessed using Mann�Whitney U-tests.

At the time of the initial laboratory study (2012 � 2013) the
potential risk of sample contamination from laboratory reagents was
not known or fully understood [41]. Potential contaminant OTUs
were identified by the presence of negative Spearman’s correlations
between OTU abundance and bacterial burden (logged qPCR copy
number), adjusted using Bonferroni corrected P-values < 0.05. OTUs
subsequently of interest were cross-checked with a listing of poten-
tial contaminants [41].

2.4. Map gene sequencing

We further differentiated Streptococcus spp. by sequencing the
methionine aminopeptidase (map) gene [24] in 483 samples
(constrained to 5 sequencing runs with controls). Of these subjects
234 were never-smoking, 196 were ex-smokers, and 53 were current
smokers. We used barcoded primers map-up 50

GCWGACTCWTGTTGGGCWTATGC ‘3 and map-down 50 TTARTAAGTT-
CYTTCTTCDCCTTG ‘3. As positive controls, DNA from nine strains of
Streptococcus with bacterial identity confirmed through Sanger
sequencing was used for positive controls (S. agalactiae (DSMZ-2134);
S. constellatus subsp. Constellatus (DSMZ-20,575); S. infantis (DSMZ-
12,492); S. parasanguinis (DSMZ-6778); S. pneumoniae (DSMZ-20,566);
S. pseudopneumoniae (DSMZ-18,670); S. pyogenes (DSMZ-20,565); S.
sanguinis (DSMZ-20,567); and S. mitis (DSMZ-12,643)). Analysis was
performed in QIIME [39], using a clustering level of 95% with closed
picking to define OTUs. We attributed the most common map gene
OTU sequences to Streptococcal species by BLAST searches. Full details
are online (http://hdl.handle.net/10044/1/63937).

2.5. Statistical analysis

Following the convention that OTU data is similar in distributions
and complexity to the results of RNA sequencing, we estimated power
to detect differences in OTU abundances with RnaSeqSampleSize [42].
Assuming 250 experimental subjects in each group, prior data indicates
that the minimum average read counts among the prognostic OTUs in
the control group to approximate 10,000, the maximum dispersion 0.5,
and the ratio of the geometric mean of normalization factors to be 1.
Assuming the total number of OTUs for testing to be 500, that 50 are
prognostic, and the desired minimum fold change is 1.4, we were able
to reject the null hypothesis that the population means of the two
groups are equal with probability (power) 0.97 using an exact test. The
FDR associated with this test was 0.01.

Stepwise multiple and logistic regression models were used
respectively to explore microbial diversity and inhaled corticosteroid
use (IBM SPSS Statistics Version 25). Missing values were deleted
pairwise.

We used the Differential Expression Analysis for Sequence Count
Data (DESeq2 function in R) [43] to compare OTU abundance
between subject and control groups, controlling the false positive
rate at P = 0.05. Parameters extracted for each OTU included log2(fold
change), globally adjusted P value and abundance and prevalence
information. Two-sided P values are reported throughout.

Co-abundance networks between non-rarefied OTU abundances
were analyzed using the WGCNA package (version 1.51, R version
3.3.2 [2016�10�31]) [44]. Abundances were log transformed with
0.1 added to zeroes [45], and the topological adjacency matrix was
constructed from Spearman’s correlation coefficients with a b soft
thresholding parameter of 3. Hierarchical clustering of the overlap
matrix with dynamic tree cutting defined the co-abundance modules,
with a minimum module size set at 20 OTUs. The MM (module mem-
bership) was defined as the correlation of gene expression profile
with the module eigengene. The significance of Spearman’s correla-
tion between module eigengenes and clinical variables was adjusted
for multiple testing using the Benjamini and Hochberg method [46].
Module structure was visualised and contrasted between cohorts
using the R package circlize (0.4.5).

2.6. Role of funding sources

The Funders had no role in study design, data collection, data
analyses, interpretation, or writing of the report.

3. Results

3.1. Structure of the normal airway microbiome

We submitted oropharyngeal swabs from 578 subjects to 16S
rRNA gene qPCR and sequencing, the latter yielding 44,290,100 high



Table 1
Principal phyla and genera of airway bacteria in a general population sample.

Phylum Genus Abundance* Phylum Genus Abundance*

Firmicutes (53.4%) Bacteroidetes (17.7%)
Streptococcus 18.92% Prevotella 15.36%
Veillonella 13.74% Porphyromonas 1.45%
Unidentified_Firmicutes 11.79% Capnocytophaga 0.73%
Selenomonas 1.71% Tannerella 0.09%
Gemella 1.64% Bergeyella 0.08%
Granulicatella 1.45% Fusobacteria (8.5%)
Johnsonella 0.70% Fusobacterium 4.40%
Lachnoanaerobaculum 0.69% Leptotrichia 4.09%
Megasphaera 0.66% Proteobacteria (8.5%)
Not known 0.46% Neisseria 4.59%
Stomatobaculum 0.43% Haemophilus 3.48%
Oribacterium 0.43% Not known 0.33%
Solobacterium 0.23% Campylobacter 0.07%
Peptostreptococcus 0.17% Actinobacteria (7.2%)
Peptococcus 0.16% Actinomyces 4.62%
Parvimonas 0.16% Atopobium 2.11%
Butyrivibrio 0.10% Rothia 0.36%
Catonella 0.05% Bifidobacterium 0.08%
Filifactor 0.05% Other (0.25%)

*Abundance based on total 43,652,299 high-quality sequence reads in 529 subjects.
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quality reads (Supplementary Fig. 1 for analysis structure). After
removal of 173 OTUs with high probability of being contaminants
and 13,472 rare OTUs present in only one sample or with less than 20
reads, there remained 4218 OTUs derived from 43,775,771 reads. To
enable diversity analyses based on proportions, the samples were
rarefied to a minimum of 6543 reads, retaining 529 samples contain-
ing 4005 OTUs and 3,461,247 reads. For consistency, unrarefied data
from these same 529 samples were used to test differences between
subject groups by DESeq2, and as a basis for network analyses. No
systematic differences in results were seen if the larger sample was
analyzed.

Non-respiratory diagnoses potentially influencing the micro-
biome were diabetes (n = 18 patients) and gastro-oesophageal reflux
(GERD, n = 36). No associations were found for diabetes or GERD in
any analyses, and we classified subjects with these diagnoses as unaf-
fected.

The average age of the 529 subjects was 56 years (Supplementary
Table 1). Sixty subjects were current smokers and 216 were ex-smok-
ers (with a mean 18 years since quitting). The mean levels of the
forced expiratory volume in one second (FEV1) and the forced vital
capacity (FVC) of the subjects were within the normal range [47]
(Supplementary Table 1). There were 77 doctor-diagnosed asth-
matics, 82% of whom were atopic by prick skin tests (47% of the rest
of the population were also atopic). Just 27 (35%) of our asthmatics
were currently using inhaled corticoid steroids (ICS), indicating a pre-
ponderance of mild disease. There was only one case with a clinical
diagnosis of COPD, fewer than the 7% anticipated [23]. The frequency
of asthma and current smoking were not different to the whole Bus-
selton cohort [21].

Subjects were not included if they were taking antibiotics within
six weeks of the time of study. The annual rate of antibiotic prescrip-
tion in the Australian population is 254 per 1000, and half of these
will be for respiratory infections [48], so it is likely that many smok-
ers will have intermittently been given antibiotics. Asthma was not
currently considered an indication for antibiotics in the Australian
healthcare system.

An estimate of Bray Curtis beta diversity (b) for the population
gave the mean dissimilarity in microbial diversity (M) between sub-
jects to be 0.51 § SD=0.06 (on a scale of 0�1), indicating that on aver-
age individual airway microbiomes shared about half of their OTUs.
No significant differences in b were observed between disease phe-
notypes through PERMANOVA (Adonis function in R).
Five phyla contained 98.4% of all OTUs (Table 1, Supplementary
Table 2). Firmicutes (predominately Streptococcus and Veilonella spp.)
was the most common phylum, with 24 OTUs in the top 50, and
57.9% of all OTUs found in the complete dataset. Bacteroidetes (pre-
dominately Prevotella spp.) contained 14.1% of the OTUs, Proteobacteria
(predominately Neisseria and Haemophilus spp.) contained 12.3%, Acti-
nobacterium 9.1% and Fusobacterium 4.9%. Overall, the 50 most abun-
dant OTUs accounted for 92% of the data (Supplementary Table 2).

Streptococcus spp. show high rates of clonal diversity and are
poorly differentiated by standard culture and 16S sequences [24,25].
We therefore sequenced the methionine aminopeptidase gene (map)
to further differentiate between Streptococcus taxa [24] in 483 sub-
jects. After removal of map_OTUs only present in one sample or with
fewer than 20 reads or negative correlations with qPCR abundance
there remained 14,898 map_OTUs (Supplementary Fig. 2), suggesting
substantial variation in Streptococcal strains in the population. b
diversity estimates in rarefied data (to a level of 7700 reads) found
M = 0.84 § SD = 0.06, indicating low similarity of the streptococcal
composition between subjects. The nine most prevalent map_OTUs
were identified as S. salivarius, with S. parasanguinis the tenth most
prevalent. (Supplementary Table 7). The potential pathogen S. mitis/
pneumoniae was detected in 58% of subjects, although at low abun-
dance.

Microbial communities are formed through complex ecological
interactions that can be uncovered through network analyses
[30]. On the assumption that correlations in the abundance of dif-
ferent taxa would reflect co-ordinated growth, we applied
weighted correlation network analyses (WGCNA) [31] to the Bus-
selton dataset.

We observed 13 discrete modules in which the abundance of
members was strongly correlated. Just 13 OTUs remained unassigned
to a network. The WGCNA program labels modules with unique col-
our identifiers, but we have also named them according to their most
abundant genera (Table 2). Unassigned OTUs are referred to as the
grey module. The 5 largest modules (in terms of abundance of mem-
bers) contained 97.6% of all OTU sequence reads (Table 2).

Individual hubs were strongly connected to their network vectors
(range of P = 7.9E-266, MM (module membership: correlation with
the module eigengene) = 0.95 to 1.9E-121, MM = 0.81) (Supplemen-
tary Table 4), and the strengths of association suggest a hypothesis
that these co-abundance modules may represent “guilds” of co-oper-
ating bacteria that occupy ecological niches on the mucosa.



Table 2
General population microbiome module summary and associations with smoking.

Module ID (Colour) Number of OTUs Total Abundance Overall% Cum% Smoking R Smoking P Module description

Prevotella.1 (Turquoise) 2218 18,636,985 42.69 42.69 Commensal carpet: Veilonella, Prevotella, Actinomyces.
Veillonella and Atopobium hubs

Streptococcus.2 (Blue) 472 9433,313 21.61 64.30 �0.13 2.E-02 Streptococcus and Haemophilus prevalent. Lactobacilliae
and Gemella hubs

Streptococcus.1 (Magenta) 126 8480,289 19.43 83.73 0.18 8.E-04 Streptococci dominated
Fusobacteria (Brown) 583 3099,110 7.10 90.83 �0.26 4.E-08 Fusobacteria and Leptotrichia hubs
Neisseria

(Green)
204 2969,651 6.80 97.63 �0.35 1.E-14 Neisseria dominated, prevalent Capnocytophagia

Prevotella.2
(Black)

136 387,098 0.89 98.52 0.15 4.E-03 Prevotella, Parvimonas, Streptococci, Porphryomonas

Veillonella
(Cyan)

50 173,186 0.40 98.92 0.17 1.E-03 Veillonella

Prevotella.3 (Purple) 71 105,630 0.24 99.16 Prevotella dominated
Indeterminate

(Tan)
55 101,284 0.23 99.39 0.15 4.E-03 Prevotella and Treponema

Porphymonas (Salmon) 50 89,951 0.21 99.60 0.15 6.E-03 Porphyromonas and Prevotella
Bifidobacteria (Pink) 134 86,562 0.20 99.80 0.32 8.E-13 Bifidobacterium hubs
Peptococcus (Midnightblue) 44 79,920 0.18 99.98 �0.16 2.E-03 Peptococcus
Contaminants

(GreenYellow)
62 8869 0.02 100.00 �0.12 3.E-02 Herbaspirillum: potential contaminants

Unconnected (Grey) 13 451 0.00 Unconnected OTUs: potential contaminants
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The largest guild (turquoise module: Prevotella.1) accounted for
42.7% of reads (Table 2, Supplementary Table 4). The most common
organisms were within the genera Prevotella, Veillonella, Actinomyces
and Atopobium. These organisms resemble common mucosal com-
mensals at other body sites, and perhaps represent a base microbial
carpet. The smaller guild (cyan) on the same division (B) of the net-
work dendrogram (Supplementary Fig. 3) was almost entirely made
up of Veillonella spp. and may occupy a related ecological niche.

The blue module (Streptococcus.2) contained 21.6% of reads, pre-
dominately from the genera Streptococcus, Haemophilus and Veillo-
nella. Network hubs included Lactobacillales and Gemella. The
adjacent network (Neisseria: green) (Supplementary Fig. 3) was dom-
inated by Neisseria, with Porphyromonas, and Capnocytophagia. This
may suggest a normal guild than can be occupied by Proteobacteria
potential pathogens.

The magenta module (Streptococcus.1) (19.4% of reads) was
completely dominated by Streptococcus taxa (40%) and an unidenti-
fied Firmicutes (60%) (Supplementary Table 4) which is likely also to
be streptococcal (based on phylogenetic clustering, not shown). Net-
work hubs were also Streptococcus, identifying a streptococcal-spe-
cific guild in the mucosa.

A stepwise multiple regression (IBM SPSS Statistics v25) found
that microbial diversity in individual airways was independently
related to current cigarette smoking (R2 = 6%, P < 0.001), a current
diagnosis of asthma (additional R2 = 1.4%, P < 0.005) and packyears of
smoking (additional R2 = 0.8%, P = 0.04) (Supplementary Table 3), but
not to age or sex. We therefore partitioned the data into three sub-
groups: smoking + packyears> 10 (n = 159); asthmatic (n = 77); and
unaffected (n = 300). The seven asthmatics who were current smok-
ers were included in both smoking and asthmatic subgroups. Exclud-
ing these individuals made no difference to our significant findings
(data not shown).

3.2. Smoking

A DESeq2 analysis to identify significant differences in the abun-
dance of specific taxa revealed marked effects of cigarette smoking.
(Fig. 1, Supplementary Fig. 4, Supplementary Table 5a and b). The
loss of diversity affected many abundant OTUs, including those in the
genera Fusobacterium, Neisseria, Haemophilus, Veillonella and Gemella.
By contrast, the OTUs increased in smokers were in general highly
abundant Streptococci. Examination of map gene OTUs attributed
increases in abundance to S. parasanguinis (log2(Fold change) 5.2,
Padjusted=1.75E-07), S. mitis/pneumoniae (3.62, 4.81E-09), S. salivarius
(3.03, 5.59E-15) and S. thermophilus (2.53, 7.38E-05) (Supplementary
Table 8).

To further explore the impact of smoking and asthma on the higher
order structure of the airway microbiome, co-abundance networks
were constructed separately in the asthmatic and current smoker por-
tions of the cohort and compared with the full dataset (representing
the whole population) (Supplementary Fig. 4). We limited direct com-
parison to the 4207 OTUs present in all datasets. Including the remain-
ing 13 OTUs made no difference to the conclusions.

The network structure of the communities was profoundly altered
in current smokers. Whilst the largest guild (Prevotellla.1: commen-
sal carpet) showed relative preservation, other modules showed
markedly lower levels of conservation and were strongly positively
or negatively associated with smoking status; either in terms of mod-
ule eigenvectors or hubs (Fig. 2, Table 2, Supplementary Table 4). In
smokers, 276 OTUs were not included in any module, meaning that
their abundances were no longer correlated with other organisms.
Unconnected taxa most strongly featured Streptococcus (70 OTUs),
unknown genera (41 OTUs) and Veillonella (35 OTUs).

3.3. Asthma

Microbial diversity loss in asthmatics compared to non-smoking
subjects was qualitatively different to the effects of smoking. DESeq2
analysis showed only two taxa (Neisseria and Rothia OTUs) to be
increased in abundance in asthmatic airways (Padjusted< 0.05) (Fig. 3,
Supplementary Table 6a). Of these, the Neisseria OTU was abundant
(4.7% of reads in the population) and showed a 2-fold increase, con-
sistent with increases in Protebacteria spp. consistently observed in
excess by comparisons of asthmatic and normal airways [1,15,16,49].

Eighty-four OTUs were in relatively low abundance among asth-
matic subjects (Fig. 3, Supplementary Table 6b). In marked contrast
to smokers, the affected organisms were often in poorly character-
ized or potentially fastidious genera, including Leptotrichia, Selenomo-
nas, Megasphaera and Capnocytophaga. Some representatives of the
more common genera Actinomyces, Prevotella and Veillonella were
also less abundant.

Inhaled corticosteroids (ICS) are widely used in the maintenance
treatment of asthma, and 27 (35%) of our asthmatics were currently
using such therapy. Logistic regression analyses showed no



Fig. 1. Smoking and the airway microbiome, (a) The volcano plot shows significant differences in the abundance of OTUs between current smokers and the rest of the population.
Fold change is shown on the x axis and -log10 P (FDR corrected) on the y axis. Relative abundances are reflected in the data point sizes; (b) shows differences in alpha diversity
between smokers and never smokers (boxes show inter-quartile range, notches 95% CI of the median, P values are two-sided frommultiple regression).
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independent effect on ICS use from OTUs positively or negatively
associated with asthma, or with microbial diversity.

The module eigenvectors did not correlate with the presence of
asthma, indicating that the general structure of oropharyngeal micro-
bial communities in asthmatics was preserved (Fig. 2). Nevertheless,
the asthma-enriched Neisseria_10,019 taxon was a hub of the Neisse-
ria guild, which also contained the significantly reduced Capnocyto-
phagia_2454 (Supplementary Table 4). Other asthma-reduced taxa
were concentrated in the Prevotella.1 (containing 57 of the 84
asthma-associated OTUs) and Prevotella.2 (12/84) guilds (Chi2 exact
test, P = 2.8 £ 10�8). Asthma-associated OTUs were enriched among
the most highly connected module members (OR=18.6,
P = 2.9 £ 10�9), and so are well positioned to influence host-microbial
interactions. The Neisseria, Prevotella.1 and Prevotella.2 guilds thus
provide a focus for further understanding of the ecology of asthmatic
airway microbiota.

4. Discussion

Our study indicates that, in common with other body sites, the
healthy airway microbiota are contained within a structured ecosys-
tem. Although bacterial genera and species differ considerably
between body surfaces, the main phyla in airway samples
(Firmicutes, Bacteriodetes, Actinobacteria, and Proteobacteria) also
dominate the human gut [50], skin [51] and vagina [27]. Our tabula-
tion of OTUs and differences in the airway microbiota between smok-
ers, asthmatics, and a control group that has neither, provides an
initial basis for the systematic culture and sequencing of the airway
microbiota and their eventual management to prevent and treat
common respiratory conditions.

Although our results were well powered to map microbial commu-
nity composition, limited functions could be surmised by genus assign-
ments and the relationship of the networks to each other. Our findings
may frame future metagenomic and metatranscriptomic shotgun
sequencing, aiding the systematic accrual of reference genomes.

The network analyses captured very strong positive and negative
correlations between the abundances of different taxa. They are indi-
cators that the airway microbiota form a complex and highly struc-
tured ecosystem. We have named networks according to their most
abundant members, but the defining functional traits of the most
important networks will await metagenomic analyses. These net-
works are likely to interact with secreted host factors that either con-
strain airway pathogens or support commensal bacteria [52]. Such
factors have not yet been systematically surveyed.

Cigarette smoking has previously been shown to affect the oral
[53] and airway microbiota [4] with characteristic increases in



Fig. 2. Network structure of the airway microbiome in normal subjects, compared to smokers and asthmatics The Chord plots show sharing and discordance of 4207 OTUs common
to the three datasets for co-abundance networks. (a) Network membership in the whole population (top half of plot) compared to current smokers (bottom half of plot); and (b)
compared to asthmatics. Module colours are arbitrarily assigned by WGCNA, and module bacterial names are derived from Table 2. Modules in smokers and asthmatics are simply
named by size (Smoker.1, Asthma.2, etc.). There is a marked change of structure with fragmentation of major networks in the smokers, but high conservation of network member-
ship between asthmatics and the whole cohort.
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Streptococcus spp. The decline in Neisseria spp. in our samples (Fig. 1
volcano plot) is also consistent with a loss of Proteobacteria reported
in the mouths of smokers [53]. The extent of disruption to the airway
ecosystem suggests a significant capacity for the microbiota them-
selves to damage human health. The loss of diversity and the increase
in prevalence of S. pneumoniae/mitis clades revealed by map gene
sequencing may predispose smokers to the recurrent infections that
lead to COPD [4,5] and dental disease [53]. Smoking is accompanied
by substantial changes in the bowel flora [54] that may mediate
smoking influences on inflammatory bowel disease. Bacteria have
known roles in the genesis of cancer in general [55] and in lung can-
cer specifically [6]. Streptococcus spp. produce an array of potent tox-
ins that act against human cells or tissues [56], and the expansion of
Streptococcus clades in smokers might be carcinogenic. Most patients
with lung cancer have been heavy smokers and smoking often con-
tinues after diagnosis. The gut microbiome influences lung cancer
responses to immunotherapy [57], and our results suggest that the
local lung microbiota may also modify therapeutic outcomes.

Although the profound consequences of cigarette smoking are
clear, the community degradation seen in asthmatics is more subtle
and without an obvious cause. Importantly, within asthmatic subjects
we did not find current ICS use to be associated with additional
microbial abnormalities. The presence or absence of ICS induced
changes in the bacterial microbiota is contentious [58], but our
results are consistent with controlled studies of steroid and antibiotic
naïve wheezing infants [59] and adults with steroid-naive atopic
asthma [60]. We were not able to inform on ICS effects in the thoracic
airways or in more severe disease.

Divergent (but potentially complementary) theories are
offered on mechanisms by which microbial diversity might pre-
vent asthma. The “immune deviation” hypothesis suggests that
the adaptive immune system needs exposure to infections in
order to avoid inappropriate reactions [61]. An extension of this
model is that absence of commensal organisms leads to loss of
local or systematic tonic signals that normally down-regulate
immune responses at mucosal surfaces [14]. Our findings, of
reduced numbers of distinctive low-abundance organisms, are
consistent with immune modulation by these organisms.
However, the consistent finding of excesses of Proteobacteria in
this and other studies [1,15,16,60] (and Streptococcus spp. in severe
disease [15,17,18]) are also consistent with asthmatic airway inflam-
mation that follows intermittent mucosal damage by bacteria. Proteo-
bacteria include many known potential pathogens from the genera
Haemophilus, Moraxella, and Neisseria that, despite the ability to cause
disease, are commonly carried without symptoms in the population
(“pathobionts”) [2]. In the “asthma as an infection” hypothesis it
becomes possible that a diverse microbial community protects
against asthma through inhibition of pathobiont effects, by modifying
their growth, adherence or biofilm formation [62].

Our study has limitations that may affect interpretation of the results.
The results from cross-sectional surveys are descriptive, and detected
associations are hypothesis-generating and not necessarily causal.
Although the effects of smoking on the microbiota were profound, there
was only one diagnosed case of COPD (the late stage of smokers’ lung dis-
ease). Asthma was in general mild with a strong atopic component, and
the data gathered in this general epidemiological survey do not allow
investigation of severe or neutrophilic asthma phenotypes that may
exhibit different microbial signatures [14,63].

This single-centre study does not address the level of heterogene-
ity of airway microbial communities in other environments. The
most common taxa appear similar to many published studies of
Western subjects in health and disease, but little is known about air-
way microbiota in the developing world. Direct comparisons will
depend on consistency of sample collections and meta-analyses of
sequences amplified and analyzed by standardised protocols.

Overall, our results provide a strong impetus to isolate and study
the individual organisms that are perturbed in asthmatic airways,
and consequently to test in model systems hypotheses that involve
immune modulation or mucosal damage.

We suggest that systematic culture, genome sequencing and
metabolomic profiling of the airway microbiota are necessary to
develop airway metagenomics, and that integrated study of these fac-
tors will underpin understanding of the interactions between bacte-
ria, the airway mucosa, and the airway immune system. Such studies
may inform whether replacement of specific organisms can offer a
strategy for the prevention of asthma.



Fig. 3. Asthma and the airway microbiome. (a) The volcano plot shows significant differences in the abundance of OTUs between asthmatics and non-smoking subjects with less
than 10 packyears of lifetime exposure. Fold change is shown on the x axis and -log10 P (FDR corrected) on the y axis. Relative abundances are reflected in the data point sizes; (b)
shows differences in alpha diversity between asthmatics and unaffected non-smoking subjects (boxes show inter-quartile range, notches 95% CI of the median, P values are two-
sided frommultiple regression).
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