Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2021 Aug 26.
Published in final edited form as: Cancer Treat Res Commun. 2020 May 16;25:100179. doi: 10.1016/j.ctarc.2020.100179

Emerging biomarkers in urothelial carcinoma: Challenges and opportunities

Nikolaos Andreatos a, Gopa Iyer b, Petros Grivas c,*
PMCID: PMC8387954  NIHMSID: NIHMS1730157  PMID: 32920502

Abstract

Advanced urothelial carcinoma (UC) is a very important cause of cancer-related morbidity and mortality with, until recently, only a few available therapeutic options. The treatment landscape has dramatically changed in recent years with the introduction of immune checkpoint inhibitors and the development of novel targeted agents, such as erdafitinib, and antibody-drug conjugates, such as enfortumab vedotin. Cost-effective utilization of this rapidly expanding therapeutic armamentarium can be further optimized via the identification and validation of reliable prognostic and predictive biomarkers that inform prognostication and patient selection. In this review, we aim to summarize examples of recent developments in the rapidly expanding field of emerging biomarkers in UC, outlining challenges and opportunities.

Keywords: Bladder, Biomarkers, DDR, Immunotherapy, NGS, Trial

Introduction

Bladder cancer is prevalent in the United States, with 80,470 estimated cases in 2019 [1], 25% of which constitute muscle-invasive disease [2,3]. Urothelial carcinoma (UC) is the most common histology and can arise throughout the urinary tract [4]. Metastatic disease occurs de novo in 4% of cases, but more commonly follows initially localized disease and has poor prognosis [2,3,5,6]. First-line treatment consists of platinum-based chemotherapy (PBT) while salvage chemotherapy has limited benefit [7]. The introduction of immune checkpoint inhibitors (ICIs) has transformed this landscape; the Food and Drug Administration (FDA) has approved five ICIs in the platinum-refractory setting, two for cisplatin-unfit patients with high PD-L1 (hPD-L1) expression or platinum-unfit patients [7-9], and one for BCG-unresponsive carcinoma in situ (CIS) in patients unable/unwilling to undergo radical cystectomy [10,11]. The accelerated FDA approvals of erdafitinib (FGFR inhibitor) [12,13] and enfortumab vedotin [antibody-drug conjugate (ADC) against Nectin-4] [14,15] provide additional salvage options.

These advances are tempered by toxicity, cost, and limited data on patient selection and treatment sequencing [7,16]. While “prognostic” biomarkers have been identified, they cannot guide therapy selection, but only forecast anticipated outcomes, regardless of treatment [16-18]; biomarkers able to predict clinical benefit (“predictive”) are urgently needed [16]. Below we survey some key development in this exciting field, but space limitations preclude an exhaustive discussion. More details can be found in excellent reviews [16,19-21].

Molecular classification of UC

Classification of UC into molecular subgroups is evolving. After a landmark publication from Lund University [22], leading to an immunohistochemistry-based (IHC) taxonomy in 2012 [23] (updated in 2018 [24]), groups from the University of North Carolina [25], MD Anderson [26,27], the Cancer Genome Atlas Research Network (TCGA) [28,29] and the Curie Institute [30] proposed independent classifications (Table 1). Most schemes recognize luminal and basal subtypes, with the latter demonstrating worse prognosis [31]. A neuronal subtype with even poorer prognosis was later incorporated and can be identified by a validated 84-gene panel [29,32,33]. Basal tumors appear to respond better to cisplatin-based neoadjuvant chemotherapy (NAC) [34,35] and luminal cluster II tumors to atezolizumab [36], suggesting that molecular subtypes may have predictive utility, upon further validation.

Table 1.

A selection of published molecular classification schemes for urothelial carcinoma.

Study Year Sample Size Categories Comments
Lindgren [22] 2010 144 -MS1
-MS2
-MS2 tumors characterized by genomic instability, p53 dysfunction
Sjodahl [23] 2012 308 -Urobasal A
-Genomically unstable
-Urobasal B
-Squamous-cell like
-Infiltrated
-Urobasal A/B strongly expressed FGFR3
Damrauer [25] 2014 262+49 (validation) -Basal-like
-Luminal
-Luminal with higher FGFR3/TSC1 expression, basal with RB1 loss
-Claudin-low subtype in basal tumors; similar prognosis
Choi [26] 2014 73+57 (validation) -Luminal
-Basal
-p53-like
-Luminal with FGFR3, ErbB expression
-Basal with squamous features
-p53 predicts chemo-resistance
TCGA [28] 2014 131 -Cluster I
-Cluster II
-Cluster III
-Cluster IV
-High mutational burden across examined samples
−76% of samples with altered chromatin regulation
-Cluster I (papillary-like) with high FGFR3 expression
-Cluster III noted to have mixed basal/squamous features
Rebouissou [30] 2014 383 -Non-basal-like
-Basal-like
-Basal-like with EGFR signaling, squamous histologic features
-FGFR3 expression equally distributed
-Inhibition of EGFR effective against basal-like in experimental assessment
Robertson (TCGA) [29] 2017 412 -Luminal-papillary
-Luminal-infiltrated
-Luminal
-Basal/squamous
-Neuronal
-Luminal-papillary with FGFR3 signaling
-Luminal-infiltrated and basal/squamous with immune signatures; former also with stromal signatures/p53 wild-type
-Neuronal with loss of p53/RB1
Mo [27] 2018 Combination of TCGA 2017, MD Anderson and Lund datasets Differentiated/Basal -Basal with high CTLA4 and PD-L1 expression
Marzouka [24] 2018 426 -Uro (UroA-Prog, UroB, UroC, Uro-Inf)
-Genomically unstable (GU,GU-Inf)
-Basal-Squamous (BaSq, BaSq-Inf)
-Mesenchymal-like
-Small-cell/Neuroendocrine-like
-UroB worse prognosis than other Uro types
-FGFR3 mutations noted in UroA-Prog and UroB, but not UroC
-Remaining types with high mutational burden, DDR alterations
Kamoun [37] 2019 1750 -Luminal papillary (LumP)
-Luminal non-speeified (LumNS)
-Luminal unstable (LumU)
-Stroma-rich
-Basal/Squamous (Ba/Sq)
-Neuroendocrine-like (NE-like)
-NE-like worst prognosis
-LumP with frequent FGFR3 overexpression
-Ba/Sq with frequent EGFR overexpression and immune checkpoint markers
-LumU with ErbB2 expression

Discordance between classification schemes hinders their practical use, leading a multi-national consortium to formulate a consensus taxonomy, which recognizes six molecular types: luminal papillary (LumP), luminal unstable (LumU), luminal non-specified (LumNS), stroma-rich, basal/squamous and neuroendocrine-like [37]. LumP, stroma-rich and LumNS tumors have the best prognosis, LumU tumors fare worse, while basal/squamous and neuroendocrine-like tumors demonstrate the worst outcomes. Response to cisplatin-based NAC was prominent among LumNS and basal/squamous tumors, while LumNS, LumU and neuroendocrine-like tumors responded to atezolizumab. LumP tumors demonstrated FGFR3 alterations, LumU tumors ErbB2 amplification, and basal/squamous tumors high EGFR expression, suggesting the potential of targeted inhibition.

DNA damage response (DDR) gene mutations

Since DNA damage underlies the efficacy of PBT, alterations in the DDR pathway may enhance chemo-sensitivity [7,16,38]. Data on ERCC1 and ERCC2, enzymes involved in nucleotide excision repair, shed light on this hypothesis [16,39,40]. Bellmunt et al. associated low ERCC1 RNA expression with improved survival after PBT in advanced UC [41]; an IHC-based study demonstrated similar findings [42]. Reports from bladder-directed therapy cohorts demonstrated opposite results [43,44]. A trial of NAC with dose-dense (dd)MVAC showed no association between ERCC1 expression and prognosis [45], while a meta-analysis associated high ERCC1 expression with shorter progression-free survival (PFS), but not OS [46]. Loss-of-function ERCC2 mutations have been associated with improved outcomes after PBT in clinical and pre-clinical settings [47-51]. Mutations in other DDR genes, (e.g. ATM, FANCC, RB1) correlate with response to cisplatin-based NAC [52], while p53 mutations have been linked to both inferior [53-56] and improved outcomes [57] after chemotherapy. Notably the “p53-like” molecular subtype has been associated with resistance to NAC [26,58]. Counter-intuitively, MRE11 (a protein involved in DNA double-strand break repair) expression correlated with improved outcomes following bladder-directed radiotherapy [59,60]. This paradox has been attributed to tumor DNA repair deficiency, with MRE11 up-regulation signifying an ineffective adaptive response [40].

Given the plethora of putative biomarkers, comprehensive genomic assays may serve as better response predictors [51,61] and are increasingly integrated into clinical trials. The Alliance trial (NCT03609216) [62], assessing 3-year disease-free rates among individuals with DDR alterations and <cT1 response to dose-dense gemcitabine/cisplatin (GC) may help redefine discussions about indications for bladder preservation. The RETAIN trial investigates outcomes in patients with ATM/RB1/FANCC/ERCC2 mutations and no residual disease after accelerated MVAC followed by active surveillance or bladder-directed therapy [63]. Mount Sinai investigators are assessing the impact of DDR gene mutations on outcomes of patients managed with neoadjuvant GC/nivolumab (with maintenance nivolumab allowed for up to 8 cycles) and radical cystectomy or surveillance [64]. The activity of PARP inhibitors in DDR-deficient tumors is also under investigation [65,66], but so far without promising results [67,68].

Growth factors and kinase-mediated signaling

Constitutive activation of the FGFR pathway is common in UC, with a recent report identifying such aberrations in 33% of specimens [69], most frequently in upper-tract and non-muscle invasive disease [70,71]. Despite a small negative trial of the FGFR inhibitor dovitinib [72], erdafitinib, a pan-FGFR inhibitor demonstrated a response rate of 40% in the platinum-refractory setting [13] and received accelerated FDA approval for patients with activating FGFR2/FGFR3 mutations/fusions in 2019 [12]. The ongoing THOR trial (NCT03390504) is comparing erdafitinib to chemotherapy or pembrolizumab [73]. BGJ398 (infigratinib) [74,75], AZD4547 [76], pemigatinib [77], rogaratinib [78], Debio1347 [79], B701 [80] and MFGR1877S [81] are being evaluated in advanced disease, while a phase III trial (NCT04197986) will assess adjuvant infigratinib vs placebo after radical surgery [82]. Given the variable efficacy of these agents and the use of different assays and biomarkers in clinical trials, validation of predictive biomarkers for FGFR inhibitors is very challenging. Next-generation sequencing (NGS) of tumor tissue and cell-free circulating tumor (ct)DNA at baseline and after progression may help identify resistance mechanisms and guide therapy [74,83,84].

VEGF overexpression heralds poor prognosis in UC, suggesting the potential of angiogenesis inhibition [85-88]. The RANGE trial showed modest PFS gain (median 4.1 vs 2.8 months, p = 0.0002), without significant OS benefit (median 9.4 vs 7.9 months, p = 0.25), from the addition of ramucirumab to docetaxel in platinum-refractory disease [89]. The CALGB 90601 (Alliance) trial assessed bevacizumab/GC vs GC alone in the first-line setting and showed modest PFS (Hazard Ratio (HR): 0.77, p = 0.0074) but not OS benefit (median 14.5 vs 14.3 months, p = 0.17) [90]. Results with the anti-angiogenic kinase inhibitors sunitinib, sorafenib, pazopanib and vandetanib have been discouraging [91-98]. The combination of angiogenesis inhibitors with immunotherapy is being investigated, with promising signals for cabozantinib plus nivolumab/ipilimumab [99] pembrolizumab plus ramucirumab [100] or lenvatinib [101] and sitravatinib plus nivolumab [102]. A phase II trial (NCT03272217) evaluating atezolizumab/bevacizumab and a phase III trial comparing pembrolizumab/lenvatinib vs pembrolizumab/placebo (NCT03898180) in cisplatin-ineligible patients, among other trials, are ongoing [103,104].

ErbB pathway inhibition has produced variable results; EGFR blockade demonstrated minimal benefit [105,106] and trastuzumab-based Her2/neu inhibition showed potential [107] that was not confirmed on a subsequent trial [108]. Limited sample size and challenges with Her2/neu expression heterogeneity, assay concordance and standardization (known issues in breast cancer [109] but less studied in UC), may be responsible for this discrepancy. Interestingly, the MyPathway trial suggests that trastuzumab/pertuzumab can be active in advanced UC, while results from NCI-MATCH arm J are pending [110]. Additional anti-Her2/neu therapies are under investigation; a phase II study noted a response rate of 60.5% following RC48-ADC [111], while the DS-8201a/nivolumab combination is undergoing assessment (NCT03523572) [112]. Data on T-DM1 is needed, as the reported results of NCI-MATCH arm Q included no UC cases [113].

Broader inhibition of the ErbB family is another potential strategy, with lapatinib showing activity in tumors with EGFR or Her2/neu overexpression [114]; however, switch maintenance lapatinib after induction chemotherapy demonstrated no clinical benefit [115] and neratinib showed no significant activity in UC [116]. Afatinib, despite lacking activity in unselected patients and the four UC cases included in NCI-MATCH arm B [117], showed a promising signal in patients harboring ErbB2/ErbB3 amplification/mutation in another trial [118]. Similarly, PI3K/AKT/mTOR pathway inhibition may hinge on patient selection, with durable response to everolimus noted in a patient with TSC1 inactivating mutation, compared to suboptimal results in unselected cases [119,120]. Similar findings were reported with everolimus/pazopanib [121], suggesting the existence of rare, highly targetable molecular profiles. Results from the NCI-Match (NCT02465060), TAPUR (NCT02693535) and the future Combo-Match trials will provide further guidance [122-124].

Predicting immunotherapy response

ICIs are standard-of-care in platinum-refractory UC, and a first-line option for platinum-ineligible patients or cisplatin-ineligible patients with hPD-L1 tumor expression [7,8,16]. Pembrolizumab was also approved for BCG-unresponsive CIS in patients unwilling/unable to undergo radical cystectomy following the KEYNOTE-057 trial [10,11]. While rapid and durable responses following ICI administration occur, significant benefit is restricted to a minority of patients [125]. Given the cost and toxicity of ICIs, early identification of potential responders is desirable [126-129].

ICI response rates are associated with hPD-L1 tumor tissue expression in the platinum-refractory setting [36,130-134], but responses are not limited to the hPD-L1 group. While phase II trials of pembrolizumab or atezolizumab for cisplatin-ineligible patients in the first-line setting demonstrated responses across all PD-L1 subgroups [135,136], an interim analysis of the KEYNOTE-361 and IMvigor-130 phase III trials showed inferior survival with ICI monotherapy in patients whose tumors demonstrated low PD-L1 expression [137]. The FDA and the European Medicines Agency subsequently restricted pembrolizumab or atezolizumab in the first-line setting to cisplatin-ineligible patients with hPD-L1 tumor tissue expression based on a companion assay [the FDA also permits atezolizumab or pembrolizumab use in platinum-ineligible patients] [137,138]. Evidently, the association of tumor PD-L1 expression with outcomes is complex and confounded by disparities in employed assays and scoring systems [16,127]. Recently, the IMvigor-130 trial randomized patients to first-line PBT/atezolizumab (arm A), atezolizumab alone (arm B) or PBT/placebo (arm C) and suggested a non-significant trend towards longer OS in arm B vs arm C in the hPD-L1 subgroup analysis, but longer follow-up is needed [139]. It remains to be seen whether mature results from the IMvigor-130 [139], Key-note-361 [140] and Checkmate-901 [141] phase III trials, may result in a paradigm shift in UC similar to non-small cell lung cancer [142,143]. Interestingly, the DANUBE trial showed no OS benefit from either durvalumab in patients with hPD-L1 tumors or durvalumab/tremelimumab in “all-comers” with metastatic UC in the first-line setting compared to PBT [144]. However, the Javelin Bladder 100 trial which assessed switch maintenance avelumab following lack of progression on first-line PBT met OS endpoints in “all comers” and patients with hPD-L1 tumors [145]. Detailed data from these two trials are awaited.

Indicators of immune activation, such as infiltrating CD8 T-cells [36,146], increased T-effector gene [36] and IFN-γ expression [130] and high intra-tumoral T-cell clonality [147] are associated with ICI response. Conversely, TGFβ expression has been associated with worse outcomes possibly by hindering tumor infiltration by immune cells in the stroma [146,148,149]. Moreover, instability of the cancer genome seems relevant to neoantigen formation and immunogenicity [150,151], which may explain why biomarkers of genomic instability, such as high tumor mutational burden (TMB) [36,129,130,146], microsatellite instability [152] and DDR alterations [153,154] appear to correlate with ICI response. Among non-UC bladder tumors, squamous cell carcinomas demonstrate high TMB and PD-L1 expression and may possibly benefit from ICIs [155].

The integration of the aforementioned biomarkers in a scoring system, (“immunogram” per van Dijk et al. [127,156]) may hold future promise. Two recent neoadjuvant single-agent ICI trials conducted such comprehensive biomarker assessment [157,158]. The ABACUS trial (2 doses of atezolizumab) demonstrated that CD8 T-cell infiltration and expression of an eight-gene transcriptional T-cell biomarker correlated with pathologic response, while TGFβ expression with resistance; PD-L1 expression, TMB and DDR gene mutations were not associated with pathologic response [157]. The PURE-01 trial (3 doses of pembrolizumab) reported that both higher PD-L1 expression and higher TMB correlated with pathologic response, while DDR gene mutations did not [158]. These discrepancies illustrate challenges in reproducibility, consistency and validation of emerging biomarkers. Novel technologies relying on RNA expression profiling may help identify robust signatures predictive of response to immunotherapy [159].

Discoveries on the impact of IDO1 expression on immune response has led to the hypothesis that IDO1 inhibition may facilitate response to ICIs [160]. Despite promising results from the Echo-202 study [161] and from a report assessing BMS-986205/nivolumab in a pre-treated cohort [162], recent data from patients with melanoma [163] and pancreatic carcinoma [164] question ICI/IDO1 inhibitor combination therapy. Additional data from UC is anticipated [165,166].

Evolving therapeutic targets

Nectin-4 is a cell adhesion molecule expressed in >90% of UC specimens [167,168]. An ADC targeting Nectin-4 (enfortumab vedotin) recently achieved a response rate of 44% with median PFS and OS of 5.8 and 11.7 months, respectively in a heavily pre-treated (PBT and ICI) cohort in the single-arm phase II EV-201 trial [14] and received accelerated FDA approval [15]; the EV-301 trial comparing enfortumab vedotin to salvage chemotherapy is ongoing (NCT03474107) [169]. Sacituzumab govitecan and ASG-15ME are other ADCs (anti-Trop-2 and anti-SLITRK6, respectively) with promising early activity [170,171]. Interim results from cohort 1 of the TROPHY-U-01 trial (sacituzumab govitecan following progression on PBT and ICI) are very encouraging with overall response rate of 29% in heavily pre-treated patients; follow-up data is pending [172].

Putative biomarkers of chromatin dysregulation in UC (e.g. CREBBP/EP300 inactivating mutations or deletions) did not lead to significant efficacy of mocetinostat, a selective histone-deacetylase inhibitor, in a phase II trial in biomarker-selected patients with platinum-refractory advanced UC [173]. EZH2 inhibitors, a novel class of epigenetic modifiers, are being tested in patients with KDM6A/ARID1A alterations [174-176].

Biomarker analysis and utilization

Once biomarkers are validated, reliable laboratory identification constitutes the next challenge. ctDNA technology is promising in this respect, with potential roles in predicting outcomes, assessing treatment effect and identifying serially significant genomic alterations [177,178]. Tissue-derived testing and ctDNA results may differ; the PREVAIL study (NCT03788746) is assessing the correlation of tissue vs blood-derived TMB among other biomarkers [178-180]. Additional assays focusing on whole transcriptome profiling are under development [34,181]. While NGS techniques are increasingly employed, data on their comparability, cost-effectiveness, and clinical utility is needed [182]. The role of mutant-allele fraction and bi-allelic status in predicting therapeutic response remains elusive. Expert review of somatic tumor testing can identify targets for approved therapies, biomarker-based trials, and trigger dedicated germline mutation testing [183], with germline mutations reported in up to 24% of patients with UC [184,185]. Importantly, somatic mutation testing is no substitute for germline testing.

Gene expression panels that integrate multiple underlying biomarkers are increasingly employed. The S1314 trial tested whether a gene expression score (COXEN) could predict response among patients treated with NAC (GC/ddMVAC). The GC-specific COXEN signature was prognostic in the whole cohort, but not predictive of response with no interaction between response to each regimen and COXEN score being noted [186]. Despite the negative result, the employed methodology can inform future trial designs and provide the setting for validation of other putative biomarkers.

Conclusions

Therapeutic advances in UC necessitate the development of integral and integrated biomarkers to guide treatment allocation and stratification in clinical trials. The plethora of biomarkers and assays, limitations in funding and patients available for clinical trials, as well as variability in trial endpoints complicate this effort. Existing obstacles may only be surmounted by research coordination, assay standardization, establishment of biorepositories/registries and sophisticated trial designs. While the challenges are formidable, the promise of personalized therapy in UC has never been higher.

Footnotes

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Nikolaos Andreatos: None.

Gopa Iyer (unrelated to this work): Mirati: Research funding and consulting; Janssen: Research funding; DeBio Pharm: Research funding; Novartis: Research funding; OncLive: Speaking fees.

Petros Grivas (unrelated to this work, within 3 years): consulting for AstraZeneca, Bayer, Bristol-Myers Squibb, Clovis Oncology, Driver, EMD Serono, Exelixis, Foundation Medicine, GlaxoSmithKline, Genentech, Genzyme, Heron Therapeutics, Janssen, Merck, Mirati Therapeutics, Pfizer, Roche, Seattle Genetics, QED Therapeutics; participation in educational program for Bristol-Myers Squibb; institutional research funding from AstraZeneca, Bavarian Nordic, Bayer, Bristol-Myers Squibb, Clovis Oncology, Debiopharm, Genentech, Immunomedics, Kure It Cancer Research, Merck, Mirati Therapeutics, Oncogenex, Pfizer, QED Therapeutics.

References

  • [1].National Cancer Institute, Cancer Stat Facts: Bladder Cancer, (2019). https://seer.cancer.gov/statfacts/html/urinb.html (accessed April 12, 2020).
  • [2].Smith AB, Deal AM, Woods ME, Wallen EM, Pruthi RS, Chen RC, Milowsky MI, Nielsen ME, Muscle-invasive bladder cancer: evaluating treatment and survival in the national cancer data base, BJU Int. 114 (2014) 719–726, 10.1111/bju.12601. [DOI] [PubMed] [Google Scholar]
  • [3].Burger M, Catto JWF, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, Kassouf W, Kiemeney LA, La Vecchia C, Shariat S, Lotan Y, Epidemiology and risk factors of urothelial bladder cancer, Eur. Urol 63 (2013) 234–241, 10.1016/j.eururo.2012.07.033. [DOI] [PubMed] [Google Scholar]
  • [4].Chalasani V, Chin JL, Izawa JI, Histologic variants of urothelial bladder cancer and nonurothelial histology in bladder cancer, Can. Urol. Assoc. J 3 (2013) 193, 10.5489/cuaj.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Gómez De Liaño A, Duran I, The continuing role of chemotherapy in the management of advanced urothelial cancer, Ther. Adv. Urol 10 (2018) 455–480, 10.1177/1756287218814100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].American Cancer Society, Survival Rates for Bladder Cancer, (2019). https://www.cancer.org/cancer/bladder-cancer/detection-diagnosis-staging/survival-rates.html (accessed April 12, 2020).
  • [7].Nadal R, Bellmunt J, Management of metastatic bladder cancer, Cancer Treat. Rev 76 (2019) 10–21, 10.1016/j.ctrv.2019.04.002. [DOI] [PubMed] [Google Scholar]
  • [8].Koshkin VS, Grivas P, Emerging role of Immunotherapy in advanced urothelial carcinoma, Curr. Oncol. Rep 20 (2018) 48, 10.1007/s11912-018-0693-y. [DOI] [PubMed] [Google Scholar]
  • [9].Gopalakrishnan D, Koshkin VS, Ornstein MC, Papatsoris A, Grivas P, Immune checkpoint inhibitors in urothelial cancer: recent updates and future outlook, Ther. Clin. Risk Manag 14 (2018) 1019–1040, 10.2147/TCRM.S158753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Balar AV, Kulkarni GS, Uchio EM, Boormans J, Mourey L, Krieger LEM, Singer EA, Bajorin DF, Kamat AM, Grivas P, Seo HK, Nishiyama H, Konety BR, Nam K, Kapadia E, Frenkl TL, De Wit R, Keynote 057: phase II trial of Pembrolizumab (pembro) for patients (pts) with high-risk (HR) nonmuscle invasive bladder cancer (NMIBC) unresponsive to bacillus calmette-guérin (BCG). J. Clin. Oncol 37 (2019), 10.1200/jco.2019.37.7_suppl.350 350–350.30557524 [DOI] [Google Scholar]
  • [11].U.S. Food and Drug Administration, FDA Approves Pembrolizumab for BCG-Unresponsive, High-Risk Non-Muscle Invasive Bladder Cancer, (2020). https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-bcg-unresponsive-high-risk-non-muscle-invasive-bladder-cancer (accessed January 24, 2020).
  • [12].U.S Food and Drug Administration, FDA Grants Accelerated Approval to Erdafitinib for Metastatic Urothelial Carcinoma, (2019). https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-erdafitinib-metastatic-urothelial-carcinoma (accessed January 24, 2020).
  • [13].Loriot Y, Necchi A, Park SH, Garcia-Donas J, Huddart R, Burgess E, Fleming M, Rezazadeh A, Mellado B, Varlamov S, Joshi M, Duran I, Tagawa ST, Zakharia Y, Zhong B, Stuyckens K, Santiago-Walker A, De Porre P, O'Hagan A, Avadhani A, Siefker-Radtke AO, Erdafitinib in locally advanced or metastatic urothelial carcinoma, N. Engl. J. Med 381 (2019) 338–348, 10.1056/nejmoa1817323. [DOI] [PubMed] [Google Scholar]
  • [14].Rosenberg JE, O'Donnell PH, Balar AV, McGregor BA, Heath EI, Yu EY, Galsky MD, Hahn NM, Gartner EM, Pinelli JM, Liang S-Y, Melhem-Bertrandt A, Petrylak DP, Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy, J. Clin. Oncol (2019), 10.1200/jco.19.01140 JCO.19.01140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].U.S. Food and Drug Administration, FDA Grants Accelerated Approval to Enfortumab Vedotin-EJFV for Metastatic Urothelial Cancer, (2019). https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-enfortumab-vedotin-ejfv-metastatic-urothelial-cancer (accessed January 24, 2020).
  • [16].Mendiratta P, Grivas P, Emerging biomarkers and targeted therapies in urothelial carcinoma, Ann. Transl. Med 6 (2018), 10.21037/atm.2018.05.49 250–250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Ballman KV, Biomarker: predictive or prognostic? J. Clin. Oncol 33 (2015) 3968–3971, 10.1200/JCO.2015.63.3651. [DOI] [PubMed] [Google Scholar]
  • [18].Burke HB, Predicting clinical outcomes using molecular biomarkers, Biomark. Cancer 8 (2016), 10.4137/bic.s33380 BIC.S33380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Schiff JP, Barata PC, Yu EY, Grivas P, Precision therapy in advanced urothelial cancer, Expert Rev. Precis. Med. Drug Dev 4 (2019) 81–93, 10.1080/23808993.2019.1582298. [DOI] [Google Scholar]
  • [20].Tripathi A, Grivas P, The utility of next generation sequencing in advanced urothelial carcinoma, Eur. Urol. Focus 6 (2020) 41–44, 10.1016/j.euf.2019.08.016. [DOI] [PubMed] [Google Scholar]
  • [21].Grivas P, Drakaki A, Friedlander TW, Sonpavde G, Conceptual framework for therapeutic development beyond anti-PD-1/PD-L1 in urothelial cancer, Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Annu. Meet 39 (2019) 284–300, 10.1200/EDBK_237449. [DOI] [PubMed] [Google Scholar]
  • [22].Lindgren D, Frigyesi A, Gudjonsson S, Sjödahl G, Hallden C, Chebil G, Veerla S, Ryden T, Månsson W, Liedberg F, Höglund M, Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome, Cancer Res. 70 (2010) 3463–3472, 10.1158/0008-5472.CAN-09-4213. [DOI] [PubMed] [Google Scholar]
  • [23].Sjödahl G, Lauss M, Lövgren K, Chebil G, Gudjonsson S, Veerla S, Patschan O, Aine M, Fernö M, Ringnér M, Månsson W, Liedberg F, Lindgren D, Höglund M, A molecular taxonomy for urothelial carcinoma, Clin. Cancer Res 18 (2012) 3377–3386, 10.1158/1078-0432.CCR-12-0077-T. [DOI] [PubMed] [Google Scholar]
  • [24].Marzouka NAD, Eriksson P, Rovira C, Liedberg F, Sjödahl G, Höglund M, A validation and extended description of the Lund taxonomy for urothelial carcinoma using the TCGA cohort, Sci. Rep (2018) 8, 10.1038/s41598-018-22126-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Damrauer JS, Hoadley KA, Chism DD, Fan C, Tignanelli CJ, Wobker SE, Yeh JJ, Milowsky MI, Iyer G, Parker JS, Kim WY, Intrinsic subtypes of highgrade bladder cancer reflect the hallmarks of breast cancer biology, Proc. Natl. Acad. Sci. U. S. A 111 (2014) 3110–3115, 10.1073/pnas.1318376111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, Roth B, Cheng T, Tran M, Lee IL, Melquist J, Bondaruk J, Majewski T, Zhang S, Pretzsch S, Baggerly K, Siefker-Radtke A, Czerniak B, Dinney CPN, McConkey DJ, Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy, Cancer Cell 25 (2014) 152–165, 10.1016/j.ccr.2014.01.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Mo Q, Nikolos F, Chen F, Tramel Z, Lee YC, Hayashi K, Xiao J, Shen J, Chan KS, Prognostic power of a tumor differentiation gene signature for bladder urothelial carcinomas, J. Natl. Cancer Inst 110 (2018) 448–459, 10.1093/jnci/djx243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Weinstein JN, Akbani R, Broom BM, Wang W, Verhaak RGW, McConkey D, Lerner S, Morgan M, Creighton CJ, Smith C, Cherniack AD, Kim J, Pedamallu CS, Noble MS, Al-Ahmadie HA, Reuter VE, Rosenberg JE, Bajorin DF, Bochner BH, Solit DB, Koppie T, Robinson B, Gordenin DA, Fargo D, Klimczak LJ, Roberts SA, Au J, Laird PW, Hinoue T, Schultz N, Ramirez R, Hansel D, Hoadley KA, Kim WY, Damrauer JS, Baylin SB, Mungall AJ, Robertson AG, Chu A, Kwiatkowski DJ, Sougnez C, Cibulskis K, Lichtenstein L, Sivachenko A, Stewart C, Lawrence MS, Getz G, Lander E, Gabrie SB, Donehower L, Carter SL, Saksena G, Schumacher SE, Freeman SS, Jung J, Bhatt AS, Pugh T, Beroukhim R, Meyerson M, Ally A, Balasundaram M, Butterfield YSN, Dhalla N, Hirst C, Holt RA, Jones SJM, Lee D, Li HI, Marra MA, Mayo M, Moore RA, Schein JE, Sipahimalani P, Tam A, Thiessen N, Wong T, Wye N, Bowlby R, Chuah E, Guin R, Shen H, Bootwalla MS, Triche T, Lai PH, Van Den Berg DJ, Weisenberger DJ, Balu S, Bodenheimer T, Hoyle AP, Jefferys SR, Meng S, Mose LE, Simons JV, Soloway MG, Wu J, Parker JS, Hayes DN, Roach J, Buda E, Jones CD, Mieczkowski PA, Tan D, Veluvolu U, Waring S, Auman JT, Perou CM, Wilkerson MD, Santoso N, Parfenov M, Ren X, Pantazi A, Hadjipanayis A, Seidman J, Kucherlapati R, Lee S, Yang L, Park PJ, Xu AW, Protopopov A, Zhang J, Bristow C, Mahadeshwar HS, Seth S, Song X, Tang J, Zeng D, Chin L, Guo C, Casasent TD, Liu W, Ju Z, Motter T, Peng B, Ryan M, Su X, Yang JY, Lorenzi PL, Yao H, Zhang N, Zhang J, Mills GB, Cho J, DiCara D, Frazer S, Gehlenborg N, Heiman DI, Lin P, Liu Y, Stojanov P, Voet D, Zhang H, Zou L, Bernard B, Kreisberg D, Reynolds S, Rovira H, Shmulevich I, Gao J, Jacobsen A, Aksoy BA, Antipin Y, Ciriello G, Dresdner G, Gross B, Lee W, Reva B, Shen R, Sinha R, Sumer SO, Weinhold N, Ladanyi M, Sander C, Benz C, Carlin D, Haussler D, Ng S, Paull E, Stuart J, Zhu J, Liu Y, Zhang W, Taylor BS, Lichtenberg TM, Zmuda E, Barr T, Black AD, George M, Hanf B, Helsel C, McAllister C, Ramirez NC, Tabler TR, Weaver S, Wise L, Bowen J, Gastier-Foster JM, Jian W, Tello S, Ittman M, Castro P, McClenden WD, Gibbs R, Saller C, Tarvin K, DiPiero JM, Owens J, Bollag R, Li Q, Weinberger P, Czerwinski C, Huelsenbeck-Dill L, Iacocca M, Petrelli N, Rabeno B, Swanson P, Shelton T, Curley E, Gardner J, Mallery D, Penny R, Van Bang N, Hanh PT, Kohl B, Van Le X, Phu BD, Thorp R, Tien NV, Vinh LQ, Sandusky G, Burks E, Christ K, Gee J, Holway A, Moinzadeh A, Sorcini A, Sullivan T, Garcia-Grossman IR, Regazzi AM, Boice L, Rathmell WK, Thorne L, Bastacky S, Davies B, Dhir R, Gingrich J, Hrebinko R, Maranchie J, Nelson J, Parwani A, Bshara W, Gaudioso C, Morrison C, Alexopoulou V, Bartlett J, Engel J, Kodeeswaran S, Antic T, O'Donnell PH, Smith ND, Steinberg GD, Egea S, Gomez-Fernandez C, Herbert L, Jorda M, Soloway M, Beaver A, Carter S, Kapur P, Lewis C, Lotan Y, Bondaruk J, Czerniak B, Skinner E, Aldape K, Jensen MA, Kahn AB, Pihl TD, Pot DA, Srinivasan D, Wan Y, Ferguson ML, Zenklusen JC, Davidsen T, Demchok JA, Shaw KRM, Sheth M, Tarnuzzer R, Wang Z, Yang L, Hutter C, Ozenberger BA, Sofia HJ, Eley G, Comprehensive molecular characterization of urothelial bladder carcinoma, Nature 507 (2014) 315–322, 10.1038/nature12965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, Castro MAA, Gibb EA, Kanchi RS, Gordenin DA, Shukla SA, Sanchez-Vega F, Hansel DE, Czerniak BA, Reuter VE, Su X, de Sa Carvalho B, Chagas VS, Mungall KL, Sadeghi S, Pedamallu CS, Lu Y, Klimczak LJ, Zhang J, Choo C, Ojesina AI, Bullman S, Leraas KM, Lichtenberg TM, Wu CJ, Schultz N, Getz G, Meyerson M, Mills GB, McConkey DJ, TCGA Research Network, Weinstein JN, Kwiatkowski DJ, Lerner SP Comprehensive molecular characterization of muscle-invasive bladder cancer, Cell 171 (2017) 540–556, 10.1016/j.cell.2017.09.007e25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Rebouissou S, Bernard-Pierrot I, De Reyniès A, Lepage ML, Krucker C, Chapeaublanc E, Hérault A, Kamoun A, Caillault A, Letouzé E, Elarouci N, Neuzillet Y, Denoux Y, Molinié V, Vordos D, Laplanche A, Maillé P, Soyeux P, Ofualuka K, Reyal F, Biton A, Sibony M, Paoletti X, Southgate J, Benhamou S, Lebret T, Allory Y, Radvanyi F, EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype, Sci. Transl. Med (2014) 6, 10.1126/scitranslmed.3008970. [DOI] [PubMed] [Google Scholar]
  • [31].Dadhania V, Zhang M, Zhang L, Bondaruk J, Majewski T, Siefker-Radtke A, Guo CC, Dinney C, Cogdell DE, Zhang S, Lee S, Lee JG, Weinstein JN, Baggerly K, McConkey D, Czerniak B, Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use, EBioMedicine 12 (2016) 105–117, 10.1016/j.ebiom.2016.08.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Batista da Costa J, Gibb EA, Bivalacqua TJ, Liu Y, Oo HZ, Miyamoto DT, Alshalalfa M, Davicioni E, Wright J, Dall'Era MA, Douglas J, Boormans JL, Van der Heijden MS, Wu C-L, van Rhijn BWG, Gupta S, Grivas P, Mouw KW, Murugan P, Fazli L, Ra S, Konety BR, Seiler R, Daneshmand S, Mian OY, Efstathiou JA, Lotan Y, Black PC, Molecular characterization of neuroendocrine-like bladder cancer, Clin. Cancer Res 25 (2019) 3908–3920, 10.1158/1078-0432.CCR-18-3558. [DOI] [PubMed] [Google Scholar]
  • [33].Grivas P, Bismar TA, Alva AS, Huang HC, Liu Y, Seiler R, Alimohamed N, Cheng L, Hyndman ME, Dabbas B, Black PC, Davicioni E, Wright JL, Ornstein MC, Mian OY, Kaimakliotis HZ, Gibb EA, Lotan Y, Validation of a neuroendocrine-like classifier confirms poor outcomes in patients with bladder cancer treated with cisplatin-based neoadjuvant chemotherapy, Urol. Oncol. Semin. Orig. Investig (2019), 10.1016/j.urolonc.2019.11.004. [DOI] [PubMed] [Google Scholar]
  • [34].Seiler R, Ashab HAD, Erho N, van Rhijn BWG, Winters B, Douglas J, Van Kessel KE, Fransen van de Putte EE, Sommerlad M, Wang NQ, Choeurng V, Gibb EA, Palmer-Aronsten B, Lam LL, Buerki C, Davicioni E, Sjödahl G, Kardos J, Hoadley KA, Lerner SP, McConkey DJ, Choi W, Kim WY, Kiss B, Thalmann GN, Todenhöfer T, Crabb SJ, North S, Zwarthoff EC, Boormans JL, Wright J, Dall'Era M, van der Heijden MS, Black PC, Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy [figure presented], Eur. Urol 72 (2017) 544–554, 10.1016/j.eururo.2017.03.030. [DOI] [PubMed] [Google Scholar]
  • [35].Seiler R, Winters B, Douglas J, van Rhijn BWG, Sjödahl G, Lerner SP, Hoadley KA, North SA, McConkey DJ, Choi W, Kim WY, van Kessel KE, Thalmann GN, Davicioni E, Crabb SJ, Boormans JL, Dall'Era M, Wright JL, Van Der Heijden MS, Black PC, Muscle-invasive bladder cancer: molecular subtypes and response to neoadjuvant chemotherapy, J. Clin. Oncol 35 (2017), 10.1200/jco.2017.35.6_suppl.281 281–28128095268 [DOI] [Google Scholar]
  • [36].Rosenberg JE, Hoffman-Censits J, Powles T, Van Der Heijden MS, Balar AV, Necchi A, Dawson N, O'Donnell PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Burris HA, Castellano D, Canil C, Bellmunt J, Bajorin D, Nickles D, Bourgon R, Frampton GM, Cui N, Mariathasan S, Abidoye O, Fine GD, Dreicer R, Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial, Lancet 387 (2016) 1909–1920, 10.1016/S0140-6736(16)00561-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Kamoun A, de Reyniès A, Allory Y, Sjödahl G, Gordon Robertson A, Seiler R, Hoadley KA, Groeneveld CS, Al-Ahmadie H, Choi W, Castro MAA, Fontugne J, Eriksson P, Mo Q, Kardos J, Zlotta A, Hartmann A, Dinney CP, Bellmunt J, Powles T, Malats N, Chan KS, Kim WY, McConkey DJ, Black PC, Dyrskjøt L, Höglund M, Lerner SP, Real FX, Radvanyi F, A consensus molecular classification of muscle-invasive bladder cancer, Eur. Urol (2019), 10.1016/j.eururo.2019.09.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Mouw KW, DNA repair pathway alterations in bladder cancer, Cancers Basel (2017) 9, 10.3390/cancers9040028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Yoshida T, Kates M, Fujita K, Bivalacqua TJ, McConkey DJ, Predictive biomarkers for drug response in bladder cancer, Int. J. Urol (2019), 10.1111/iju.14082. [DOI] [PubMed] [Google Scholar]
  • [40].Miyamoto DT, Mouw KW, Feng FY, Shipley WU, Efstathiou JA, Molecular biomarkers in bladder preservation therapy for muscle-invasive bladder cancer, Lancet Oncol. 19 (2018) e683–e695, 10.1016/S1470-2045(18)30693-4. [DOI] [PubMed] [Google Scholar]
  • [41].Bellmunt J, Paz-Ares L, Cuello M, Cecere FL, Albiol S, Guillem V, Gallardo E, Carles J, Mendez P, de la Cruz JJ, Taron M, Rosell R, Baselga J, Spanish Oncology Genitourinary Group, Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol 18 (2007) 522–528, 10.1093/annonc/mdl435. [DOI] [PubMed] [Google Scholar]
  • [42].Mullane SA, Werner L, Guancial EA, Lis RT, Stack EC, Loda M, Kantoff PW, Choueiri TK, Rosenberg J, Bellmunt J, Expression levels of DNA damage repair proteins are associated with overall survival in platinum-treated advanced urothelial carcinoma, Clin. Genitourin. Cancer 14 (2016) 352–359, 10.1016/j.clgc.2015.12.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Sakano S, Ogawa S, Yamamoto Y, Nishijima J, Miyachika Y, Matsumoto H, Hara T, Matsuyama H, ERCC1 and XRCC1 expression predicts survival in bladder cancer patients receiving combined trimodality therapy, Mol. Clin. Oncol 1 (2013) 403–410, 10.3892/mco.2013.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [44].Klatte T, Seitz C, Rink M, Rouprêt M, Xylinas E, Karakiewicz P, Susani M, Shariat SF, ERCC1 as a prognostic and predictive biomarker for urothelial carcinoma of the bladder following radical cystectomy, J. Urol 194 (2015) 1456–1462, 10.1016/j.juro.2015.06.099. [DOI] [PubMed] [Google Scholar]
  • [45].Choueiri TK, Jacobus S, Bellmunt J, Qu A, Appleman LJ, Tretter C, Bubley GJ, Stack EC, Signoretti S, Walsh M, Steele G, Hirsch M, Sweeney CJ, Taplin ME, Kibel AS, Krajewski KM, Kantoff PW, Ross RW, Rosenberg JE, Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and biomarker correlates, J. Clin. Oncol 32 (2014) 1889–1894, 10.1200/JCO.2013.52.4785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Urun Y, Leow JJ, Fay AP, Albiges L, Choueiri TK, Bellmunt J, ERCC1 as a prognostic factor for survival in patients with advanced urothelial cancer treated with platinum based chemotherapy: a systematic review and meta-analysis, Crit. Rev. Oncol. Hematol 120 (2017) 120–126, 10.1016/j.critrevonc.2017.10.012. [DOI] [PubMed] [Google Scholar]
  • [47].Van Allen EM, Mouw KW, Kim P, Iyer G, Wagle N, Al-Ahmadie H, Zhu C, Ostrovnaya I, Kryukov GV, O'connor KW, Sfakianos J, Garcia-Grossman I, Kim J, Guancial EA, Bambury R, Bahl S, Gupta N, Farlow D, Qu A, Signoretti S, Barletta JA, Reuter V, Boehm J, Lawrence M, Getz G, Kantoff P, Bochner BH, Choueiri TK, Bajorin DF, Solit DB, Gabriel S, D'andrea A, Garraway LA, Rosenberg JE, Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma, Cancer Discov. 4 (2014) 1140–1153, 10.1158/2159-8290.CD-14-0623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48].Li Q, Damish AW, Frazier Z, Liu D, Reznichenko E, Kamburov A, Bell A, Zhao H, Jordan EJ, Gao SP, Ma J, Abbosh PH, Bellmunt J, Plimack ER, Lazaro JB, Solit DB, Bajorin D, Rosenberg JE, D'Andrea AD, Riaz N, Van Allen EM, Iyer G, Mouw KW, ERCC2 helicase domain mutations confer nucleotide excision repair deficiency and drive cisplatin sensitivity in muscle-invasive bladder cancer, Clin. Cancer Res 25 (2019) 977–988, 10.1158/1078-0432.CCR-18-1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [49].Liu D, Plimack ER, Hoffman-Censits J, Garraway LA, Bellmunt J, Van Allen E, Rosenberg JE, Clinical validation of chemotherapy response biomarker ERCC2 in muscle-invasive urothelial bladder carcinoma, JAMA Oncol. 2 (2016) 1094–1096, 10.1001/jamaoncol.2016.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [50].Pietzak EJ, Zabor EC, Bagrodia A, Armenia J, Hu W, Zehir A, Funt S, Audenet F, Barron D, Maamouri N, Li Q, Teo MY, Arcila ME, Berger MF, Schultz N, Dalbagni G, Herr HW, Bajorin DF, Rosenberg JE, Al-Ahmadie H, Bochner BH, Solit DB, Iyer G, Genomic differences between “primary” and “secondary” muscle-invasive bladder cancer as a basis for disparate outcomes to cisplatin-based neoadjuvant chemotherapy, Eur. Urol 75 (2019) 231–239, 10.1016/j.eururo.2018.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51].Iyer G, Balar AV, Milowsky MI, Bochner BH, Dalbagni G, Machele Donat S, Herr HW, Huang WC, Taneja SS, Woods M, Ostrovnaya I, Al-Ahmadie H, Arcila ME, Riches JC, Meier A, Bourque C, Shady M, Won H, Rose TL, Kim WY, Kania BE, Boyd ME, Cipolla CK, Regazzi AM, Delbeau D, McCoy AS, Vargas HA, Berger MF, Solit DB, Rosenberg JE, Bajorin DF, Multicenter prospective phase ii trial of neoadjuvant dose-dense gemcitabine plus cisplatin in patients with muscle-invasive bladder cancer, J. Clin. Oncol 36 (2018) 1949–1956, 10.1200/JCO.2017.75.0158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [52].Plimack ER, Dunbrack RL, Brennan TA, Andrake MD, Zhou Y, Serebriiskii IG, Slifker M, Alpaugh K, Dulaimi E, Palma N, Hoffman-Censits J, Bilusic M, Wong YN, Kutikov A, Viterbo R, Greenberg RE, Chen DYT, Lallas CD, Trabulsi EJ, Yelensky R, McConkey DJ, Miller VA, Golemis EA, Ross EA, Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer, Eur. Urol 68 (2015) 959–967, 10.1016/j.eururo.2015.07.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [53].Lorenzo-Romero JG, Salinas-Sánchez AS, Giménez-Bachs JM, Sánchez-Sánchez F, Escribano-Martínez J, Segura-Martín M, Hernandez-Millán IR, Virseda-Rodríguez JA, Prognostic implications of p53 gene mutations in bladder tumors. J. Urol 169 (2003) 492–499, 10.1097/01.ju.0000046224.57330.70. [DOI] [PubMed] [Google Scholar]
  • [54].Kuczyk MA, Bokemeyer C, Serth J, Hervatin C, Oelke M, Höfner K, Tan HK, Jonas U, p53 overexpression as a prognostic factor for advanced stage bladder cancer, Eur. J. Cancer 31 (1995) 2243–2247, 10.1016/0959-8049(95)00443-2. [DOI] [PubMed] [Google Scholar]
  • [55].Edelman MJ, Meyers FJ, Miller TR, Williams SG, Gandour-Edwards R, Devere White RW, Phase I/II study of paclitaxel, carboplatin, and methotrexate in advanced transitional cell carcinoma: a well-tolerated regimen with activity independent of p53 mutation, Urology 55 (2000) 521–525, 10.1016/S0090-4295(99)00538-5. [DOI] [PubMed] [Google Scholar]
  • [56].Sarkis AS, Bajorin DF, Reuter VE, Herr HW, Netto G, Zhang ZF, Schultz PK, Cordon-Cardo C, Scher HI, Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J. Clin. Oncol 13 (1995) 1384–1390, 10.1200/JCO.1995.13.6.1384. [DOI] [PubMed] [Google Scholar]
  • [57].Cote RJ, Esrig D, Groshen S, Jones PA, Skinner DG, p53 and treatment of bladder cancer, Nature 385 (1997) 123–125, 10.1038/385123b0. [DOI] [PubMed] [Google Scholar]
  • [58].Seiler R, Choi W, Lam LLC, Erho N, Buerki C, Davicioni E, Thalmann GN, McConkey DJ, Black PC, Association of p53-ness with chemo-resistance in urothelial cancers treated with neoadjuvant gemcitabine plus cisplatin. J. Clin. Oncol 33 (2015), 10.1200/jco.2015.33.15_suppl.4512 4512–4512. [DOI] [Google Scholar]
  • [59].Choudhury A, Nelson LD, Teo MTW, Chilka S, Bhattarai S, Johnston CF, Elliott F, Lowery J, Taylor CF, Churchman M, Bentley J, Knowles MA, Harnden P, Bristow RG, Bishop DT, Kiltie AE, MRE11 expression is predictive of cause-specific survival following radical radiotherapy for muscle-invasive bladder cancer, Cancer Res. 70 (2010) 7017–7026, 10.1158/0008-5472.CAN-10-1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [60].Laurberg JR, Brems-Eskildsen AS, Nordentoft I, Fristrup N, Schepeler T, Ulhøi BP, Agerbaek M, Hartmann A, Bertz S, Wittlinger M, Fietkau R, Rödel C, Borre M, Jensen JB, Orntoft T, Dyrskjøt L, Expression of TIP60 (tatinteractive protein) and MRE11 (meiotic recombination 11 homolog) predict treatment-specific outcome of localised invasive bladder cancer, BJU Int. 110 (2012) E1228–E1236, 10.1111/j.1464-410X.2012.11564.x. [DOI] [PubMed] [Google Scholar]
  • [61].Teo MY, Bambury RM, Zabor EC, Jordan E, Al-Ahmadie H, Boyd ME, Bouvier N, Mullane SA, Cha EK, Roper N, Ostrovnaya I, Hyman DM, Bochner BH, Arcila ME, Solit DB, Berger MF, Bajorin DF, Bellmunt J, Iyer G, Rosenberg JE, DNA damage response and repair gene alterations are associated with improved survival in patients with platinum-treated advanced urothelial carcinoma, Clin. Cancer Res 23 (2017) 3610–3618, 10.1158/1078-0432.CCR-16-2520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [62].Alliance for Clinical Trials in Oncology, Dose Dense Gemcitabine and Cisplatin Without Cystectomy for Patients With Muscle Invasive Bladder Urothelial Cancer and Select Genetic Alterations, (2018). https://clinicaltrials.gov/ct2/show/study/NCT03609216 (accessed April 12, 2020).
  • [63].Geynisman DM, Abbosh P, Zibelman MR, Feldman R, McConkey DJ, Hahn NM, Bivalacqua T, Trabulsi EJ, Lallas CD, Hoffman-Censits JH, Viterbo R, Horwitz EM, Churilla TM, Alpaugh RK, Greenberg RE, Smaldone MC, Uzzo R, Chen D, Kutikov A, Plimack ER, A phase II trial of risk-adapted treatment for muscle invasive bladder cancer after neoadjuvant accelerated MVAC. J. Clin. Oncol 36 (2018), 10.1200/jco.2018.36.6_suppl.tps537 TPS537–TPS537. [DOI] [Google Scholar]
  • [64].Galsky M, Gemcitabine, Cisplatin, Plus Nivolumab in Patients With Muscle-invasive Bladder Cancer With Selective Bladder Sparing, (2018). https://clinicaltrials.gov/ct2/show/NCT03558087 (accessed January 25, 2020).
  • [65].National Cancer Institute, Olaparib in Treating Patients With Metastatic or Advanced Urothelial Cancer With DNA-Repair Defects, (2017). https://clinicaltrials.gov/ct2/show/NCT03375307 (accessed January 25, 2020).
  • [66].AstraZeneca, A Study of Durvalumab Alone and Durvalumab+Olaparib in Advanced, Platinum-Ineligible Bladder Cancer (BAYOU), (2018). https://clinicaltrials.gov/ct2/show/NCT03459846 (accessed January 25, 2020).
  • [67].Powles TB, Balar A, Gravis G, Jones R, Ravaud A, Florence J, Grivas P, Petrylak D, Galsky M, Carles J, Sridhar S, Arkenau H, Carroll D, DeCesare J, Mercier F, Hodgson D, Stone J, Cosaert J, Landers D, An Adaptive, Biomarker Directed Platform Study In Metastatic Urothelial Cancer (Biscay) With Durvalumab In Combination With Targeted Therapies, (2019). https://oncologypro.esmo.org/meeting-resources/esmo-2019-congress/An-adaptive-biomarker-directed-platform-study-in-metastatic-urothelial-cancer-BISCAY-with-durvalumab-in-combination-with-targeted-therapies (accessed April 8, 2020). [Google Scholar]
  • [68].Grivas P, Loriot Y, Feyerabend S, Morales-Barrera R, Teo MY, Vogelzang NJ, Grande E, Zakharia Y, Adra N, Alva AS, Necchi A, Gupta S, Josephs DH, Rodriguez-Vida A, Srinivas S, Wride K, Thomas D, Dusek R, Nepert DL, Chowdhury S, Rucaparib for recurrent, locally advanced, or metastatic urothelial carcinoma (mUC): results from ATLAS, a phase II open-label trial. J. Clin. Oncol 38 (2020), 10.1200/jco.2020.38.6_suppl.440 440–440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [69].Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R, The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing, Clin. Cancer Res 22 (2016) 259–267, 10.1158/1078-0432.CCR-14-3212. [DOI] [PubMed] [Google Scholar]
  • [70].Moss TJ, Qi Y, Xi L, Peng B, Kim TB, Ezzedine NE, Mosqueda ME, Guo CC, Czerniak BA, Ittmann M, Wheeler DA, Lerner SP, Matin SF, Comprehensive genomic characterization of upper tract urothelial carcinoma, Eur. Urol 72 (2017) 641–649, 10.1016/j.eururo.2017.05.048. [DOI] [PubMed] [Google Scholar]
  • [71].Hernández S, López-Knowles E, Lloreta J, Kogevinas M, Amorós A, Tardón A, Carrato A, Serra C, Malats N, Real FX, Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas, J. Clin. Oncol 24 (2006) 3664–3671, 10.1200/JCO.2005.05.1771. [DOI] [PubMed] [Google Scholar]
  • [72].Milowsky MI, Dittrich C, Durán I, Jagdev S, Millard FE, Sweeney CJ, Bajorin D, Cerbone L, Quinn DI, Stadler WM, Rosenberg JE, Lochheed M, Sen P, Squires M, Shi M, Sternberg CN, Phase 2 trial of dovitinib in patients with progressive FGFR3-mutated or FGFR3 wild-type advanced urothelial carcinoma, Eur. J. Cancer 50 (2014) 3145–3152, 10.1016/j.ejca.2014.10.013. [DOI] [PubMed] [Google Scholar]
  • [73].Janssen Research & Development LLC, A Study of Erdafitinib Compared With Vinflunine or Docetaxel or Pembrolizumab in Participants With Advanced Urothelial Cancer and Selected Fibroblast Growth Factor Receptor (FGFR) Gene Aberrations, (2018). https://clinicaltrials.gov/ct2/show/NCT03390504 (accessed January 26, 2020).
  • [74].Pal SK, Rosenberg JE, Hoffman-Censits JH, Berger R, Quinn DI, Galsky MD, Wolf J, Dittrich C, Keam B, Delord JP, Schellens JHM, Gravis G, Medioni J, Maroto P, Sriuranpong V, Charoentum C, Burris HA, Grünwald V, Petrylak D, Vaishampayan U, Gez E, De Giorgi U, Lee JL, Voortman J, Gupta S, Sharma S, Mortazavi A, Vaughn DJ, Isaacs R, Parker K, Chen X, Yu K, Porter D, Porta DG, Bajorin DF, Efficacy of BGJ398, a fibroblast growth factor receptor 1–3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations, Cancer Discov. 8 (2018) 812–821, 10.1158/2159-8290.CD-18-0229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [75].Nogova L, Sequist LV, Garcia JMP, Andre F, Delord JP, Hidalgo M, Schellens JHM, Cassier PA, Camidge DR, Schuler M, Vaishampayan U, Burris H, Tian GG, Campone M, Wainberg ZA, Lim WT, LoRusso P, Shapiro GI, Parker K, Chen X, Choudhury S, Ringeisen F, Graus-Porta D, Porter D, Isaacs R, Buettner R, Wolf J, Evaluation of BGJ398, a Fibroblast growth factor receptor 1-3 kinase inhibitor, in patientswith advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study, J. Clin. Oncol 35 (2017) 157–165, 10.1200/JCO.2016.67.2048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [76].Kilgour E, Ferry D, Saggese M, Arkenau H-T, Rooney C, Smith NR, Baker D, Dougherty B, Womack C, Smith PD, Ghiorghiu DC, Harrington EA, Barrett JC, Brooks N, Stockman P, Andre F, Exploratory biomarker analysis of a phase I study of AZD4547, an inhibitor of fibroblast growth factor receptor (FGFR), in patients with advanced solid tumors. J. Clin. Oncol 32 (2014), 10.1200/jco.2014.32.15_suppl.11010 11010–11010. [DOI] [Google Scholar]
  • [77].Necchi A, Pouessel D, Leibowitz-Amit R, Flechon A, Gupta S, Barthelemy P, Maio M, Zhu X, Asatiani E, Serbest G, Zhen H, Loriot Y, Interim Results of Fight-201, A Phase II, Open-Label, Multicenter Study of INCB054828 in Patients (PTS) with Metastatic or Surgically Unresectable Urothelial Carcinoma (UC) Harboring Fibroblast Growth Factor (FGF)/FGF Receptor (FGFR) Genetic Alterations, (2018). https://www.annalsofoncology.org/article/S0923-7534(19)49289-2/pdf (accessed April 12, 2020). [Google Scholar]
  • [78].Schuler M, Cho BC, Sayehli CM, Navarro A, Soo RA, Richly H, Cassier PA, Tai D, Penel N, Nogova L, Park SH, Schostak M, Gajate P, Cathomas R, Rajagopalan P, Grevel J, Bender S, Boix O, Nogai H, Ocker M, Ellinghaus P, Joerger M, Rogaratinib in patients with advanced cancers selected by FGFR mRNA expression: a phase 1 dose-escalation and dose-expansion study, Lancet Oncol. (2019), 10.1016/S1470-2045(19)30412-7. [DOI] [PubMed] [Google Scholar]
  • [79].Voss MH, Hierro C, Heist RS, Cleary JM, Meric-Bernstam F, Gandhi L, Ishii N, Kirpicheva Y, Nicolas-Metral V, Pokorska-Bocci A, Purcea D, Vaslin A, Moulon C, Zanna C, Flaherty K, Tabernero J, Baselga J, Debio 1347, an oral FGFR inhibitor: results from a first-in-human, phase I dose-escalation study in patients with FGFR genomically activated advanced solid tumors. J. Clin. Oncol 35 (2017), 10.1200/jco.2017.35.15_suppl.2500 2500–2500. [DOI] [Google Scholar]
  • [80].Bellmunt J, Pal SK, Picus J, Kohli M, Arriaga YE, Milowsky MI, Holash J, Ramies DA, McGreivy JS, Safety and efficacy of docetaxel+b-701, a selective inhibitor of FGFR3, in subjects with advanced or metastatic urothelial carcinoma. J. Clin. Oncol 35 (2017), 10.1200/jco.2017.35.15_suppl.4540 4540–4540. [DOI] [Google Scholar]
  • [81].ODonnell P, Goldman JW, Gordon MS, Shih K, Choi YJ, Lu D, Kabbarah O, Ho W, Rooney I, Lam ET, 621 A Phase I Dose-escalation Study of MFGR1877S, a Human Monoclonal Anti-fibroblast Growth Factor Receptor 3 (FGFR3) Antibody, in Patients (pts) with Advanced Solid Tumors, Eur. J. Cancer 48 (2012) 191–192, 10.1016/s0959-8049(12)72418-8. [DOI] [Google Scholar]
  • [82].QED Therapeutics Inc., Study of Oral Infigratinib for the Adjuvant Treatment of Subjects With Invasive Urothelial Carcinoma With Susceptible FGFR3 Genetic Alterations, (2019). https://clinicaltrials.gov/ct2/show/NCT04197986 (accessed January 28, 2020).
  • [83].Dai S, Zhou Z, Chen Z, Xu G, Chen Y, Fibroblast growth factor receptors (FGFRs): structures and small molecule inhibitors, Cells 8 (2019) 614, 10.3390/cells8060614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [84].Dizman N, Rosenberg JE, Hoffman-Censits JH, Quinn DI, Petrylak DP, Galsky MD, Vaishampayan UN, De Giorgi U, Gupta S, Burris HA, Soifer HS, Li G, Dambkowski CL, Moran S, Ye Y, Daneshmand S, Bajorin DF, Pal SK, Infigratinib in upper tract urothelial carcinoma vs urothelial carcinoma of the bladder and association with comprehensive genomic profiling/cell-free DNA results. J. Clin. Oncol 37 (2019), 10.1200/jco.2019.37.15_suppl.4510 4510–4510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [85].Bellmunt J, Antiangiogenesis to curb urothelial cancer, Lancet 390 (2017) 2220–2221, 10.1016/S0140-6736(17)32388-7. [DOI] [PubMed] [Google Scholar]
  • [86].Shariat SF, Youssef RF, Gupta A, Chade DC, Karakiewicz PI, Isbarn H, Jeldres C, Sagalowsky AI, Ashfaq R, Lotan Y, Association of angiogenesis related markers with bladder cancer outcomes and other molecular markers, J. Urol 183 (2010) 1744–1750, 10.1016/j.juro.2010.01.018. [DOI] [PubMed] [Google Scholar]
  • [87].Lautenschlaeger T, George A, Klimowicz AC, Efstathiou JA, Wu C-L, Sandler H, Shipley WU, Tester WJ, Hagan MP, Magliocco AM, Chakravarti A, Bladder preservation therapy for muscle-invading bladder cancers on radiation therapy oncology group trials 8802, 8903, 9506, and 9706: vascular endothelial growth factor B overexpression predicts for increased distant metastasis and shorter survival, Oncologist 18 (2013) 685–686, 10.1634/theoncologist.2012-0461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [88].Keck B, Wach S, Taubert H, Zeiler S, Ott OJ, Kunath F, Hartmann A, Bertz S, Weiss C, Hönscheid P, Schellenburg S, Rödel C, Baretton GB, Sauer R, Fietkau R, Wullich B, Krause FS, Datta K, Muders MH, Neuropilin-2 and its ligand VEGF-C predict treatment response after transurethral resection and radiochemotherapy in bladder cancer patients, Int. J. Cancer 136 (2015) 443–451, 10.1002/ijc.28987. [DOI] [PubMed] [Google Scholar]
  • [89].Petrylak DP, de Wit R, Chi KN, Drakaki A, Sternberg CN, Nishiyama H, Castellano D, Hussain SA, Fléchon A, Bamias A, Yu EY, van der Heijden MS, Matsubara N, Alekseev B, Necchi A, Géczi L, Ou Y-C, Coskun HS, Su W-P, Bedke J, Gakis G, Percent IJ, Lee J-L, Tucci M, Semenov A, Laestadius F, Peer A, Tortora G, Safina S, Garcia del Muro X, Rodriguez-Vida A, Cicin I, Harputluoglu H, Tagawa ST, Vaishampayan U, Aragon-Ching JB, Hamid O, Liepa AM, Wijayawardana S, Russo F, Walgren RA, Zimmermann AH, Hozak RR, Bell-McGuinn KM, Powles T, Wong S-LS, Tan TH, Hovey EJ, Clay TD, Wan Ng SS, Rutten A, Machiels J-P, Dumez H, Cheng SY-S, Ferrario C, Sengeloev L, Jensen NV, Thibault C, Laguerre B, Joly F, Culine S, Becht C, Niegisch G, Stöckle M, Grimm M-O, Schwentner CA, Schultze-Seemann W, Kalofonos H, Mavroudis D, Papandreou C, Karavasilis V, Révész J, Rosenbaum E, Leibowitz-Amit R, Kejzman D, Sarid D, Scagliotti GV, Bracarda S, Massari F, Osawa T, Miyajima N, Shinohara N, Fukuta F, Ohyama C, Obara W, Yamashita S, Tomita Y, Kawai K, Fukasawa S, Oyama M, Yonese J, Nagata M, Uemura M, Nishimura K, Kawakita M, Tsunemori H, Hashine K, Inokuchi J, Yokomizo A, Nagamoriv S, Lee HJ, Park SH, Rha SY, Kim YJ, Lee Y-G, Vazquez Cortés L, Lorena Urzua Flores C, Blaisse RJB, Erdkamp FLG, Aarts MJB, Wojcik-Tomaszewska J, Tomczak P, Sikora-Kupis B, Schenker M, Herzal AA, Udrea AA, Karlov P, Fomkin R, Gajate Borau P, Grande E, Delgado Mignorance JI, Su Y-L, Li J-R, Lin C-L, Lin C-C, Yeh S-P, Erman M, Urun Y, Golovko Y, Bondarenko I, Sinielnikov I, Crabb SJ, Syndikus I, Huddart R, Sundar S, Chowdhury S, Sarwar N, Flaig TW, Pan CX, Schwarz JK, Cultrera JL, Acs PI, Hainsworth JD, Herms BT, Lawler WE, Lowe TE, Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): overall survival and updated results of a randomised, double-blind, phase 3 trial, Lancet Oncol. 21 (2020) 105–120, 10.1016/S1470-2045(19)30668-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [90].Rosenberg JE, Ballman KV, Halabi S, Watt C, Hahn OM, Steen PD, Dreicer R, Flaig TW, Stadler WM, Sweeney C, Mortazavi A, Morris MJ, CALGB 90601 (Alliance): randomized, double-blind, placebo-controlled phase III trial comparing gemcitabine and cisplatin with bevacizumab or placebo in patients with metastatic urothelial carcinoma. J. Clin. Oncol 37 (2019), 10.1200/jco.2019.37.15_suppl.4503 4503–4503. [DOI] [Google Scholar]
  • [91].Choueiri TK, Ross RW, Jacobus S, Vaishampayan U, Yu EY, Quinn DI, Hahn NM, Hutson TE, Sonpavde G, Morrissey SC, Buckle GC, Kim WY, Petrylak DP, Ryan CW, Eisenberger MA, Mortazavi A, Bubley GJ, Taplin ME, Rosenberg JE, Kantoff PW, Double-blind, randomized trial of docetaxel plus vandetanib versus docetaxel plus placebo in platinum-pretreated metastatic urothelial cancer, J. Clin. Oncol 30 (2012) 507–512, 10.1200/JCO.2011.37.7002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [92].Dreicer R, Li H, Stein M, DiPaola R, Eleff M, Roth BJ, Wilding G, Phase 2 trial of sorafenib in patients with advanced urothelial cancer: a trial of the eastern cooperative oncology group, Cancer 115 (2009) 4090–4095, 10.1002/cncr.24467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [93].Sridhar SS, Winquist E, Eisen A, Hotte SJ, McWhirter E, Tannock IF, Mukherjee SD, Wang L, Blattler C, Wright JJ, Moore MJ, A phase II trial of sorafenib in first-line metastatic urothelial cancer: a study of the PMH phase II consortium, Invest. New Drugs 29 (2011) 1045–1049, 10.1007/s10637-010-9408-4. [DOI] [PubMed] [Google Scholar]
  • [94].Bellmunt J, González-Larriba JL, Prior C, Maroto P, Carles J, Castellano D, Mellado B, Gallardo E, Perez-Gracia JL, Aguilar G, Villanueva X, Albanell J, Calvo A, Phase II study of sunitinib as first-line treatment of urothelial cancer patients ineligible to receive cisplatin-based chemotherapy: baseline interleukin-8 and tumor contrast enhancement as potential predictive factors of activity, Ann. Oncol 22 (2011) 2646–2653, 10.1093/annonc/mdr023. [DOI] [PubMed] [Google Scholar]
  • [95].Gallagher DJ, Al-Ahmadie H, Ostrovnaya I, Gerst SR, Regazzi A, Garcia-Grossman I, Riches J, Gounder SK, Flaherty AM, Trout A, Milowsky MI, Bajorin DF, Sunitinib in urothelial cancer: clinical, pharmacokinetic, and immunohistochemical study of predictors of response, Eur. Urol 60 (2011) 344–349, 10.1016/j.eururo.2011.05.034. [DOI] [PubMed] [Google Scholar]
  • [96].Jones RJ, Hussain SA, Protheroe AS, Birtle A, Chakraborti P, Huddart RA, Jagdev S, Bahl A, Stockdale A, Sundar S, Crabb SJ, Dixon-Hughes J, Alexander L, Morris A, Kelly C, Stobo J, Paul J, Powles T, Randomized phase II study investigating pazopanib versus weekly paclitaxel in relapsed or progressive urothelial cancer, J. Clin. Oncol 35 (2017) 1770–1777, 10.1200/JCO.2016.70.7828. [DOI] [PubMed] [Google Scholar]
  • [97].Geldart T, Chester J, Casbard A, Crabb S, Elliott T, Protheroe A, Huddart RA, Mead G, Barber J, Jones RJ, Smith J, Cowles R, Evans J, Griffiths G, SUCCINCT: an open-label, single-arm, non-randomised, phase 2 trial of gemcitabine and cisplatin chemotherapy in combination with sunitinib as first-line treatment for patients with advanced urothelial carcinoma, Eur. Urol 67 (2015) 599–602, 10.1016/j.eururo.2014.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [98].Grivas PD, Daignault S, Tagawa ST, Nanus DM, Stadler WM, Dreicer R, Kohli M, Petrylak DP, Vaughn DJ, Bylow KA, Wong SG, Sottnik JL, Keller ET, Al-Hawary M, Smith DC, Hussain M, Double-blind, randomized, phase 2 trial of maintenance sunitinib versus placebo after response to chemotherapy in patients with advanced urothelial carcinoma, Cancer 120 (2014) 692–701, 10.1002/cncr.28477. [DOI] [PubMed] [Google Scholar]
  • [99].Apolo AB, Mortazavi A, Stein MN, Pal SK, Davarpanah NN, Parnes HL, Ning YM, Francis DC, Cordes LM, Monk P, Lancaster T, Costello R, Nanda S, Bottaro DP, Wright JJ, Streicher H, Steinberg SM, Berninger M, Lindenberg L, Dahut WL, A phase I study of cabozantinib plus nivolumab (CaboNivo) and ipilimumab (CaboNivoIpi) in patients (pts) with refractory metastatic urothelial carcinoma (mUC) and other genitourinary (GU) tumors. J. Clin. Oncol 35 (2017), 10.1200/jco.2017.35.6_suppl.293 293–293. [DOI] [Google Scholar]
  • [100].Herbst RS, Arkenau H-T, Santana-Davila R, Calvo E, Paz-Ares L, Cassier PA, Bendell J, Penel N, Krebs MG, Martin-Liberal J, Isambert N, Soriano A, Wermke M, Cultrera J, Gao L, Widau RC, Mi G, Jin J, Ferry D, Fuchs CS, Petrylak DP, Chau I, Ramucirumab plus pembrolizumab in patients with previously treated advanced non-small-cell lung cancer, gastro-oesophageal cancer, or urothelial carcinomas (JVDF): a multicohort, non-randomised, open-label, phase 1a/b trial, Lancet Oncol. 20 (2019) 1109–1123, 10.1016/s1470-2045(19)30458-9. [DOI] [PubMed] [Google Scholar]
  • [101].Vogelzang NJ, Encarnacion CA, Cohn AL, DiSimone C, Rasco DW, Richards DA, Taylor MH, Dutcus CE, Stepan DE, Shumaker RC, Guo M, Schmidt EV, Mier JW, Phase Ib/II trial of lenvatinib plus pembrolizumab in urothelial cancer. J. Clin. Oncol 37 (2019), 10.1200/jco.2019.37.8_suppl.11 11–11. [DOI] [Google Scholar]
  • [102].Mirati Therapeutics Inc., Mirati Therapeutics Announces Presentation Of Interim Phase 2 Sitravatinib Data In Urothelial Carcinoma And Oral Cavity Squamous Cell Carcinoma At The SITC 34th Annual Meeting, (2019). https://ir.mirati.com/news-releases/news-details/2019/Mirati-Therapeutics-Announces-Presentation-Of-Interim-Phase-2-Sitravatinib-Data-In-Urothelial-Carcinoma-And-Oral-Cavity-Squamous-Cell-Carcinoma-At-The-SITC-34th-Annual-Meeting/default.aspx (accessed January 28, 2020). [Google Scholar]
  • [103].Balar A, Atezolizumab With Bevacizumab in Previously Untreated Metastatic/Unresectable Urothelial Cancer, (2017). https://clinicaltrials.gov/ct2/show/NCT03272217 (accessed January 28, 2020). [Google Scholar]
  • [104].Merck Sharp and Dohme Corp, Study of First-line Pembrolizumab (MK-3475) With Lenvatinib (MK-7902/E7080) in Urothelial Carcinoma Cisplatin-ineligible Participants Whose Tumors Express Programmed Cell Death-Ligand 1 and in Participants Ineligible for Platinum-containing Chemotherapy, (2019). https://clinicaltrials.gov/ct2/show/NCT03898180 (accessed April 8, 2020).
  • [105].Hussain M, Daignault S, Agarwal N, Grivas PD, Siefker-Radtke AO, Puzanov I, MacVicar GR, Levine EG, Srinivas S, Twardowski P, Eisenberger MA, Quinn DI, Vaishampayan UN, Yu EY, Dawsey S, Day KC, Day ML, Al-Hawary M, Smith DC, A randomized phase 2 trial of gemcitabine/cisplatin with or without cetuximab in patients with advanced urothelial carcinoma, Cancer 120 (2014) 2684–2693, 10.1002/cncr.28767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [106].Grivas P, Yu EY, Role of targeted therapies in management of metastatic urothelial cancer in the era of immunotherapy, Curr. Treat. Options Oncol 20 (2019) 67, 10.1007/s11864-019-0665-y. [DOI] [PubMed] [Google Scholar]
  • [107].Hussain MHA, MacVicar GR, Petrylak DP, Dunn RL, Vaishampayan U, Lara PN, Chatta GS, Nanus DM, Glode LM, Trump DL, Chen H, Smith DC, National Cancer Institute, Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute trial. J. Clin. Oncol 25 (2007) 2218–2224, 10.1200/JCO.2006.08.0994. [DOI] [PubMed] [Google Scholar]
  • [108].Oudard S, Culine S, Vano Y, Goldwasser F, Théodore C, Nguyen T, Voog E, Banu E, Vieillefond A, Priou F, Deplanque G, Gravis G, Ravaud A, Vannetzel JM, Machiels JP, Muracciole X, Pichon MF, Bay JO, Elaidi R, Teghom C, Radvanyi F, Beuzeboc P, Multicentre randomised phase II trial of gemcitabine+platinum, with or without trastuzumab, in advanced or metastatic urothelial carcinoma overexpressing Her2, Eur. J. Cancer 51 (2015) 45–54, 10.1016/j.ejca.2014.10.009. [DOI] [PubMed] [Google Scholar]
  • [109].Ahn S, Woo JW, Lee K, Park SY, HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation, J. Pathol. Transl. Med 0 (2019) 0, 10.4132/jptm.2019.11.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [110].Bryce AH, Kurzrock R, Meric-Bernstam F, Hurwitz H, Hainsworth JD, Spigel DR, Bose R, Swanton C, Burris HA, Guo S, Yoo B, Beattie MS, Tayama D, Sweeney C, Pertuzumab plus trastuzumab for HER2-positive metastatic urothelial cancer (mUC): preliminary data from MyPathway. J. Clin. Oncol 35 (2017), 10.1200/jco.2017.35.6_suppl.348 348–348. [DOI] [Google Scholar]
  • [111].Sheng X, Zhou A-P, Yao X, Shi Y, Luo H, Shi B, Liu J, Yu G, He Z, Hu C, Han W, Fang J, Guo J, A phase II study of RC48-ADC in HER2-positive patients with locally advanced or metastatic urothelial carcinoma. J. Clin. Oncol 37 (2019), 10.1200/jco.2019.37.15_suppl.4509 4509–4509. [DOI] [Google Scholar]
  • [112].Daiichi Sankyo Inc., Trastuzumab Deruxtecan (DS-8201a) With Nivolumab in Advanced Breast and Urothelial Cancer, (2018). https://clinicaltrials.gov/ct2/show/NCT03523572 (accessed January 28, 2020).
  • [113].Jhaveri KL, Wang XV, Makker V, Luoh S-W, Mitchell EP, Zwiebel JA, Sharon E, Gray RJ, Li S, McShane LM, Rubinstein LV, Patton D, Williams PM, Hamilton SR, Conley BA, Arteaga CL, Harris LN, O'Dwyer PJ, Chen AP, Flaherty KT, Ado-trastuzumab emtansine (T-DM1) in patients with HER2-amplified tumors excluding breast and gastric/gastroesophageal junction (GEJ) adenocarcinomas: results from the NCI-MATCH trial (EAY131) subprotocol Q, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol 30 (2019) 1821–1830, 10.1093/annonc/mdz291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [114].Wülfing C, Machiels JPH, Richel DJ, Grimm MO, Treiber U, De Groot MR, Beuzeboc P, Parikh R, Pétavy F, El-Hariry IA, A single-arm, multicenter, open-label phase 2 study of lapatinib as the second-line treatment of patients with locally advanced or metastatic transitional cell carcinoma, Cancer 115 (2009) 2881–2890, 10.1002/cncr.24337. [DOI] [PubMed] [Google Scholar]
  • [115].Powles T, Huddart RA, Elliott T, Sarker S-J, Ackerman C, Jones R, Hussain S, Crabb S, Jagdev S, Chester J, Hilman S, Beresford M, Macdonald G, Santhanam S, Frew JA, Stockdale A, Hughes S, Berney D, Chowdhury S, Phase III, double-blind, randomized trial that compared maintenance lapatinib versus placebo after first-line chemotherapy in patients with human epidermal growth factor receptor 1/2-positive metastatic bladder cancer. J. Clin. Oncol 35 (2017) 48–55, 10.1200/JCO.2015.66.3468. [DOI] [PubMed] [Google Scholar]
  • [116].Hyman DM, Piha-Paul SA, Won H, Rodon J, Saura C, Shapiro GI, Juric D, Quinn DI, Moreno V, Doger B, Mayer IA, Boni V, Calvo E, Loi S, Lockhart AC, Erinjeri JP, Scaltriti M, Ulaner GA, Patel J, Tang J, Beer H, Selcuklu SD, Hanrahan AJ, Bouvier N, Melcer M, Murali R, Schram AM, Smyth LM, Jhaveri K, Li BT, Drilon A, Harding JJ, Iyer G, Taylor BS, Berger MF, Cutler RE, Xu F, Butturini A, Eli LD, Mann G, Farrell C, Lalani AS, Bryce RP, Arteaga CL, Meric-Bernstam F, Baselga J, Solit DB, HER kinase inhibition in patients with HER2- and HER3-mutant cancers, Nature 554 (2018) 189–194, 10.1038/nature25475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [117].Bedard PL, Li S, Wisinski KB, Yang ES, Limaye SA, Mitchell EP, Zwiebel JA, Moscow J, Gray RJ, McShane LM, Rubenstein LV, Patton DR, Williams PM, Hamilton SR, Conley BA, Arteaga CL, Harris LN, O'Dwyer PJ, Chen AP, Flaherty KT, Abstract CT139: NCI Molecular Analysis for Therapy Choice (NCI-MATCH EAY131) arm B: phase II study of afatinib in patients (pts) with HER2 (ERBB2) activating mutations, Clin. Trials (2019), 10.1158/1538-7445.am2019-ct139. [DOI] [Google Scholar]
  • [118].Choudhury NJ, Campanile A, Antic T, Yap KL, Fitzpatrick CA, Wade JL, Karrison T, Stadler WM, Nakamura Y, O'Donnell PH, Afatinib activity in platinum-refractory metastatic urothelial carcinoma in patients with ERBB alterations, J. Clin. Oncol 34 (2016) 2165–2171, 10.1200/JCO.2015.66.3047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [119].Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M, Pirun M, Sander C, Socci ND, Ostrovnaya I, Viale A, Heguy A, Peng L, Chan TA, Bochner B, Bajorin DF, Berger MF, Taylor BS, Solit DB, Supplementary materials for genome sequencing identifies a basis for everolimus sensitivity, Science 80 (2012), 10.1126/science.1226344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [120].Milowsky MI, Iyer G, Regazzi AM, Al-Ahmadie H, Gerst SR, Ostrovnaya I, Gellert LL, Kaplan R, Garcia-Grossman IR, Pendse D, Balar AV, Flaherty AM, Trout A, Solit DB, Bajorin DF, Phase II study of everolimus in metastatic urothelial cancer, BJU Int. 112 (2013) 462–470, 10.1111/j.1464-410X.2012.11720.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [121].Bellmunt J, Lalani AKA, Jacobus S, Wankowicz SA, Polacek L, Takeda DY, Harshman LC, Wagle N, Moreno I, Lundgren K, Bossé D, Van Allen EM, Choueiri TK, Rosenberg JE, Everolimus and pazopanib (E/P) benefit genomically selected patients with metastatic urothelial carcinoma, Br. J. Cancer 119 (2018) 707–712, 10.1038/s41416-018-0261-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [122].National Cancer Institute, Targeted Therapy Directed by Genetic Testing in Treating Patients With Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial), (2015). https://clinicaltrials.gov/ct2/show/NCT02465060 (accessed January 24, 2020).
  • [123].American Society of Clinical Oncology, TAPUR: testing the Use of Food and Drug Administration (FDA) Approved Drugs That Target a Specific Abnormality in a Tumor Gene in People With Advanced Stage Cancer, (2016). https://clinicaltrials.gov/ct2/show/NCT02693535 (accessed April 8, 2020).
  • [124].ECOG-ACRIN, NCI-ComboMATCH Precision Medicine Cancer Trial, (2020). https://ecog-acrin.org/nci-combomatch (accessed April 8, 2020).
  • [125].Rodriguez-Vida A, Perez-Gracia JL, Bellmunt J, Immunotherapy combinations and sequences in urothelial cancer: facts and hopes, Clin. Cancer Res 24 (2018) 6115–6124, 10.1158/1078-0432.CCR-17-3108. [DOI] [PubMed] [Google Scholar]
  • [126].Shindo Y, Hazama S, Tsunedomi R, Suzuki N, Nagano H, Novel biomarkers for personalized cancer immunotherapy, Cancers Basel 11 (2019) 1223, 10.3390/cancers11091223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [127].van Dijk N, Funt SA, Blank CU, Powles T, Rosenberg JE, van der Heijden MS, The cancer immunogram as a framework for personalized immunotherapy in urothelial cancer, Eur. Urol 75 (2019) 435–444, 10.1016/j.eururo.2018.09.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [128].Alifrangis C, McGovern U, Freeman A, Powles T, Linch M, Molecular and histopathology directed therapy for advanced bladder cancer, Nat. Rev. Urol (2019), 10.1038/s41585-019-0208-0. [DOI] [PubMed] [Google Scholar]
  • [129].Powles T, Durán I, van der Heijden MS, Loriot Y, Vogelzang NJ, De Giorgi U, Oudard S, Retz MM, Castellano D, Bamias A, Fléchon A, Gravis G, Hussain S, Takano T, Leng N, Kadel EE, Banchereau R, Hegde PS, Mariathasan S, Cui N, Shen X, Derleth CL, Green MC, Ravaud A, Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial, Lancet 391 (2018) 748.757, 10.1016/S0140-6736(17)33297-X.. [DOI] [PubMed] [Google Scholar]
  • [130].Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, Plimack ER, Vaena D, Grimm MO, Bracarda S, Arranz JÁ, Pal S, Ohyama C, Saci A, Qu X, Lambert A, Krishnan S, Azrilevich A, Galsky MD, Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial, Lancet Oncol 18 (2017) 312.322, 10.1016/S1470-2045(17)30065-7. [DOI] [PubMed] [Google Scholar]
  • [131].Patel MR, Ellerton J, Infante JR, Agrawal M, Gordon M, Aljumaily R, Britten CD, Dirix L, Lee KW, Taylor M, Schöffski P, Wang D, Ravaud A, Gelb AB, Xiong J, Rosen G, Gulley JL, Apolo AB, Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial, Lancet Oncol. 19 (2018) 51–64, 10.1016/S1470-2045(17)30900-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [132].Powles T, O'Donnell PH, Massard C, Arkenau H-T, Friedlander TW, Hoimes CJ, Lee JL, Ong M, Sridhar SS, Vogelzang NJ, Fishman MN, Zhang J, Srinivas S, Parikh J, Antal J, Jin X, Gupta AK, Ben Y, Hahn NM, [Supplemental content] Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma, JAMA Oncol. 3 (2017) e172411, , 10.1001/jamaoncol.2017.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [133].Bellmunt J, De Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, Vogelzang NJ, Climent MA, Petrylak DP, Choueiri TK, Necchi A, Gerritsen W, Gurney H, Quinn DI, Culine S, Sternberg CN, Mai Y, Poehlein CH, Perini RF, Bajorin DF, Pembrolizumab as second-line therapy for advanced urothelial carcinoma, N. Engl. J. Med 376 (2017) 1015.1026, 10.1056/NEJMoa1613683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [134].Fradet Y, Bellmunt J, Vaughn DJ, Lee JL, Fong L, Vogelzang NJ, Climent MA, Petrylak DP, Choueiri TK, Necchi A, Gerritsen W, Gurney H, Quinn DI, Culine S, Sternberg CN, Nam K, Frenkl TL, Perini RF, de Wit R, Bajorin DF, Randomized phase III KEYNOTE-045 trial of pembrolizumab versus paclitaxel, docetaxel, or vinflunine in recurrent advanced urothelial cancer: results of > 2 years of follow-up, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol (2019), 10.1093/annonc/mdz127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [135].Balar AV, Castellano D, O'Donnell PH, Grivas P, Vuky J, Powles T, Plimack ER, Hahn NM, de Wit R, Pang L, Savage MJ, Perini RF, Keefe SM, Bajorin D, Bellmunt J, First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study, Lancet Oncol. 18 (2017) 1483–1492, 10.1016/S1470-2045(17)30616-2. [DOI] [PubMed] [Google Scholar]
  • [136].Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, Loriot Y, Necchi A, Hoffman-Censits J, Perez-Gracia JL, Dawson NA, van der Heijden MS, Dreicer R, Srinivas S, Retz MM, Joseph RW, Drakaki A, Vaishampayan UN, Sridhar SS, Quinn DI, Durá I, Shaffer DR, Eigl BJ, Grivas PD, Yu EY, Li S, Kadel EE, Boyd Z, Bourgon R, Hegde PS, Mariathasan S, Thåström AC, Abidoye OO, Fine GD, Bajorin DF, Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial, Lancet 389 (2017) 67–76, 10.1016/S0140-6736(16)32455-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [137].Suzman DL, Agrawal S, Ning Y, Maher VE, Fernandes LL, Karuri S, Tang S, Sridhara R, Schroeder J, Goldberg KB, Ibrahim A, McKee AE, Pazdur R, Beaver JA, FDA Approval summary: atezolizumab or pembrolizumab for the treatment of patients with advanced urothelial carcinoma ineligible for cisplatin-containing chemotherapy, Oncologist 24 (2019) 563–569, 10.1634/theoncologist.2018-0084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [138].European Medicines Agency, European Medicines Agency restricts use of Keytruda and Tecentriq in bladder cancer, (2018). https://www.ema.europa.eu/en/news/ema-restricts-use-keytruda-tecentriq-bladder-cancer (accessed January 26, 2020). [Google Scholar]
  • [139].Grande E, Galsky M, Arija JAA, De Santis M, Davis D, De Giorgi UFF, Mencinger M, Kikuchi E, del Muro XG, Gumus M, Özgüroğlu M, Kalebasty AR, Park SH, Alekseev BY, Schutz FAB, Li J-R, Mecke A, Mariathasan S, Thastrom A, Bamias A, LBA14_PR - IMvigor130: Efficacy and Safety From a Phase III Study of Atezolizumab (atezo) as Monotherapy or in Combination With Platinum-Based Chemotherapy (PBC) vs Placebo+PBC in Previously Untreated Locally Advanced or Metastatic Urothelial Carcinoma, (2019). https://www.esmo.org/Press-Office/Press-Releases/ESMO-Congress-bladder-cancer-immunotherapy-imvigor130-grande (accessed January 26, 2020). [Google Scholar]
  • [140].Merck Sharp and Dohme Corp, Study of Pembrolizumab With or Without Platinum-based Combination Chemotherapy Versus Chemotherapy Alone in Urothelial Carcinoma (MK-3475-361/KEYNOTE-361), (2016). https://clinicaltrials.gov/ct2/show/NCT02853305 (accessed April 13, 2020).
  • [141].Bristol-Myers Squibb, Study of Nivolumab in Combination With Ipilimumab or Standard of Care Chemotherapy Compared to the Standard of Care Chemotherapy Alone in Treatment of Patients With Untreated Inoperable or Metastatic Urothelial Cancer, (2017). https://clinicaltrials.gov/ct2/show/NCT03036098 (accessed April 13, 2020).
  • [142].Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, Cheng SYS, Bischoff HG, Peled N, Grossi F, Jennens RR, Reck M, Hui R, Garon EB, Boyer M, Rubio-Viqueira B, Novello S, Kurata T, Gray JE, Vida J, Wei Z, Yang J, Raftopoulos H, Pietanza MC, Garassino MC, Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer, N. Engl. J. Med 378 (2018) 2078.2092, 10.1056/NEJMoa1801005. [DOI] [PubMed] [Google Scholar]
  • [143].Arbour KC, Riely GJ, Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review, J. Am. Med. Assoc 322 (2019) 764.774, 10.1001/jama.2019.11058. [DOI] [PubMed] [Google Scholar]
  • [144].AstraZeneca, Update on Phase III DANUBE Trial for Imfinzi and Tremelimumab in Unresectable, Stage IV Bladder Cancer, (2020). https://www.astrazeneca.com/media-centre/press-releases/2020/update-on-phase-iii-danube-trial-for-imfinzi-and-tremelimumab-in-unresectable-stage-iv-bladder-cancer-06032020.html (accessed April 8, 2020). [Google Scholar]
  • [145].The ASCO Post, JAVELIN Bladder 100 Study of Avelumab for Urothelial Cancer Meets Primary Endpoint, (2020). https://www.ascopost.com/issues/january-25-2020/javelin-bladder-100-study-of-avelumab-for-urothelial-cancer-meets-primary-endpoint/ (accessed April 8, 2020).
  • [146].Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE, Koeppen H, Astarita JL, Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, Guan Y, Chalouni C, Ziai J, Şenbabaoğlu Y, Santoro S, Sheinson D, Hung J, Giltnane JM, Pierce AA, Mesh K, Lianoglou S, Riegler J, Carano RAD, Eriksson P, Höglund M, Somarriba L, Halligan DL, Van Der Heijden MS, Loriot Y, Rosenberg JE, Fong L, Mellman I, Chen DS, Green M, Derleth C, Fine GD, Hegde PS, Bourgon R, Powles T, TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells, Nature 554 (2018) 544.548, 10.1038/nature25501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [147].Funt S, Snyder Charen A, Yusko E, Vignali M, Benzeno S, Boyd ME, Moran MM, Kania BE, Cipolla CK, Regazzi AM, Robins H, Iyer G, Rosenberg JE, Bajorin DF, Correlation of peripheral and intratumoral T-cell receptor (TCR) clonality with clinical outcomes in patients with metastatic urothelial cancer (mUC) treated with atezolizumab. J. Clin. Oncol 34 (2016), 10.1200/jco.2016.34.15_suppl.3005 3005–3005.27400947 [DOI] [Google Scholar]
  • [148].Grivas P, Castellano DE, O'Donnell PH, Cristescu R, Frenkl TL, Keefe SM, Loboda A, Souza SC, Ma H, Snyder A, Zhang C, Albright A, Lunceford J, Balar AV, Association between stromal/TGF-β/EMT gene expression signature and response to pembrolizumab monotherapy in cisplatin-ineligible patients with locally advanced (unresectable) or metastatic urothelial carcinoma. J. Clin. Oncol 37 (2019), 10.1200/jco.2019.37.7_suppl.433 433–433. [DOI] [Google Scholar]
  • [149].Wang L, Saci A, Szabo PM, Chasalow SD, Castillo-Martin M, Domingo-Domenech J, Siefker-Radtke A, Sharma P, Sfakianos JP, Gong Y, Dominguez-Andres A, Oh WK, Mulholland D, Azrilevich A, Hu L, Cordon-Cardo C, Salmon H, Bhardwaj N, Zhu J, Galsky MD, EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer, Nat. Commun (2018) 9, 10.1038/s41467-018-05992-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [150].Mouw KW, Goldberg MS, Konstantinopoulos PA, D'Andrea AD, DNA damage and repair biomarkers of immunotherapy response, Cancer Discov. 7 (2017) 675–693, 10.1158/2159-8290.CD-17-0226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [151].Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, Peters S, Development of tumor mutation burden as an immunotherapy bio-marker: utility for the oncology clinic, Ann. Oncol 30 (2019) 44–56, 10.1093/annonc/mdy495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [152].Iyer G, Audenet F, Middha S, Carlo MI, Regazzi AM, Funt S, Al-Ahmadie H, Solit DB, Rosenberg JE, Bajorin DF, Mismatch repair (MMR) detection in urothelial carcinoma (UC) and correlation with immune checkpoint blockade (ICB) response. J. Clin. Oncol 35 (2017), 10.1200/jco.2017.35.15_suppl.4511 4511–4511. [DOI] [Google Scholar]
  • [153].Teo MY, Seier K, Ostrovnaya I, Regazzi AM, Kania BE, Moran MM, Cipolla CK, Bluth MJ, Chaim J, Al-Ahmadie H, Snyder A, Carlo MI, Solit DB, Berger MF, Funt S, Wolchok JD, Iyer G, Bajorin DF, Callahan MK, Rosenberg JE, Alterations in DNA damage response and repair genes as potential marker of clinical benefit from PD-1/PD-L1 blockade in advanced urothelial cancers, J. Clin. Oncol 36 (2018) 1685.1694, 10.1200/JCO.2017.75.7740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [154].Galsky MD, Wang H, Hahn NM, Twardowski P, Pal SK, Albany C, Fleming MT, Starodub A, Hauke RJ, Yu M, Zhao Q, Sonpavde G, Donovan MJ, Patel VG, Sfakianos JP, Domingo-Domenech J, Oh WK, Akers N, Losic B, Gnjatic S, Schadt EE, Chen R, Kim-Schulze S, Bhardwaj N, Uzilov AV, Phase 2 trial of gemcitabine, cisplatin, plus ipilimumab in patients with metastatic urothelial cancer and impact of DNA damage response gene mutations on outcomes, Eur. Urol 73 (2018) 751.759, 10.1016/j.eururo.2017.12.001. [DOI] [PubMed] [Google Scholar]
  • [155].Necchi A, Madison R, Raggi D, Jacob JM, Bratslavsky G, Shapiro O, Elvin JA, Vergilio JA, Killian JK, Ngo N, Ramkissoon S, Severson E, Hemmerich AC, Huang R, Ali SM, Chung JH, Reddy P, Miller VA, Schrock AB, Gay LM, Alexander BM, Grivas P, Ross JS, Comprehensive assessment of immuno-oncology biomarkers in adenocarcinoma, urothelial carcinoma, and squamous-cell carcinoma of the bladder, Eur. Urol (2020), 10.1016/j.eururo.2020.01.003. [DOI] [PubMed] [Google Scholar]
  • [156].Zahoor H, Grivas P, The cancer immunogram: a pledge for a comprehensive biomarker approach for personalized immunotherapy in urothelial cancer, Eur. Urol 75 (2019) 445.447, 10.1016/j.eururo.2018.12.005. [DOI] [PubMed] [Google Scholar]
  • [157].Powles T, Kockx M, Rodriguez-Vida A, Duran I, Crabb SJ, Van Der Heijden MS, Szabados B, Pous AF, Gravis G, Herranz UA, Protheroe A, Ravaud A, Maillet D, Mendez MJ, Suarez C, Linch M, Prendergast A, van Dam PJ, Stanoeva D, Daelemans S, Mariathasan S, Tea JS, Mousa K, Banchereau R, Castellano D, Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial, Nat. Med 25 (2019) 1706–1714, 10.1038/s41591-019-0628-7. [DOI] [PubMed] [Google Scholar]
  • [158].Necchi A, Anichini A, Raggi D, Briganti A, Massa S, Lucianò R, Colecchia M, Giannatempo P, Mortarini R, Bianchi M, Farè E, Monopoli F, Colombo R, Gallina A, Salonia A, Messina A, Ali SM, Madison R, Ross JS, Chung JH, Salvioni R, Mariani L, Montorsi F, Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study, J. Clin. Oncol 36 (2018) 3353–3360, 10.1200/JCO.18.01148. [DOI] [PubMed] [Google Scholar]
  • [159].Ayers M, Nebozhyn M, Cristescu R, McClanahan TK, Perini R, Rubin E, Cheng JD, Kaufman DR, Loboda A, Molecular profiling of cohorts of tumor samples to guide clinical development of pembrolizumab as monotherapy, Clin. Cancer Res 25 (2019) 1564–1573, 10.1158/1078-0432.CCR-18-1316. [DOI] [PubMed] [Google Scholar]
  • [160].Komiya T, Huang CH, Updates in the clinical development of Epacadostat and other indoleamine 2,3-dioxygenase 1 inhibitors (IDO1) for human cancers, Front. Oncol (2018) 8, 10.3389/fonc.2018.00423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [161].Smith DC, Gajewski T, Hamid O, Wasser JS, Olszanski AJ, Patel SP, Mamtani R, Schmidt EV, Zhao Y, Maleski JE, Gangadhar TC, Epacadostat plus pembrolizumab in patients with advanced urothelial carcinoma: preliminary phase I/II results of ECHO-202/KEYNOTE-037. J. Clin. Oncol 35 (2017), 10.1200/jco.2017.35.15_suppl.4503 4503–4503. [DOI] [Google Scholar]
  • [162].Luke JJ, Tabernero J, Joshua A, Desai J, Varga AI, Moreno V, Gomez-Roca CA, Markman B, De Braud FG, Patel SP, Carlino MS, Siu LL, Curigliano G, Liu Z, Ishii Y, Wind-Rotolo M, Basciano PA, Azrilevich A, Gelmon KA, BMS-986205, an indoleamine 2, 3-dioxygenase 1 inhibitor (IDO1i), in combination with nivolumab (nivo): updated safety across all tumor cohorts and efficacy in advanced bladder cancer (advBC). J. Clin. Oncol 37 (2019), 10.1200/jco.2019.37.7_suppl.358 358–358. [DOI] [Google Scholar]
  • [163].Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, Arance A, Carlino MS, Grob J-J, Kim TM, Demidov L, Robert C, Larkin J, Anderson JR, Maleski J, Jones M, Diede SJ, Mitchell TC, Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study, Lancet Oncol. 20 (2019) 1083–1097, 10.1016/s1470-2045(19)30274-8. [DOI] [PubMed] [Google Scholar]
  • [164].Naing A, Powderly JD, Falchook G, Creelan B, Nemunaitis J, Lutzky J, Diab A, Wang JS, Laing N, Niewood M, Gong X, Zhou G, Patel M, Abstract CT177, Epacadostat plus durvalumab in patients with advanced solid tumors: preliminary results of the ongoing, open-label, phase I/II ECHO-203 study, Proceedings of the American Association for Cancer Research (AACR), 2018, 10.1158/1538-7445.am2018-ct177CT177–CT177. [DOI] [Google Scholar]
  • [165].Chu CE, Porten SP, Grossfeld GD, Meng MV, Role of indoleamine-2,3-dioxygenase inhibitors in salvage therapy for non-muscle invasive bladder cancer, Urol. Clin. North Am 47 (2020) 111–118, 10.1016/j.ucl.2019.09.013. [DOI] [PubMed] [Google Scholar]
  • [166].Bristol-Myers Squibb, A Study of Chemo Only Versus Chemo Plus Nivo With or Without BMS-986205, Followed by Post- Surgery Therapy With Nivo or Nivo and BMS-986205 in Patients With MIBC, (2018). https://clinicaltrials.gov/ct2/show/NCT03661320 (accessed January 30, 2020).
  • [167].Challita-Eid PM, Satpayev D, Yang P, An Z, Morrison K, Shostak Y, Raitano A, Nadell R, Liu W, Lortie DR, Capo L, Verlinsky A, Leavitt M, Malik F, Avina H, Guevara CI, Dinh N, Karki S, Anand BS, Pereira DS, Joseph IBJ, Donate F, Morrison K, Stover DR, Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models, Cancer Res. 76 (2016) 3003–3013, 10.1158/0008-5472.CAN-15-1313. [DOI] [PubMed] [Google Scholar]
  • [168].Targeting Nectin-4 in Bladder Cancer, Cancer Discov. 7 (2017) OF3. doi: 10.1158/2159-8290.CD-NB2017-095. [DOI] [PubMed] [Google Scholar]
  • [169].Astellas Pharma Global Development Inc., A Study to Evaluate Enfortumab Vedotin Versus (vs) Chemotherapy in Subjects With Previously Treated Locally Advanced or Metastatic Urothelial Cancer (EV-301), (2018). https://clinicaltrials.gov/ct2/show/NCT03474107 (accessed April 12, 2020). [DOI] [PMC free article] [PubMed]
  • [170].Petrylak DP, Heath EI, Sonpavde G, George S, Morgans AK, Eigl BJ, Picus J, Cheng SY, Hotte SJ, Gartner EM, Vincent M, Chu R, Anand B, Morrison K, Jackson L, Reyno LM, Yu EY, Anti-tumor activity, safety and pharmacokinetics (PK) of AGS15E (ASG-15ME) in a phase I dose escalation trial in patients (Pts) with metastatic urothelial cancer (mUC). J. Clin. Oncol 34 (2016), 10.1200/jco.2016.34.15_suppl.4532. 4532–4532. [DOI] [Google Scholar]
  • [171].Tagawa ST, Faltas BM, Lam ET, Saylor PJ, Bardia A, Hajdenberg J, Morgans AK, Lim EA, Kalinsky K, Simpson PS, Galsky MD, Goswam T, Wegener WA, Petrylak DP, Sacituzumab govitecan (IMMU-132) in patients with previously treated metastatic urothelial cancer (mUC): results from a phase I/II study. J. Clin. Oncol 37 (2019), 10.1200/jco.2019.37.7_suppl.354. 354–354 [DOI] [Google Scholar]
  • [172].Tagawa ST, Balar A, Petrylak DP, Grivas P, Agarwal N, Sternberg CN, Hong Q, Gladden A, Kanwal C, Siemon-Hryczyk P, Goswami T, Itri LM, Loriot Y, Initial Results From TROPHY-U-01: a Phase 2 Open-Label Study of Sacituzumab Govitecan in Patients (Pts) With Metastatic Urothelial Cancer (mUC) After Failure of Platinum-based Regimens (PLT) or Immunotherapy, (2019). https://oncologypro.esmo.org/Meeting-Resources/ESMO-2019-Congress/Initial-Results-From-TROPHY-U-01-A-Phase-2-Open-Label-Study-of-Sacituzumab-Govitecan-in-Patients-Pts-With-Metastatic-Urothelial-Cancer-mUC-After-Failure-of-Platinum-Based-Regimens-PLT-or-Im (accessed January 26, 2020). [Google Scholar]
  • [173].Grivas P, Mortazavi A, Picus J, Hahn NM, Milowsky MI, Hart LL, Alva A, Bellmunt J, Pal SK, Bambury RM, O'Donnell PH, Gupta S, Guancial EA, Sonpavde GP, Faltaos D, Potvin D, Christensen JG, Chao RC, Rosenberg JE, Mocetinostat for patients with previously treated, locally advanced/metastatic urothelial carcinoma and inactivating alterations of acetyltransferase genes, Cancer 125 (2019) 533–540, 10.1002/cncr.31817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [174].Ramakrishnan S, Granger V, Rak M, Hu Q, Attwood K, Aquila L, Krishnan N, Osiecki R, Azabdaftari G, Guru K, Chatta G, Gueron G, McNally L, Ohm J, Wang J, Woloszynska A, Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer, Cell Death Differ. (2019), 10.1038/s41418-019-0278-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [175].Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, Schultz DC, Liu Q, Shih IM, Conejo-Garcia JR, Speicher DW, Zhang R, Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers, Nat. Med 21 (2015) 231–238, 10.1038/nm.3799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [176].Martínez-Fernández M, Rubio C, Segovia C, López-Calderón FF, Dueñas M, Paramio JM, EZH2 in bladder cancer, a promising therapeutic target, Int. J. Mol. Sci 16 (2015) 27107–27132, 10.3390/ijms161126000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [177].Christensen E, Birkenkamp-Demtröder K, Sethi H, Shchegrova S, Salari R, Nordentoft I, Wu HT, Knudsen M, Lamy P, Lindskrog SV, Taber A, Balcioglu M, Vang S, Assaf Z, Sharma S, Tin AS, Srinivasan R, Hafez D, Reinert T, Navarro S, Olson A, Ram R, Dashner S, Rabinowitz M, Billings P, Sigurjonsson S, Lindbjerg Andersen C, Swenerton R, Aleshin A, Zimmermann B, Agerbak M, Jimmy Lin CH, Jensen JB, Dyrskjøt L, Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma, J. Clin. Oncol 37 (2019) 1547–1557, 10.1200/JCO.18.02052. [DOI] [PubMed] [Google Scholar]
  • [178].Grivas P, Lalani A-KA, Pond GR, Nagy RJ, Faltas B, Agarwal N, Gupta SV, Drakaki A, Vaishampayan UN, Wang J, Barata PC, Gopalakrishnan D, Naik G, McGregor BA, Kiedrowski LA, Lanman RB, Sonpavde GP, Circulating tumor DNA alterations in advanced urothelial carcinoma and association with clinical outcomes: a pilot study, Eur. Urol. Oncol (2019), 10.1016/j.euo.2019.02.004. [DOI] [PubMed] [Google Scholar]
  • [179].Kuderer NM, Burton KA, Blau S, Rose AL, Parker S, Lyman GH, Blau CA, Comparison of 2 commercially available next-generation sequencing platforms in oncology, JAMA Oncol. 3 (2017) 996–998, 10.1001/jamaoncol.2016.4983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [180].AstraZeneca, Prevalence of PD-L1 Expression in Patients With Advanced Urothelial Carcinoma (PREVAIL), (2018). https://clinicaltrials.gov/ct2/show/NCT03788746 (accessed January 26, 2020).
  • [181].Caris Life Sciences, Caris Life Sciences Receives FDA Breakthrough Device Designation for MI TranscriptomeTM Companion Diagnostic Test, (2019). https://www.carislifesciences.com/news/caris-life-sciences-receives-fda-breakthrough-device-designation-for-mi-transcriptome-companion-diagnostic-test (accessed April 12, 2020). [Google Scholar]
  • [182].Freedman AN, Klabunde CN, Wiant K, Enewold L, Gray SW, Filipski KK, Keating NL, Leonard DGB, Lively T, McNeel TS, Minasian L, Potosky AL, Rivera DR, Schilsky RL, Schrag D, Simonds NI, Sineshaw HM, Struewing JP, Willis G, de Moor JS, Use of next-generation sequencing tests to guide cancer treatment: results from a nationally representative survey of oncologists in the United States, JCO Precis. Oncol (2018) 1–13, 10.1200/po.18.00169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [183].Klek S, Heald B, Milinovich A, Ni Y, Abraham J, Grivas P, Mahdi H, Khorana AA, Bolwell BJ, Sohal D, Funchain P, Genetic counseling (GC) and germline (GL) testing rates after adoption of an integrated clinical cancer genetics (CCG) approach to genomics tumor board (GTB), J. Clin. Oncol 36 (2018), 10.1200/jco.2018.36.15_suppl.1511 1511–1511 [DOI] [Google Scholar]
  • [184].Nassar AH, Abou Alaiwi S, AlDubayan SH, Moore N, Mouw KW, Kwiatkowski DJ, Choueiri TK, Curran C, Berchuck JE, Harshman LC, Nuzzo PV, Chanza NM, Van Allen E, Esplin ED, Yang S, Callis T, Garber JE, Rana HQ, Sonpavde G, Prevalence of pathogenic germline cancer risk variants in high-risk urothelial carcinoma, Genet. Med (2019), 10.1038/s41436-019-0720-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [185].Carlo MI, Zhang L, Mandelker D, Vijai J, Cipolla CK, Robson ME, Funt S, Hakimi AA, Iyer G, Rosenberg JE, Coleman J, Solit DB, Offit K, Bajorin DF, Cancer predisposing germline mutations in patients (pts) with urothelial cancer (UC) of the renal pelvis (R-P), ureter (U) and bladder (B), J. Clin. Oncol 35 (2017), 10.1200/jco.2017.35.15_suppl.4510 4510–4510. [DOI] [Google Scholar]
  • [186].Flaig TW, Tangen CM, Daneshmand S, Alva AS, Lerner SP, Lucia MS, McConkey DJ, Theodorescu D, Goldkorn A, Milowsky MI, Bangs RC, MacVicar GR, Bastos BR, Gustafson D, Plets M, Thompson IM, SWOG S1314: a randomized phase II study of co-expression extrapolation (COXEN) with neoadjuvant chemotherapy for localized, muscle-invasive bladder cancer, J. Clin. Oncol 37 (2019), 10.1200/jco.2019.37.15_suppl.45064506–4506. [DOI] [Google Scholar]

RESOURCES