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Abstract

Motivation: Gene-gene co-expression networks (GCN) are of biological interest for the useful information they pro-
vide for understanding gene-gene interactions. The advent of single cell RNA-sequencing allows us to examine
more subtle gene co-expression occurring within a cell type. Many imputation and denoising methods have been
developed to deal with the technical challenges observed in single cell data; meanwhile, several simulators have
been developed for benchmarking and assessing these methods. Most of these simulators, however, either do not
incorporate gene co-expression or generate co-expression in an inconvenient manner.

Results: Therefore, with the focus on gene co-expression, we propose a new simulator, ESCO, which adopts the
idea of the copula to impose gene co-expression, while preserving the highlights of available simulators, which per-
form well for simulation of gene expression marginally. Using ESCO, we assess the performance of imputation
methods on GCN recovery and find that imputation generally helps GCN recovery when the data are not too sparse,
and the ensemble imputation method works best among leading methods. In contrast, imputation fails to help in the
presence of an excessive fraction of zero counts, where simple data aggregating methods are a better choice. These
findings are further verified with mouse and human brain cell data.

Availability and implementation: The ESCO implementation is available as R package ESCO. Users can either down-
load the development version via github (https://github.com/JINJINT/ESCO) or the archived version via Zenodo
(https://zenodo.org/record/4455890).

Contact: roeder@andrew.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A synchronization between gene expression leads to gene co-
expression. Cell heterogeneity, due to cell type or cell cycle, can gener-
ate correlations between genes that are highly expressed in similar cells.
Alternatively, any form of gene cooperation within a cell type, such as
gene co-regulation, also results in co-expression. To differentiate these
two settings, we refer them as the gene co-expression across heteroge-
neous cell groups and gene co-expression within homogeneous cell
groups respectively, throughout this article. Understanding gene co-
expression in the former setting helps with cell-type identification, and
in the latter setting, it helps detect gene regulation relationships and can
further provide insights into genetic disorders (Pang et al., 2020;
Polioudakis et al., 2019).

Single-cell RNA sequencing (scRNA-seq), a recent breakthrough
technology that paves the way for measuring transcription at single

cell resolution to study precise biological functions, allows us to tar-
get gene co-expression within homogeneous cell groups for the first
time. Indeed, early statistical models argued that genes within homo-
geneous cell groups were independent (Quinn et al., 2018).
However, they overlooked the investigations from the biological
end, which reveal that correlation arises due to the stochastic nature
of gene expression and gene regulation dynamics (Raj et al., 2006).

scRNA-seq data present many challenges for co-expression ana-
lysis, due to the sparsity of counts, which include many zeros, main-
ly arising from low capture and sequencing efficiency in the data
collecting process. Sparsity occurs in both a gene- and a cell-specific
manner and is observed to have the greatest impact on genes that
have low expression.

An ever-growing literature attempts to address these challenges
using imputation and other denoising methods. To systemically
benchmark these methods, we require realistic simulation tools to
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construct a ground truth for scRNA-seq data with realistic technical
noise; however, currently there is a paucity of methods for this
purpose.

Numerous scRNA-seq simulators using both non-parametric
and parametric approaches have been proposed during recent years,
e.g. Splat (Zappia et al., 2017), SymSim (Zhang et al., 2019a),
PROSSTT (Papadopoulos et al., 2019) and SERGIO (Dibaeinia and
Sinha, 2020). Each of those methods focuses on producing realistic
marginal behavior of gene expression, and successfully modeling
these features, as well as capturing cell type heterogeneity. But, those
simulators either ignore gene co-expression, or they generate it in a
way that is hard to benchmark. Real data clearly display gene co-
expression within homogeneous cell groups (Supplementary Fig.
S1A) and gene co-expression across heterogeneous cell groups
(Supplementary Fig. S1B). By contrast, almost all gene pairs show
no correlation for simulated data generated using Splat, even with-
out the challenge of added technical noise (Supplementary Fig.
S1C). While the data simulated by SymSim may show a modest level
of gene co-expression (Supplementary Fig. S1D left panel), that cor-
relation arises from the cell type confounding, rather than true gene-
gene interaction (Supplementary Fig. S1D right panel). PROSSTT,
shares a similar issue with SymSim, in that it also introduces co-
expression via a random dot product model. SERGIO, on the other
hand, directly approximates the biological gene expression process
via a series of differential equations with gene regulation relation-
ship as constrains, therefore it is able to introduce gene co-
expression based on real gene-gene interactions. However, it is hard
to anticipate the final level of co-expression from the imposed gene
regulation relationship, hence it is difficult to systematically bench-
mark the outcome.

Here, we propose a new simulation tool, Ensemble Single-cell
expression simulator incorporating gene CO-expression, ESCO,
which is constructed as an ensemble of the best features among cur-
rent simulators to preserve the marginal performance, while allow-
ing easily incorporating co-expression structure among genes using
a copula. Particularly, ESCO allows realistic simulation of a homo-
geneous cell group, heterogeneous cell groups, as well as complex
cell group relationships such as tree and trajectory structure, to-
gether with a flexible input of co-expression. As for technical noise,
ESCO integrates the parametric and non-parametric approaches in
current literature and gives the user flexibility to choose. In order to
mimic a specific real dataset, ESCO can estimate all the hyperpara-
meters in a feasible way for both a homogeneous cell group or het-
erogeneous cell groups. ESCO is implemented in the R package
ESCO, which is built upon the R package Splatter (Zappia et al.,
2017), in order to provide a unified software framework.

2 Materials and methods

2.1 Models
Despite their differences, current simulation approaches arguably

follow a general flowchart (Fig. 1). For example, Splat (Zappia
et al., 2017) simulates scRNA-seq data using a hierarchical model in
which the gamma-Poisson distribution imposes a mean and variance
trend; SymSim (Zhang et al., 2019a) is based on a similar hierarchic-
al model with gene kinetics guiding the hyperparameter selection, a
non-parametric approach to introduce more realistic noise, and a
focus on tree-structured heterogeneity; PROSSTT (Papadopoulos
et al., 2019) aims to simulate realistic cell trajectories using a model
based on Brownian motion; SERGIO (Dibaeinia and Sinha, 2020)
starts from the gene regulation relationship and solves a series of sto-
chastic differential equations given by gene kinetics to impose those
regulations. The more complex non-parametric modeling tends to
fit data better than parametric modeling, given that the aim is to
mimic data for which the model has already been trained. However,
this approach is not practical for producing simulated data similar
to a new dataset. For example, the non-parametric methods like
SymSim and SERGIO use grid search over a large number of tuning
parameters. By contrast, the parametric Splat approach can be tuned
to data by fitting a one-step statistical regression model. ESCO also

follows the general flowchart in Figure 1, but it aims to incorporate
the best features from the existing methods. Figure 2 illustrates the
superiority of ESCO, as it allows simulation of scRNA-seq data
with various cell heterogeneity patterns and customized gene co-
expression patterns. The correlation pattern input is successfully
replicated in the simulated data, both within and between homoge-
neous cell groups. In this section, we elaborate on the specific simu-
lation models that ESCO adopts, following the framework outlined
in Figure 1. More detailed descriptions of the simulation models and
the time complexity for simulating large complex data are provided
in Supplementary Notes S1 and S2, respectively.

Base expression level We simulate base expression level in an
empirical way that allows inputting any density function, either
non-parametric or parametric. Particularly, we denote the base ex-
pression level for gene g as kg, and we let kg�iidK for all g.

Extrinsic variation The heterogeneity of cell groups is driven by
the differential expressed (DE) behavior among certain gene sets
across groups. Therefore we implement the cell group heterogeneity,
i.e. the extrinsic variation, via modeling the behavior of DE genes
(GDE). We use the random dot product model to introduce this het-
erogeneity by imposing a DE factor generated separately on the
otherwise homogeneous gene expression means. Particularly, we
generate the different cell group structures we want, via modeling
the DE factor f k

g for gene g in cell group k in each of the following
ways.

A. Discrete cell groups: In order to generate clear and distin-
guishable cell groups, we randomly split the set of DE genes into
subsets, each is identified as marker genes for a cell group. Then we
simulate the DE factor for each marker gene set as a LogNormal
random variable with different mean and variance indexed by group
identity.

B. Tree-structured cell groups: We utilize the idea in SymSim
(Zhang et al., 2019a), which makes the DE factor of similar cell
groups more related to each other. Particularly, we generate the DE
factor from a multivariate normal distribution, where the covariance
matrix is given by the tree structure of the data. Additionally, in
order to assure the identifiability of different cell groups, we intro-
duce extra heterogeneity via strengthening the DE factor for a small
proportion of DE genes, which are identified as marker genes in this
setting (different from those in the discrete cell group setting).

C. Continuous cell trajectories: We utilize the idea in PROSSTT
(Papadopoulos et al., 2019), which uses Brownian motion to gener-
ate the DE factors, so that the smooth cell heterogeneity can be
generated.

Finally, we generate the base expression with an adjustment of li-
brary size for each gene g in cell c as Delete

kgc ¼ Lc
~kgc=

X

g

~kgc for each cell c; (1)

where log Lc�iidFL; and ~kgc�iidkgf
kðcÞ
g if g 2 GDE, with k(c) denotes the

group identity of cell c; otherwise ~kgc � kg.

Intrinsic variation

Marginal distribution: Gene expression in individual cells is an in-
herently stochastic process (Raj et al., 2006). If the gene regulation
is ignored, this process is just a simple two state birth-death process.
The steady-state distribution for this stochastic process in most cases
turns out to be a Gamma-Poisson, Beta-Poisson or Poisson, which is
justified from the theoretical biochemistry aspect (Grün et al., 2014;
Kim and Marioni, 2013), the experimental data sampling aspect
(Quinn et al., 2018), and also the common observations from the
data. Splat (Zappia et al., 2017) and PROSSTT (Papadopoulos
et al., 2019) utilize the negative binomial model in the simulation of
marginal gene expression; while SymSim (Zhang et al., 2019a) uses
a Beta-Poisson instead; SERGIO (Dibaeinia and Sinha, 2020) simu-
lates the gene expression via solving the series of ordinary differen-
tial equation functions following the literature about gene kinetics
with regulation (Schaffter et al., 2011).

ESCO adopts the negative binomial model, since it is widely
accepted in the literature and enjoys support from biochemistry,
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experimental data sampling and empirical observations.
Particularly, following Splat (Zappia et al., 2017), we can naturally
enforce a mean-variance trend by simulating the Biological
Coefficient of Variation (BCV) for each gene. BCV is defined as the
square root of the standard deviation divided by the mean, i.e. the
square root of the coefficient of dispersion. It has been pointed out
(McCarthy et al., 2012) that one should not assume a common dis-
persion for all the genes, as a gene-specific variation is often detected
in RNA-seq case studies. Splat simulates BCV as a weighted sum of
a common dispersion and a gene-specific dispersion, such that some
information can be shared across genes to benefit the estimation,
while preserving the gene-specific variation.

Co-expression: The gene expression (either the truth or the
observed) is not necessarily independent even within cells of the
same type, resulting from gene regulation. Characterizing the joint
distribution requires solving the steady distribution of multiple cor-
related stochastic processes, which usually does not have a closed-
form solution and requires large computational power (Dibaeinia
and Sinha, 2020; Pratapa et al., 2020). Since the marginal distribu-
tion of gene expression is understood fairly well, naturally, we think
of using the copula to model the gene dependence. This idea is
shown to be successful in Inouye et al. (2017) to model bulk RNA-
seq data.

A copula is defined by a joint cumulative distribution function
(CDF), CðuÞ : ½0; 1�p ! ½0;1� with uniform marginal distributions.
One of the most popular copula models is the Gaussian copula,
which is defined simply as: Delete

CGauss
R ¼ NRðU�1ðu1Þ;U�1ðu2Þ; . . . ;U�1ðupÞÞ (2)

where U�1 denotes the inverse function of standard normal CDF,
and NR denotes the joint CDF of a multivariate normal random vec-
tor with zero means and correlation matrix R. Due to the well-

known consistency between R and the empirical Pearson correlation
matrix, the Gaussian copula allows for directly interpretable de-
pendence simulation, and therefore is adopted by ESCO.

Technical noise: Currently, there are mainly two single cell
library preparation protocols: (i) full-length mRNAs profiling
without the use of UMIs (e.g. with a standard Smart-Seq proto-
col); and (ii) profiling only the end of the mRNA molecule with
the addition of UMIs (e.g. 10x Chromium). The former protocol
is usually applied for a small number of cells and with a large
number of reads per cell, providing full information on tran-
script structure. The latter is normally applied for many cells
with shallower sequencing, and it is impacted less by amplifica-
tion and gene length biases. We focus on the UMI-based proto-
col in this article because it is usually less biased with greater
sparsity.

There currently exist two approaches to simulate the technical
noise: one is based on data generating process, and the other is based
on data visualization and fitting. As an example of the former,
SymSim (Zhang et al., 2019a) uses the empirical approximation of
the major steps in the experimental procedures such as mRNA cap-
ture, PCR amplification, RNA fragmentation and sequencing, to
directly imitate the technical noise. On the other hand, Splat
(Zappia et al., 2017) simulates the technical noise by adopting a
zero-inflation model, where the zero-inflation probability relates to
the gene expression level in a way that comes from the observed
trend in the real data.

There are both pros and cons with regard to these two
approaches. The empirical approach facilitates the generation of
more realistic noise, but suffers from finding appropriate configur-
ation to match a particular dataset (actually, SymSim uses a grid
search to do the matching). In contrast, the parametric approach
allows a one-step estimation of the parameters from the real data,
but can suffer from poor goodness-of-fit due to the mismatch of

Fig. 1. Summary of simulators for scRNA-seq data. (A) The general modeling flowchart of commonly used simulators. Simulators often start with (a) extrinsic variation that

arose from cell heterogeneity in the biological sense, and import this model to (b) the base expression mean generated for each gene, to formalize the heterogeneous expression

means for a gene in a cell of a particular cell type. Then, those means are used to generate the expression level, i.e. mRNA counts, by modeling the (c) intrinsic variation, i.e.

the stochasticity of gene expression in a cell with a defined base rate of expression. This process is often modeled by the gene kinetic model in biochemistry, which could be

stated as a stochastic process in statistical terms. The stable distribution of this stochastic process can usually be approximated by distributions like negative binomial/Poisson/

beta Poisson. Finally, some simulators allow the generation of technical noise (d) separately, by adding noise, step by step, to the true counts, to mimic the data collection pro-

cess [the cartoon display is from Zhang et al. (2019a)]. Usually, this stepwise process is approximated by the zero-inflation model, where the true counts are set to zero with

probability related to expression level. (B) Summary of the current state of simulators following the general modeling flowchart described above, with blue and orange text

color indicating whether they use statistical estimation or grid search when fitting the simulator to a real dataset. The objective of ESCO is to create an ensemble of the best fea-

tures among current simulators in each step, while allowing easily imposing co-expression structure among genes via a copula
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Fig. 2. ESCO can simulate scRNA-seq data of various cell heterogeneity and gene co-expression. (A) The simulation results for one homogeneous cell group consisting of 200

cells and 500 genes. The first panel displays the heatmap of log2 transformed normalized simulated expression data, where rows represent genes and columns represent cells;

30% of genes are chosen to be co-expressed genes, and the rest are independent genes. The following displays depict, in order, the given correlation structure for co-expressed

genes, the simulated correlation structure among those co-expressed genes without noise, and that with technical noise, and the simulated correlation structure for independent

genes. (B) The simulation results for three discrete heterogeneous cell groups consisting of 500 cells and 1000 genes. 30% of the genes are chosen to be cell-type DE genes and

presumably co-expressed, among which each marks one cell type. Another 10% of genes are chosen to be housekeeping genes, and also presumably co-expressed. The rest are

independent non-DE genes. The first display shows the heatmap of log2 transformed normalized simulated data, where different gene types (rows) and cell types (columns) are

marked with color bars on the margin. The following displays depict, in order in each row, the given correlation structure for both marker genes of Group2 and co-expressed

housekeeping genes, the simulated correlation structure among those co-expressed genes without noise, and that with technical noise; and, at the end of each row the simulated

correlation structure among all DE genes across all cells, and that among all independent genes across all cells, with corresponding gene types marked with a color bar on top.

(C) The simulation results for five heterogeneous cell groups that follow a tree structure given in the first panel. We simulate 1000 cells and 2000 genes: 30% of genes are

chosen to be DE genes and presumably co-expressed, among which 5% are markers; the rest are independent non-DE genes. The second panel shows the heatmap of log2

transformed normalized simulated data. Different cell types are marked with color bars on the column margin, together with the hierarchical clustering of cells. The following

displays depict, in order, the resulting correlation structure among all marker genes across all cells, with corresponding gene types marked with a color bar on top; the given

correlation structure for co-expressed marker genes of Neuron1 cells, and the resulting correlation structure among those co-expressed genes. (D) The simulation results for

five heterogeneous cell groups that follow a smooth cell trajectory structure given in the top left panel. There are 1000 cells and 2000 genes; 30% of genes are chosen to be DE

genes and presumably co-expressed and share the same correlation structure within each branches, and the rest are independent non-DE genes. The following displays depict,

in order, the UMAP for the first two dimensions of the simulated data, the heatmap of log2 transformed normalized simulated data for all DE genes in one continuous path

(i.e. branches 1! 2! 5), with branch ID marked with a color bar on top; the given shared correlation structure for the DE genes, and the resulting correlation structure simu-

lated of those genes within each branch
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models. Therefore, ESCO integrates both procedures and gives users
the freedom to choose between the two.

2.2 Estimation
ESCO facilitates mimicking any particular dataset, consisting of ei-
ther homogeneous or heterogeneous cell groups, by estimating the
hyperparameters from the data. Through learning the parameters in
the parametric model, this approach fits data as well as possible,
given the limitations of the parametric choice, as illustrated by com-
paring mouse brain cells (Zeisel et al., 2015) with simulated out-
comes. A good match is obtained for mean, variance of expression,
UMAP of cells, percent zero outcomes and co-expression patterns
(Supplementary Fig. S2).

Next, we elaborate on our specific estimation strategies. Recall
that ESCO takes a hierarchical modeling approach, paired with a
copula. As such, an empirical Bayesian approach to parameter esti-
mation would be appropriate. However, it is usually infeasible to
compute the solution. Therefore, we follow Splat and estimate the
parameters in each layer separately. Particularly, we assume the
data are already normalized (i.e. no batch effect arises due to tech-
nical reason) and have disjoint marker gene sets across cell types,
and consider the three estimation tasks in the following.

Estimating the heterogeneity We have introduced three types of
heterogeneity of gene expression (discrete, tree and trajectory), but
we only present an estimation procedure for the discrete one here,
and leave a full elaboration of the more complex structure of the
other two models to future work. Nevertheless, ESCO is usable for
these two models provided the tree structure and trajectory informa-
tion is available from side information. When the tree/trajectory in-
formation is not available, in contrast with SymSim and PROSSTT,
we caution against using a grid search to chose model parameters
due to the difficulty in determining a good ‘match’ in these complex
heterogeneity cases. SymSim and PROSSTT use summary statistics,
such as global mean and variance, as standards for a good ‘match’,
but two datasets can have similar mean and variance and totally dif-
ferent cell heterogeneity structure.

Following our modeling of the discrete heterogeneous cell
groups, we first split all the genes to DE and non-DE genes based on
their Area Under the Curve (AUC) scores in cell group prediction
using SC3 (Kiselev et al., 2017), provided that we already have the
true cell group annotation. Particularly, we use 0.7 as our cutting
threshold of the AUC score, i.e. classifying the genes with AUC score
no less than 0.7 as DE genes and the others as non-DE genes.

We then use the DE genes to estimate the DE factors.
Particularly, we divide those DE genes into marker genes for each
cell group based on their classification result from SC3 (Kiselev
et al., 2017). We assume that the mean distribution of marker genes
in their marked cell group follows the same distribution in the other
cell group and a DE factor that follows LogNormal distribution
indexed by the cell type. Therefore, we estimate the DE factor for
marker genes of cell group k via fitting a LogNormal distribution on
the ratio of their sample mean within cell group k and those outside
cell group k.Estimating the intrinsic variation

Marginal: As for estimating the parameters related to marginal
intrinsic variation, we follow the technique used in Splat (Zappia
et al., 2017), with a few refinements. We allow non-parametric fit-
ting of the library size distribution and base mean distribution,
which can be done quickly by computing the empirical CDF and
also later on sampled from using Metropolis-Hastings sampling due
to the univariate nature. One may refer to Zappia et al. (2017) for
further details about the estimation procedure for other marginal
parameters included in the algorithm, such as BCV and outlier.

Copula: To circumvent challenges due to technical noise and
sparse counts, we cluster similar cells and form metacells (Baran
et al., 2019) and then estimate R in the Gaussian copula model. As
an integrated version of the original real data, the size of metacells
must be carefully selected so that the technical variation can be
reduced, while some biological variation can be preserved. We refer
the reader to the source paper of MetaCell (Baran et al., 2019) for
further details.

A more statistically convincing approach would be the non-
parametric estimation procedure called SKEPTIC (Liu et al., 2012),
which is built for a continuous marginal paired with a Gaussian cop-
ula. However, SKEPTIC is derived assuming a continuous marginal
without additional noise. In our case, the data are discrete, and the
underlying truth is severely masked by the additional zeros, so we
find it challenging to recover signals from real data. Therefore, we
did not consider this direction, though careful adjustment of the esti-
mation procedure and corresponding consistency under the discrete
marginals masked by false zeros is worth attention in future work.

Estimating the technical noise ESCO also allows estimation of
the technical noise when adopting the parametric zero-inflation
model. Though Splat already includes the corresponding estimation
via fitting a logistic regression between the log-transformed gene
mean and their observed zeros proportions, it is biased toward
inflating the probability of excess zeros as explained in the
Supplementary Note S2, where we provide a correction of the bias
in the end.

3 Results

Recall that a particularly prominent aspect of noise that complicates
scRNA-seq data analysis is sparsity due to low capture and sequenc-
ing efficiency in the data collecting process. Excess sparsity has been
shown to corrupt the analysis of scRNA-seq data in many ways (e.g.
cell clustering, trajectory inference, DE gene detection, etc.).
Imputation methods can generally help according to several bench-
marking efforts (Andrews and Hemberg, 2018; Zhang and Zhang,
2018). However, the influence of sparsity on gene co-expression,
particularly within the homogeneous cell group, has been over-
looked by many. ESCO provides an easy way to fill in the gap, as it
allows for the generation of flexible gene co-expression as a ground
truth. In the following, we present a systematic evaluation of the
performance of imputation methods on the recovery of gene co-
expression using ESCO.

3.1 Sparsity attenuates the gene co-expression
First, we show that sparsity indeed impedes the recovery of gene co-
expression in scRNA-seq data. Highly expressed genes are much less
likely to suffer from technical noise, as they have sufficient replicates
to be detected in the data collecting process, in contrast to relatively
lowly expressed genes. To illustrate this point we contrast gene co-
expression for marker genes in scRNA-seq data (Velmeshev et al.,
2019) to bulk RNA-seq data (Parikshak et al., 2016). Genes are clas-
sified as high or mid, based on their expression values. In scRNA-
seq data, the mid-genes demonstrate substantially less correlation
when compared to the high-genes (Fig. 3A top panel). But in the
bulk RNA-seq data, mid and high-genes demonstrate equivalent lev-
els of correlation (Fig. 3A bottom panel). Because we expect little, if
any, impact of technical noise in bulk data, and similar levels of cor-
relation for marker genes in these two data sources, this investiga-
tion suggests that sparsity attenuates measured correlation of gene
expression in scRNA-seq data. Thus we look to imputation for
improved performance.

3.2 Imputation can help recover GCN with moderate

sparsity
Working with the Zeisel data (Zeisel et al., 2015), we consider a
subset consisting of the 4000 most differentially expressed genes and
526 cells from three cell types (astrocytes_ependymal, endothelial-
mural, microglia) that have distinct marker genes. We simulate data
from 1000 genes and 200 cells with hyperparameters estimated
from the real data, while manually changing the sparsity level such
that the zero proportion ranges from 60% to 90% (the real data has
�43% zeros). The objective is to recover GCN with greater accur-
acy by imputing zeros. Success is measured in two ways: improved
estimates of gene clustering, based on co-expression networks, and
improved identification of pairs of co-expressed genes, based on per-
mutation test of correlation. Comparing the truth to imputation, the
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former is assessed by computing the Adjusted Rand Index (ARI) and
the latter using Area Under the Curve (AUC). We evaluate ARI and
AUC for each imputation method under a range of sparsity levels
(i.e. zero proportion) for the marker genes within cell groups, the
housekeeping genes across cell groups and the DE genes across cell
groups (Fig. 3B).

To compute ARI we choose the number of clusters that maxi-
mizes the score, calculated over a range of clusters numbers (2–9).
To calculate AUC we label gene pairs as connected or un-connected
based on the co-expression significance in permutation testing of the
simulated truth. We then assess the prediction accuracy (AUC
scores) of connections for each imputation method using their esti-
mated co-expression. All the results are averaged over 10 replicates.

We observe the following results (Fig. 3B). (i) Generally, imput-
ation helps (beat the un-imputed raw data, depicted by the bold
dashed black line) recovering both gene co-expression within homo-
geneous cell groups and gene co-expression across heterogeneous
cell groups, but fails to help much with gene co-expression within
homogeneous cell groups when facing excessive sparsity (>90%

zeros), while tends to introduce specious gene co-expression across
heterogeneous cell groupswhen facing moderate sparsity (�60–80%
zeros). (ii) As for a comparison among different methods, there is no
universal winner for all settings, but the ensemble method, depicted
by the bold black line, provides the best or close to the best perform-
ance across almost all settings we considered.

In the following section, we aim to verify our findings of imput-
ation using real scRNA-seq data. It is conjectured that the co-
expression of marker genes in the mouse brain will be similar to that
of the human brain. Therefore, we expect the recovered gene correl-
ation from a dataset measuring mouse brain will follow a similar
pattern to those from the dataset measuring the human brain.
Particularly, we use Zeisel data (Zeisel et al., 2015) for the mouse
brain and Velmeshev data (Velmeshev et al., 2019) for the human
brain. The Zeisel data have deeper sequencing for single cells and
consequently are less noisy, with less sparsity, compared with the
Velmeshev data, which have a much greater number of nuclei
sampled, each with fewer reads. Therefore, we can see the influence
of the sparsity level on gene co-expression by directly comparing

Fig. 3. Application of ESCO in benchmarking imputation for gene co-expression recovery. (A) Evidence that sparsity attenuates gene co-expression. The top panel depicts the

histogram of Pearson’s correlations for the 1000 highest expressed (�0–10% quantile) genes and 1000 moderately expressed genes (�60–70% quantile) in Velmeshev scRNA-

seq data. The bottom figure depicts the histogram of Pearson’s correlations for the same genes as in the top panel, but using the corresponding bulk data. (B) The performance

of different imputation methods on recovering the gene co-expression. We simulate 1000 genes and 200 cells for three cell groups, using the parameters estimated from the

Zeisel data, and aggregate the results from 10 replicates. The corresponding ARI score and AUC score (represented by each row) of each imputation method versus different

sparsity levels (represented by zero proportion) on different types of gene co-expression (represented by each column, respectively, as marker genes, housekeeping genes, DE

genes) are plotted. (C) Verification of the findings of imputation using real data. (a) The correlation matrix of marker genes before and after imputation of Zeisel data, across

cell types (five in total) and within one cell type (interneurons). (b) The correlation matrix of marker genes before and after the imputation of the Velmeshev data. (c) The cor-

relation matrix of marker genes of the Velmeshev data after AOB and BigScale aggregation
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these two datasets. We select five common cell types in both datasets
and use the Zeisel data as the benchmark. We evaluate the correl-
ation matrix of marker genes before and after imputation of Zeisel
data, across cell types and within one cell type (i.e. interneurons).
Figure 3C(a) plots both the gene co-expression across heterogeneous
cell groups and gene co-expression within homogeneous cell groups
before and after imputation with EnImpute method (Zhang et al.,
2019b) using Zeisel data, while Figure 3C(b) plots the same results
but using the Velmeshev data. We can see that for the Zeisel data
(moderate level of sparsity), imputation enhances the gene co-
expression pattern both within homogeneous and across heteroge-
neous cell groups. In contrast, for the Velmeshev data (excessive
sparsity), imputation fails to help much to recover the gene co-
expression across heterogeneous cell groups pattern, while failing
utterly for gene co-expression within homogeneous cell groups,
which is expected, as it is a harder task. This investigation supports
some of our findings of imputation, i.e. imputation can generally
help, but may fail as sparsity levels increase to a very high level.

3.3 Data aggregating is a better way to recover GCN

with excessive sparsity
Despite the excessive sparsity in the Velmeshev data, these data have
the advantage of abundant numbers of cells, which inspired us to ex-
plore another approach for recovering gene co-expression: data ag-
gregation that utilizes the abundance of measured cells. We
introduce two methods below, a simple heuristic (AOB) and a com-
plex algorithm (BigSCale).

Averaging over cell bags. If one has successfully assigned the cell
type labels, one may be able to use the simple procedure of averag-
ing gene expression over random splits within cell types, and then
compute the gene co-expression based on those averaged values
(Polioudakis et al., 2019). We will refer to this procedure as AOB
(Averaging Over Bags). The only tuning parameter here is the bag
size, which should be chosen carefully so that we can mitigate the in-
fluence of sparsity and other noise, while still maintaining some
variability among samples.

Pre-clustering and transforming the expression value. More re-
cently, a method called BigSCale (Iacono et al., 2019) was developed
for the problem of recovering GCN in a similar, but more complex
way. This algorithm first clusters cells sharing highly similar tran-
scriptomes together, and then treats them as biological replicates to
evaluate the noise and an indirect measure of correlation. This
method works well when there is a sufficiently large number of cells
for meaningful cell clusters to form, but it is computationally
challenging.

We find both methods work well in recovering gene co-
expression across heterogeneous cell groups [Supplementary Fig.
S3C(c)], though neither successfully recover gene co-expression
within homogeneous cell groups. Future efforts are needed to re-
cover these subtle signals.

4 Discussion

In this article, we propose a new scRNA-seq simulator, ESCO,
which borrows the good features of the current state of art simula-
tors in an ensemble, while for the first time, allowing both interpret-
able and controllable gene co-expression generation. Specifically,
ESCO allows realistic simulation of various cell group structure,
ranging from simple homogeneous cell groups to tree-structured dis-
crete cell groups to continuously changing cell trajectories, together
with gene co-expression. ESCO outperforms other methods as it
preserves the highlights of all the other existing simulators in one R
package, including the hierarchical semi-parametric modeling of
homogeneous groups from Splat, the tree-structure generation from
SymSim and the trajectory generation from PROSSTT, all while
interjecting gene-gene interactions. Specifically, ESCO allows the
flexible generation of both gene co-expression across heterogeneous
cell groups arising from a cell group structure and gene co-
expression within homogeneous cell groups arising from gene-gene

interaction in one functional cell group, which have been overlooked
and underdeveloped in other methods.

There is still much room for future work in this area. The effi-
cient estimation of the hyperparameters from the real data in the
tree-structured cell group and continuous cell trajectories scenario

still needs improvement. Currently, most simulators rely on a grid
search of parameters to find parameters that fit a particular data,

but these parameter choices do not extend to new settings, and it is
extremely challenging to simulate data similar to new datasets. The
ability to simulate realistic batch effects in various settings is also

not satisfactory in the current methods. ESCO, which mimics Splat
in this regard, shares this shortcoming. A careful, deep-dive to pro-

duce realistic batch effects is needed.
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