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Abstract

Summary: The expansion of targeted panel sequencing efforts has created opportunities for large-scale genomic
analysis, but tools for copy-number quantification on panel data are lacking. We introduce ASCETS, a method for
the efficient quantitation of arm and chromosome-level copy-number changes from targeted sequencing data.

Availability and implementation: ASCETS is implemented in R and is freely available to non-commercial users on
GitHub: https://github.com/beroukhim-lab/ascets, along with detailed documentation.

Contact: rameen_beroukhim@dfci.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Aneuploidy, or copy-number alterations of chromosomes and
chromosome arms, is the most frequent somatic alteration in cancer
(Taylor et al., 2018). Arm-level somatic copy-number alterations
(aSCNAs) can drive cancer progression (Liu et al., 2016), provide in-
formation about cancer type (The Cancer Genome Atlas Research
Network, 2015) and serve as predictive and prognostic biomarkers
(Cairncross et al., 2013; Lamberti et al., 2020). Thus, quantitation
of aSCNAs is useful in research and clinical decision-making.

Targeted next-generation sequencing (targeted NGS) provides
clinicians with rapidly available information about genomic events
including copy-number alterations (Garcia et al., 2017). However,
there are several challenges in detecting aSCNAs from targeted NGS
data. The lower breadth of coverage (BOC; fraction of chromosome
arm encompassed by copy-number segments) and significant noise

in these data, often obtained from fresh-frozen paraffin embedded
(FFPE) samples, often contradict assumptions underlying existing
algorithms designed for research-quality whole-exome or genome
sequencing data. Perhaps as a result, existing methods for calling
copy-number in targeted NGS data do not provide aSCNA calls
(Markham et al., 2019; Shen and Seshan, 2016; Talevich et al.,
2016) and aSCNAs are not commonly reported or systematically
determined. Therefore, novel algorithms are needed.

2 Implementation

We introduce ASCETS (Arm-level Somatic Copy-number Events in
Targeted Sequencing), a method for efficient and robust aSCNA de-
tection in targeted sequencing data (Fig. 1). ASCETS utilizes segmen-
tation files representing de-noised copy-number calls and
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(optionally) raw log2 copy-ratios (LCRs) for each locus
(Supplementary Methods). When provided, LCRs are used to deter-
mine the noise per segment by separating alternating LCRs within a
given segment into two groups and calculating their difference in
means. These differences are compiled across all segments and sam-
ples to determine a noise threshold representing one standard devi-
ation above the mean. This threshold and its additive inverse are
taken as amplification and deletion thresholds, respectively.
Optionally, segments of �5 markers with above-threshold noise lev-
els can excluded from further analysis. If LCRs are not supplied, the
user may specify the threshold (default: 0.2).

After stratifying amplified and deleted segments, ASCETS
computes the BOC of each arm corresponding to each segment class
(amplified, deleted or neutral). Arms for which more than a user-
specified fraction of territory (default 70%; Supplementary Table
S3) are encompassed by one class are assigned the respective call
(AMP, DEL or NEUTRAL). Arms that do not meet these criteria
are not called (NC). Optionally, arms with BOC less than a specified
threshold (default: 50%) can be left uncalled (LOWCOV). The sup-
plied arm coordinates can also be replaced with any set of genomic
coordinates to call any region of interest, such as cytobands or
genes.

3 Results

We evaluated the accuracy of ASCETS calls on two datasets: (i)
9,945 TCGA samples and (ii) 407 glioma samples from the Dana-
Farber OncoPanel assay (Garcia et al., 2017). To assess its applic-
ability to publicly available data, we also applied ASCETS to all
34,798 MSK-IMPACT samples in GENIE v7.0 (The AACR Project
GENIE Consortium, 2017; Supplementary Table S1). This task
completed in 104 min on a consumer-grade laptop with a 3.1 GHz
i7 processor and 16 GB of RAM.

We used TCGA data to compare ASCETS calls to ‘gold-stand-
ard’ aSCNA calls from SNP array copy-number data (Taylor et al.,
2018). Because TCGA data have a greater BOC, resulting in a lower
level of noise and more accurate segmentation, we modified the
TCGA data to simulate the lower BOC found in targeted sequencing
data (Supplementary Methods and Fig. S1). After excluding 50,071
arms with low BOC (<50%) or no call from ASCETS or TCGA,
337,594 chromosome arms were retained (Supplementary Table
S2). Of the excluded arms, ASCETS alone called 18,857 arms;
TCGA alone called 6,160 and 25,244 were no-called in either
dataset.

ASCETS and TCGA calls were 90.3% concordant (Kappa
statistic 0.768, P-value [accuracy>no information rate
(NIR)]<2.2e�16). The positive predictive value (PPV) and negative

predictive value (NPV), respectively, were 83.5% and 97.0% for
amplifications and 95.8% and 94.6% for deletions (Supplementary
Table S4). Discordant aSCNA calls tended to occur in samples with
higher subclonal genome fractions (med. 0.19 versus 0.06,
Wilcoxon P<2.2e�16, Supplementary Fig. S2a), lower tumor pur-
ity (med. 0.50 versus 0.66, Wilcoxon P<2.2e�16, Supplementary
Fig. S2b; Carter et al., 2012) and lower magnitude average LCRs
(med. 0.17 versus 0.37, Wilcoxon P<2.2e�16, Supplementary Fig.
S2c), but exhibited no differences in median alteration fraction
(med. 0.96 versus 0.96, Wilcoxon P<2.2e�16, Supplementary Fig.
S2d). Similar concordance was observed across each chromosome
arm and no relationship was seen with arm length (Supplementary
Fig. S2e and f).

We also compared 1p/19q arm-level calls from ASCETS applied
to OncoPanel data with results from OncoCopy, a 2 million-probe
array comparative genomic hybridization (aCGH) assay
(Ramkissoon et al., 2017), across 407 gliomas (Touat et al., 2020).
We called arms with average aCGH LCRs of �0.15 in both 1p and
19q as codeleted. ASCETS exhibited PPV and NPV of 81.6% and
99.7%, respectively (Kappa statistic 0.875, P-value
[accuracy>NIR]¼2.1e�07; Supplementary Fig. S3 and Table S5).
However, 6/7 cases called codeleted by ASCETS but not aCGH
were determined to be true positives after expert review of clinical
reports (Supplementary Table S6), corresponding to a PPV of
97.4% and NPV of 99.7%. In addition, 37/38 (97.4%) of cases
called codeleted by ASCETS, compared to 80/369 (21.7%) non-
codeleted samples, had pathogenic IDH1/2 mutations (Touat et al.,
2020), known to co-occur with 1p/19q codeletion (The Cancer
Genome Atlas Research Network, 2015).

To assess the effects of the fraction of genomic territory inter-
rogated (FGI) by sequencing and BOC on the performance
of ASCETS, we performed a titration analysis (Supplementary
Methods). As expected, the performance of ASCETS in calling
1p/19q codeletion increases with FGI and, as a result, BOC.
Predictive values were consistently above 90% when at least 0.05%
of the bases on each arm were interrogated (Supplementary Fig.
S4a–d).

4 Discussion

aSCNAs cover more of the genome than any other somatic alter-
ation (Taylor et al., 2018), but thus far have received insufficient
focus in clinical decision-making as unifying events in cancer.
ASCETS allows for the leveraging of large publicly available tar-
geted sequencing datasets like GENIE to identify novel relationships
between aSCNAs and clinical or tumoral features. In addition,
ASCETS can potentially be employed to call clinically relevant
aSCNAs such as 1p/19q codeletion in a research or diagnostic set-
ting. Indeed, ASCETS has already been utilized in recent publica-
tions to subclassify brain tumors (Touat et al., 2020) and call
aSCNAs affecting 9p (Lamberti et al., 2020). We conclude that
ASCETS calls are highly concordant with calls from exome and
array-based methods, and that ASCETS can be applied broadly to
panel NGS datasets. While ASCETS is designed to account for chal-
lenges inherent to targeted sequencing data, it can in principle be
applied broadly to copy-number data from whole-exome or whole-
genome sequencing data. However, like all algorithms for copy-
number analysis, ASCETS performs least well in samples and
regions with low signal-to-noise ratios, including areas of subclonal
or low-level copy-number change, samples with low tumor purity,
and regions with low BOC. Users should consider the length of the
sequenced regions when applying ASCETS to their own data to en-
sure they have sufficient BOC to generate accurate calls. Overall,
ASCETS is an efficient, accurate method for quantifying aneuploidy
and helps address the need for copy-number analysis tools for tar-
geted NGS data.
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Fig. 1. The ASCETS algorithm workflow

2462 L.F.Spurr et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa980#supplementary-data


Funding

This work has been supported by the National Cancer Institute

[U24CA210978 to A.D.C. and R.B.], the Fund for Innovation in Cancer

Informatics, the Gray Matters Brain Cancer Foundation, Pediatric Brain

Tumor Foundation and a generous gift from Alison Poorvu Jaffe.

Conflict of Interest: M.T. reports consulting/advisory roles from Agios

Pharmaceuticals, Integragen, and Taiho Oncology; travel, accommodations,

expenses from Merck Sharp & Dome. A.M.T. reports research funding from

Ono Pharmaceuticals. M.L.M. reports consultant/advisory board/equity in

OrigiMed; research funding from Ono and Bayer Pharmaceuticals; patent for

EGFR mutation diagnosis in lung cancer licensed to LabCorp. A.D.C. reports

research funding from Bayer. Y.L. reports equity in g. Root Biomedical

Services. R.B. reports equity in/advisory role to Scorpion Therapeutics and

grant funding from Novartis. All COI are outside the submitted work and all

other authors report no COI.

References

Cairncross,G. et al. (2013) Phase III trial of chemoradiotherapy for anaplastic

oligodendroglioma: long-term results of RTOG 9402. J. Clin. Oncol., 31,

337–343.

Carter,S.L. et al. (2012) Absolute quantification of somatic DNA alterations

in human cancer. Nat. Biotechnol., 30, 413–421.

Garcia,E.P. et al. (2017) Validation of OncoPanel: a targeted next-generation

sequencing assay for the detection of somatic variants in cancer. Arch.

Pathol. Lab. Med., 141, 751–758.

Lamberti,G. et al. (2020) Clinicopathological and genomic correlates of

Programmed Cell Death Ligand 1 (PD-L1) expression in nonsquamous

non-small cell lung cancer. Ann. Oncol., 31, 807–814.

Liu,Y. et al. (2016) Deletions linked to TP53 loss drive cancer through

p53-independent mechanisms. Nature, 531, 471–475.

Markham,J.F. et al. (2019) CNspector: a web-based tool for visualisation and

clinical diagnosis of copy number variation from next generation sequenc-

ing. Sci. Rep., 9, 6426.

Ramkissoon,S.H. et al. (2017) Clinical targeted exome-based sequencing

in combination with genome-wide copy number profiling: precision medi-

cine analysis of 203 pediatric brain tumors. Neuro Oncol., 19, 986–996.

Shen,R. and Seshan,V.E. (2016) FACETS: allele-specific copy number and clo-

nal heterogeneity analysis tool for high-throughput DNA sequencing.

Nucleic Acids Res., 44, e131.

Talevich,E. et al. (2016) CNVkit: genome-wide copy number detection and

visualization from targeted DNA sequencing. PLoS Comput. Biol., 12,

e1004873. https://doi.org/10.1371/journal.pcbi.1004873

Taylor,A.M. et al. (2018) Genomic and functional approaches to understand-

ing cancer aneuploidy. Cancer Cell, 33, 676–689.e3.

The AACR Project GENIE Consortium (2017) AACR Project GENIE: power-

ing precision medicine through an international consortium. Cancer Discov.,

7, 818–831.

The Cancer Genome Atlas Research Network (2015) Comprehensive, integra-

tive genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med., 372,

2481–2498.

Touat,M. et al. (2020) Mechanisms and therapeutic implications of hyper-

mutation in gliomas. Nature, 580, 517–523.

ASCETS 2463

https://doi.org/10.1371/journal.pcbi.1004873

