
Genome analysis

Genozip: a universal extensible genomic data

compressor

Divon Lan 1,*, Ray Tobler 1,2, Yassine Souilmi1,3,*,† and Bastien Llamas 1,2,3,*,†

1Australian Centre for Ancient DNA, School of Biological Sciences, The Environment Institute, Faculty of Sciences, The University of

Adelaide, Adelaide, SA 5005, Australia, 2Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological

Sciences, University of Adelaide, Adelaide, SA 5005, Australia and 3National Centre for Indigenous Genomics, Australian National

University, Canberra, ACT 0200, Australia

*Corresponding author: E-mail: divon@genozip.com; yassine.souilmi@adelaide.edu.au; bastien.llamas@adelaide.edu.au

Equal contribution

Associate Editor: Janet Kelso

Received on December 9, 2020; revised on January 25, 2021; editorial decision on February 10, 2021; accepted on February 12, 2021

Abstract
We present Genozip, a universal and fully featured compression software for genomic data. Genozip is designed to
be a general-purpose software and a development framework for genomic compression by providing five core capa-
bilities—universality (support for all common genomic file formats), high compression ratios, speed, feature-
richness and extensibility. Genozip delivers high-performance compression for widelyused genomic data formats in
genomics research, namely FASTQ, SAM/BAM/CRAM, VCF, GVF, FASTA, PHYLIP and 23andMe formats. Our test
results show that Genozip is fast and achieves greatly improved compression ratios, even when the files are already
compressed. Further, Genozip is architected with a separation of the Genozip Framework from file-format-specific
Segmenters and data-type-specific Codecs. With this, we intend for Genozip to be a general-purpose compression
platform where researchers can implement compression for additional file formats, as well as new codecs for data
types or fields within files, in the future. We anticipate that this will ultimately increase the visibility and adoption of
these algorithms by the user community, thereby accelerating further innovation in this space.

Availability and implementation: Genozip is written in C. The code is open-source and available on http://www.ge-
nozip.com. The package is free for non-commercial use. It is distributed through the Conda package manager,
github, and as a Docker container on DockerHub. Genozip is tested on Linux, Mac and Windows.

Contact: divon@genozip.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomic data production is growing rapidly as sequencing prices
continue to drop, making data storage and transfer a core issue for
researchers, healthcare providers, service facilities and private com-
panies. To date, most users have relied upon compression software
that implements the RFC 1951 format [Deutsch, 1996; e.g.gzip,
bgzip (Li, 2011) and others], a general-purpose compression format
that was designed decades ago and is not specifically tailored for
genomic data.

Many novel algorithms have emerged in recent years that effect-
ively compress one or more of the data types embedded in genomic
files [e.g.GTShark (Deorowicz and Danek, 2019) and SPRING
(Chandak et al., 2019)]. However, these algorithms are typically
implemented within a rudimentary software package that inadvert-
ently lacks the breadth of features required for a software to be

useful in many real-world use cases; most importantly, most work
with only one of the common file formats. These limitations have
meant that none of these software packages are currently widely
used by the genomic researcher and practitioner community.

Here, we introduce a new version of the compression software
Genozip, which has been nearly completely re-written from an ear-
lier version designed to compress VCF files (Lan et al., 2020).
Genozip now offers five core capabilities:

1. Universality—Genozip supports all common genomic file for-

mats—FASTQ, SAM/BAM/CRAM, VCF, GVF, FASTA,

PHYLIP and 23andMe.

2. High compression ratios—better than all other universal tools

tested.

3. Speed—in most cases, faster than other tools.

VC The Author(s) 2021. Published by Oxford University Press. 2225

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(16), 2021, 2225–2230

doi: 10.1093/bioinformatics/btab102

Advance Access Publication Date: 15 February 2021

Original Paper

https://orcid.org/0000-0002-9794-6825
https://orcid.org/0000-0002-4603-1473
https://orcid.org/0000-0002-5550-9176
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab102#supplementary-data
https://academic.oup.com/


4. Feature richness—providing an array of features that allow in-

tegration into pipelines, specification of compression options

and development tools to allow developers to extend Genozip

easily.

5. Extensibility—with a clear separation of the Genozip

Framework from the file formats being compressed and from the

codecs used for compression, it is fairly easy to add support for

more file formats as well as new codecs to improve compression

of specific data types of any specific fields within genomic files.

2 Software description

Genozip provides a command line interface that consists of four
commands: genozip for compression, genounzip for decompres-
sion, genocat to display or subset a compressed file, and genols
to show metadata associated with the compressed files.

Genozip is currently optimized to compress FASTQ, FASTA,
SAM/BAM/CRAM, VCF/BCF, GVF, PHYLIP and 23andMe files,
including files that are already compressed into .gz, .bz2or .xz for-
mats. However, Genozip can also compress any other file format.
Compression of .cram, .bcf or .xz files requires the software pack-
ages samtools, bcftools or xz, respectively, to be available in the
PATH environment variable. Genozip allows multiple files of identi-
cal or different formats to be specified in the command line. Files
that share a common format can be bound together with genozip
–output and subsequently unbound with genounzip –unbind.
This functionality is beneficial for packaging a large number of sam-
ples together for delivery or archiving.

Genozip can be integrated into analytical pipelines in two
ways. First, genozip and genounzip may be used with pipes.
Second, genocat provides random-access to user-specified sec-
tions of a .genozip file and facilitates file subsetting. When using
genocat to subset files, the targeted data are identified using the
–samples option for VCF files and the –regions option for
SAM, VCF, FASTA, GVF and 23andMe file types. –downsam-
pledownsamples any file type. Further, because .genozip files are
indexed during data compression, a separate indexing step is not
required.

In addition, genocat offers built-in file format translation, and
currently offers translations between SAM and BAM, from SAM or
BAM to FASTQ, between FASTA and PHYLIP and from 23andMe
to VCF, using genounzip’s–bam, –sam, –fastq, –phylip, –
fasta and –vcf options, respectively.

Genozip offers a range of data integrity and security options. To
support data security requirements that comply with ethical stand-
ards now expected for modern genomic projects, Genozip allows en-
cryption of the data using the –password option. With this option,
data are encrypted with the standard Advanced Encryption
Standard (AES) algorithm (Fips, 2009), using the strongest mode
available (256 bits). To ensure data integrity, Genozip includes a
built-in MD5 (Rivest, 1992) option triggered by using –md5 or –
test. This calculates (in genozip) or verifies (in genounzip and
genocat) the MD5 sum of the source data on the fly and stores it
within the compressed genozip file. This MD5 sum is then viewable
using genols.

Genozip offers two lossless compression modes: –best, which is
the default and results in the highest compression ratio, and –fast,
which optimizes compression speed at the cost of somewhat reduced
compression ratios (see Supplementary Section S12). While Genozip
is strictly lossless by default, a lossy–optimise (or –optimize)
option is also offered, which further improves compression by modi-
fying the data in ways that typically do not impact downstream ana-
lysis (See Supplementary Section S3).

In addition, Genozip supports compression with or without a
reference genome sequence. Providing a reference improves com-
pression of the sequence data component in SAM/BAM/CRAM,
FASTQ and VCF files. A reference file may be generated from a
FASTA file with genozip –make-reference and used with gen-
ozip –reference or –REFERENCE. The latter option stores

information from the reference within the resulting compressed file,
obviating the need to provide the reference as a separate file during
the decompression step. Including the reference information within
the compressed file is particularly useful when binding several gen-
omic data files together for delivery.

Finally, fine level information on various aspects of the data
compression can be accessed by the user via the large suite of –show
options (see Supplementary Section S8). For instance, –show-
stats provides compression statistics broken down by data type
within the file. We anticipate that such information will be insightful
for end-users and particularly useful when developing new compres-
sion algorithms.

3 Materials and methods

3.1 Framework and architecture
The Genozip framework (Fig. 1) interprets the user’s command line,
reads the source genomic file (referred to as the txt file) and divides
it into vblocks. Each vblock comprises a certain number of full txt
file lines, limited by size that is determined by the user with the –
vblock option (default: 16MB). By default, a line means an actual
ASCII line in the txt file; however, this is flexible—e.g. for FASTQ,
a line comprises four textual lines and for BAM it comprises one
alignment record.

Once the Genozip framework has read the vblock txt data into
memory using its main thread (called the I/O thread; Fig. 1), a separ-
ate compute thread is spawned to segment the vblock. This segmen-
tation step is followed by the final compression step that ultimately
generates z data, which is the final compressed data for the vblock.
When the compression step is completed, the compute thread termi-
nates and the compressed vblockis handed back to the I/O thread
that appends it to the .genozip compressed file being generated on
disk.

3.2. The segmentation step
A segmenteris a module that is specific to the file format being com-
pressed. Genozip currently has nine segmenters, one each for
FASTQ, FASTA, SAM, BAM, VCF, GVF, PHYLIP, 23andMe and
Generic. If samtools (Li et al., 2009) is also installed, the SAM seg-
menter can also handle CRAM files by reading them as SAM. The
Generic segmenter handles all other file formats for which genozip
does not have a segmenter in a default manner. Importantly, inter-
ested parties can add more segmenters to Genozip in the future.

The segmenteris called by the Genozip framework to work on
one line of txt data at a time, and the job of the segmenteris to seg-
ment this line into its individual data components, store these in
contexts (which are described in detail in Supplementary Section S2)
and declare how each context should be handled in the compression
stage.

Fig. 1. Genozip high-level architecture. The Genozip framework interprets and

reads the input file(s) in the main thread (I/O thread) and divides them into vblocks,

which are then segmented. Segmentation is followed by the compression step.

Compressed vblocks are sent back to the I/O thread to create the.genozip output(s)

2226 D.Lan et al.



The segmenter starts by breaking up the txt line into the top-
level data fields and deciding what to do with each data field.
Broadly, it has six options:

1. Placing the data directly in its appropriate context. We refer to a

short string of data inserted into a context as a snip. Each new

snip encountered by the Genozip framework is added to a dic-

tionary within each context, and an index is added to the dic-

tionary entry in a data buffer for this context called the b250

buffer. Accordingly, the .genozip file stores each snip only once

and uses a numeric index to point to it throughout the file.

2. Further segmenting a field into its subfields: Rather than making

a snip of the entire field data as it appears in the file, the seg-

menter can insert a special snip type called a Container, which

defines the structure of the data of this field, where the data itself

is stored in other contexts that are named in the container.

Containers can define records containing multiple types of data,

as well as arrays of similar data elements or arrays of records.

The entire vblock is described as a single Container snip placed

in the TOPLEVEL context. This is a key feature that enables the

decompressor to be generic. Indeed, in most cases, the decom-

pressor need not have any built-in awareness of the details of

each file format. The file format structure is encoded in the data

itself, and a vblock may be reconstructed by traversing the data

starting from the TOPLEVEL.

3. This is a key feature that enables the decompressor to be generic.

Indeed, in most cases, the decompressor need not have any built-

in awareness of the details of each file format. The file format

structure is encoded in the data itself, and a vblock may be

reconstructed by traversing the data starting from the

TOPLEVEL.

1. Exploiting known relationships between fields, subsequent lines

and/or external data to improve the compression. For that, the

segmenter may define contexts as needed—for example, it may

store multiple fields in a single context or may decompose a field

into multiple contexts. It can be as simple as exploiting a math-

ematical relationship between fields, but it can also be com-

plex—for example, the sequence data in FASTQ and SAM are

aligned to a reference if the –reference option is used.

2. Using one of the Genozip’s framework built-in algorithms. Some

relationships occur frequently, for which Genozip has built-in

algorithms. These include the seg_pos algorithm that exploits

the nearness of position data in subsequent lines, if it exists and

seg_id algorithm that handles ID data that starts with an alpha-

betical prefix followed by a number (such as ‘rs23424’) as well

as LOOKUP and DELTA versus another field on the same line

or versus the same field in a previous line or versus the pair file

(in case of paired-end FASTQ files). Details about these built-in

algorithms can be found in Supplementary Section S2.

3. Preparing the data for a specific codec. Rather than inserting a

snip, the segmenter can store the data of a field in the local buffer

of the context in any proprietary way, in preparation for con-

sumption by a specific codec in the compression stage.

4. Declaring a context to be an alias. There are cases where mul-

tiple fields contain data with similar characteristics, in which

case storing them in a single context can improve compression.

To achieve this, we can define a context as an alias of another,

essentially sharing their data. For example, in SAM format, there

are multiple Optional tags that express data in CIGAR format

(MC:Z, OC:Z and others), which are all defined as aliases of a

context named @CIGAR.

In the Genericsegmenter used for unrecognized file formats, the
segmenter is trivial and does not actually segment the data—instead,
the entire vblock data is placed in a local buffer of a single context.

A detailed example of how these six options work is in
Supplementary Section S2, as well as a full list of how each of the
nine segmenters in Genozip handles each data field.

3.3. Context management
Segmentation step: Each vblock maintains its own set of contexts—
the set consisting of one context for each data component. A context
is a data structure that includes the dictionary, b250, and local data
buffers as well as additional information.

Context merging step: We maintain one global set of similar con-
texts within an object called the z_file to which we merge vblock-
contexts’ dictionary data after the segmentation is completed for a
vblock, thereby incrementally creating a global dictionary contain-
ing, in a particular z_datacontext, all values of that appear for that
data component in the entire file (except for singletons—see
Supplementary Section S2).

Cloning step: When a new vblock is created, the current diction-
ary and related information of each context are cloned from the
z_file to the new vblock by the framework.

Writing step: After the compute thread terminates and the
vblock is handed back to the I/O thread, the I/O thread writes the
vblock’sz_data (containing b250 and local sections) to the output
.genozip file. The merged dictionary data is written upon the com-
pletion of computing of all vblocks.

Context cloning, concurrent dictionary access and context merg-
ing in a multi-threaded environment are difficult, even more so with
minimal synchronization between threads to avoid a bottleneck that
would limit scaling CPU cores. We employ advanced multi-
threading mechanisms that ensure that all threads can operate on
the same dictionaries concurrently while minimizing the use of syn-
chronization objects like mutexes, minimizing memory copies, and
ensuring O(1) dictionary lookups, uniqueness of dictionary entries
and thread-safety. Details of how this is done are in Supplementary
Section S6.

3.4 The compression step
Within the compute thread of any specific vblock, and once the seg-
mentation is complete for all lines and the contexts dictionaries have
been merged back into z_file, the framework proceeds to compress
the two buffers of each context present in this vblock—namely, the
b250 and the local buffers. Each buffer is compressed with one of
the available codecs. There are two types of codecs in Genozip:

Generic codecs—these are lzma (Pavlov, 2007), bz2 (Seward,
1996), bsc (http://libbsc.com/) and none. The first three are standard
codecs for which Genozip utilizes a modified version of the standard
libraries, and the fourth is a codec that essentially keeps the data as-
is.

Specific codecs—these are additional codecs that compress a spe-
cific data type better than the generic codecs and would often be
complex codecs—which means that they will perform some process-
ing of the data, and then complete the compression by applying one
or more of the built-in codecs. Specific codecs can be added to com-
press any specific field of any genomic file format.

For the b250 and local buffers of each context, the codec is
selected automatically by sampling approximately 100KB of the
buffer data in the first vblock in which this context is first encoun-
tered and compressing it with each of the four codecs. The best
codec is selected by an algorithm that chooses the codec with the
best compression ratio unless the compression ratio between the
best two codecs is close enough, and the execution time is different
enough, in which case it selects the faster codec of the two.
Subsequent vblocks use the same codec and need not test again. In –
fast mode, a modified selection algorithm is used that is biased to-
wards speed even at the expense of a small difference in
compression.

A segmenter may specify a codec for the local buffer of any par-
ticular context, overriding the automatic selection. In the segmenters

Genozip 2227

http://libbsc.com/


provided, we use this privilege only when we set the codec to a spe-
cific codec.

Genozip currently has four specific codecs:

1. acgt—used for compression of a sequence of nucleotides, which

is expected to contain mostly, but not necessarily exclusively,

‘A’, ‘C’, ‘G’ or ‘T’ characters. It is used to compress FASTA se-

quence data and characters (bases) from the SEQ field of FASTQ

and SAM file formats that are not mapped to a reference.

2. domqual—used for compression of a string of Phred quality-

scores in SAM and FASTQ formats, in the common case where

there is one dominant score value.

3. hapmat—used for compression of a matrix of haplotypes

derived from FORMAT/GT fields in VCF. The algorithm is

described in (Lanet al., 2020) and has been re-implemented to

serve as a codec.

4. gtshark—triggered by the –gtshark option, utilizes the soft-

ware package GTShark (Deorowicz and Danek, 2019) as a

codec for the same haplotype matrix as hapmat as an alternative

to hapmat. This was already implemented in (Lanet al., 2020),

where we have shown it to be significantly better but significant-

ly slower than hapmat for the FORMAT/GT data component in

VCF files that have a large number of samples. It has been re-

implemented as a codec for FORMAT/GT on top of the new

framework and with a new fast in-memory (rather than disk-

based) communication channel between genozip and gtshark.

This is an example of how Genozip can be easily extended to in-

corporate new codecs for specific data types.

More details on the algorithms for each of these codecs can be
found in Supplementary Section S6.

3.5 Compressing against a reference
Genozip does not require a reference but takes advantage if one is
available to better compress FASTQ, SAM/BAM and VCF data.

To use a reference with Genozip, a Genozip reference file must
first be created using genozip–make-reference. This is a one-
time step for any particular reference FASTA file. The Genozip ref-
erence file creation is implemented by segmenting the reference
FASTA data with a specialized segmenter, which generates a
Genozip file containing a pre-processed version of the reference data
in a format that is readily usable by Genozip, as well as hash tables
for use of the Genozip Aligner, indexing data and additional
metadata.

When using a particular Genozip reference file to compress data
for the first time, Genozip generates two cache files. These files are
used to accelerate the loading of the reference data and the Genozip
Aligner hash tables in subsequent executions of Genozip and may be
deleted if such acceleration is not needed. The acceleration is
achieved by loading the cache files, if they exist, using the operating
system’s paging system rather than libc allocated memory, allowing
portions of the reference data to be paged-in as needed, and also
enables sharing of the loaded pages between concurrently running
Genozip processes, resulting in reduced memory consumption and
instantaneous loading in the case of concurrent Genozip instances.

The VCF segmenter uses reference data to avoid storing REF
and/or ALT data and referring to the reference if possible. Since the
REF and ALT fields usually represent only a small fraction of the in-
formation content of a VCF file, the gains are modest, however.

The SAM and BAM segmenters use reference data in two differ-
ent ways, depending on whether the txt line being segmented is
aligned (i.e. contains values in the RNAME, POS and CIGAR fields)
or not, and the FASTQ segmenter uses the reference similar un-
aligned SAM/BAM:

1. For an aligned SAM/BAM/CRAM txt line, the segmenter decom-

poses the data into three contexts: SQBITMAP, NONREF and

NONREF_X. SQBITMAP is a bitmap consisting of a bit for

every base in the sequence that ‘consumes a reference’, as defined

in the SAM specification (https://samtools.github.io/hts-specs/

SAMv1.pdfpage 8) according to the CIGAR string. The bit is set

to 1 if the base is the same as the base in the reference data at its

position. If not, the bit is set to 0, and the base character is

placed in NONREF. Bases in the sequence that ‘do not consume

a reference’, according to the CIGAR string, are also placed in

NONREF. NONREF is set to be compressed with the acgt codec

that requires a second context for the CODEC_XCGT data,

which is NONREF_X (see Supplementary Section S6).

2. For an unaligned SAM/BAM/CRAM txt line and a FASTQ se-

quence line, the Genozip Aligner is used. It utilizes the same

three contexts described above and two additional ones: GPOS

and STRAND. The Aligner algorithm (see Supplementary

Section S4) finds the position in the reference to which the se-

quence string at hand best aligns. This algorithm is extremely

fast as it does not attempt to find the biologically correct align-

ment, just one that compresses well. The aligner determines the

location in the reference, using a coordinate called gpos(Global

Position) - which is a single 32-bit unsigned integer covering the

entire reference genome, and indicates whether it is forward or

reverse complement relative to the sequence (which we call

strand). The segmenter then stores the gpos and strand in the

local buffers of the GPOS and STRAND contexts, respectively

(the strand is stored as a bitmap with ‘1’ meaning forward) and

proceeds to populate the SQBITMAP and NONREF contexts as

before, based on whether or not each base in the sequence

matches the corresponding base in the forward or reverse com-

plement reference.

3.6 Indexing
While Genozip is designed as a compression tool rather than a data

analysis tool, it also contains some capabilities that allow direct in-
tegration into analysis pipelines. Chief among these, is indexing of

the data done by the Genozip framework during segmentation,
which then allows subsetting the data with the genocat –
regions option: a segmenter may notify the Genozip framework

of the chromosome (or contig) and position of each line being seg-
mented. As the segmentation progresses, the framework collects

data per vblock—namely, it records which chromosomes appear in
the vblock, and the minimum and maximum position of each
chromosome within the vblock. These data are then emitted to the

generated compressed genozip file as the SEC_RANDOM_ACCESS
section.

During genocat–regions,vblocks that contain no data from
the requested regions are skipped entirely, while vblocks that do
contain data from the requested regions are decompressed, but only

lines that are included in the requested regions are emitted.
In addition, Genozip reference files are also indexed in the same

way, so when subsetting a file that requires a reference (i.e. the –
reference option is used), Genozip only reads the vblocks of the

reference file that overlap with the regions requested.
Currently, the segmenters for VCF, SAM, BAM, GVF and

23andMe implement this capability.
This indexing method is more coarse-grained than the BGZF-

block level indexing that is common in standard indexes of genomic
file formats, as subsetting requires decompression of entire vblocks
(16MB of txt data in the default configuration) versus just BGZF

blocks (64KB of data), and hence subsetting is significantly slower.
However, in practice, this may be sufficient for many analysis
applications.

2228 D.Lan et al.

https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf


4 Results

We evaluated the performance of Genozip by compressing genomic
files as they most commonly appear in real-world research and clin-
ical situations—namely, already compressed in fastq.gz, BAM,
CRAM and vcf.gz formats. Regarding CRAM, we tested two differ-
ent commonly used versions of CRAM files—a version containing
the same data as the BAM file and a version optimizedby binning
quality data. For VCF, we tested a single-sample file. We previously
reported the compression performance of multi-sample VCF using
an earlier version of the HapMat codec in Lanet al. (2020). For
BAM, CRAM and FASTQ, we also tested with Genozip’s–opti-
mise option.

The FASTQ, BAM and VCF files (Table 1 with further details in
Supplementary Table S10) were obtained from a public FTP server
of the National Center for Biotechnology Information (NCBI), while
the CRAM files were generated from the BAM file usingScramble
(Bonfield, 2014) with the highest compression ratio (-9 option) and,
in addition, for the binned-quality CRAM, with the quality-binning
option -B (Table 1). The reference file used was based on a modified
version of GRCh37 as required by the particular BAM file tested
(see Supplementary Section S12) and was prepared with: genozip
–make-reference $grch37-fasta-file.

Genozip improved the compression of these already-compressed
files in every scenario we tested by a 1.2–5.7 factor (Fig. 2 as well as
Supplementary Table S11 in Supplementary Information).

In addition, we performed tests comparing Genozip’s compres-
sion ratio on raw (uncompressed) files (Supplementary Table S8 in
Supplementary Information), as well as compression and decom-
pression time, to several popular tools. These additional results can
be found in Supplementary Section S12 and illustrated in Figure 3,
Table 2 and Supplementary Tables S8 and S9. Again, in all cases

tested, Genozip outperformed other software for compression ratio
by a 1.3-4.4 factor, while also faster than other tools in most, but
not all, cases.

5 Conclusion

Genozip provides not only excellent compression for raw (uncom-
pressed) genomic files, but also provides excellent compression
when applied directly to already-compressed genomic files, as is
common in real-world applications. Genozip is also universal and
works on all common genomic files, uniquely so amongst currently
available genomic file compressors.

Further, by providing a modular and extensible architecture,
Genozip is also a framework that can be used for rapid development
and deployment of new compression algorithms for established or
emerging genomic data types and file formats.

Acknowledgements

The authors thank one anonymous reviewer and Heng Li for their construct-

ive feedback.

Funding

D.L. was supported by a scholarship from the University of Adelaide. Y.S.

was supported by the Australian Research Council[ARC DP190103705].

Table 1. Files used for testing against already-compressed files

File type File size Genozip command —optimise

added for the Optimised test

.fastq.gz 3.6 GB (R1þR2) genozip—pair $file-R1 $file-R2 -e

$ref-file

.bam 147 GB genozip $file -e $ref-file

.cram (lossless) 102 GB genozip $file -e $ref-file

.cram (binned) 79.5 GB genozip $file -e $ref-file

.vcf.gz 128 MB genozip $file -e $ref-file

Note: See more details in Supplementary Table S10.

Fig. 2. Sizes of Genozip-compressed files relative to already-compressed source

files.The blue bars represent the source files (see Table 1), with the corresponding

file extensions at the bottom. The orange and grey bars are for Genozip compression

with the default, lossless mode and the –optimise option, respectively. See also

results in Supplementary Table S11

Fig. 3. Raw (uncompressed) files benchmark results.The three panels show compres-

sion ratios of various relevant compression formats indicated at the bottom relative

to uncompressed VCF (left), SAM (middle) and FASTQ (right) files relative. See

Supplementary Section S12 for more details

Table 2. Raw-file benchmark results

Tool Ratio Compress time Decompress time

VCF

Pigz 15.9 1.9 sec 3.1 sec

bcftools 11.7 23.82 sec 21.02 sec

bzip2 25.3 260.05 sec 43.37 sec

genozip 33.6 7.1 sec 6.53 sec

SAM

Pigz 3.4 00:12:40.3 00:34:17.4

Bam 3.2 00:23:16.7 00:29:48.5

Cram 4.7 00:27:58.4 00:17:34.4

genozip 5.8 00:33:41.1 00:27:55.3

cram opt (binned quality) 6.0 00:48:56.1 00:19:10.4

genozip opt (—optimise) 7.6 00:30:51.1 00:20:38.0

FASTQ

Pigz 4.2 00:14:34.5 00:34:17.4

bwa -> cram 5.4 03:42:54.0 00:48:24.7

genozip 6.8 00:16:40.1 00:08:31.7

genozip opt 18.6 00:08:52.3 00:05:26.4

Note: Seemore details in Supplementary Table S9.

Genozip 2229

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab102#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab102#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab102#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab102#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab102#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab102#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab102#supplementary-data


R.T. was an ARC DECRA fellow [DE190101069]. B.L. was an ARC Future

Fellow[FT170100448].

Conflict of Interest: D.L. intends to receive royalties from commercial users of

genozip.

References

Bonfield,J.K. (2014) The Scramble conversion tool. Bioinformatics, 30,

2818–2819.

Chandak,S. et al. (2019) SPRING: a next-generation compressor for FASTQ

data. Bioinformatics, 35, 2674–2676.

Deorowicz,S. and Danek,A. (2019) GTShark: genotype compression in large

projects. Bioinformatics, 35, 4791–4793.

Deutsch,P. (1996) DEFLATE Compressed Data Format Specification version

1.3https://tools.ietf.org/html/rfc1951 (accessed 1 December 2020).

Fips,P. (2009) 197, Advanced Encryption Standard (AES), National Institute

of Standards and Technology, US Department of Commerce, November

2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf (accessed 1

December 2020).

Lan,D. et al. (2020) genozip: a fast and efficient compression tool for VCF

files. Bioinformatics, 36, 4091–4092.

Li,H. (2011) Tabix: fast retrieval of sequence features from generic

TAB-delimited files. Bioinformatics, 27, 718–719.

Li,H. et al.; 1000 Genome Project Data Processing Subgroup. (2009) The

Sequence Alignment/Map format and SAMtools.Bioinformatics, 25,

2078–2079.

Pavlov,I. (2007) Lzmasdk (software development kit). https://www.7-zip.org/

sdk.html (accessed 1 December 2020).

Rivest,R. (1992) RFC1321: The MD5 Message-Digest Algorithm https://

www.ietf.org/rfc/rfc1321.txt (accessed 1 December 2020).

Seward,J. (1996) bzip2 and libbzip2. http://www.bzip.org.

2230 D.Lan et al.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://www.7-zip.org/sdk.html
https://www.7-zip.org/sdk.html
https://www.ietf.org/rfc/rfc1321.txt
https://www.ietf.org/rfc/rfc1321.txt
http://www.bzip.org

	tblfn1
	tblfn2

