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Abstract

Motivation: Genome-wide association studies have successfully identified multiple independent genetic loci that
harbour variants associated with human traits and diseases, but the exact causal genes are largely unknown.
Common genetic risk variants are enriched in non-protein-coding regions of the genome and often affect gene ex-
pression (expression quantitative trait loci, eQTL) in a tissue-specific manner. To address this challenge, we devel-
oped a methodological framework, E-MAGMA, which converts genome-wide association summary statistics into
gene-level statistics by assigning risk variants to their putative genes based on tissue-specific eQTL information.

Results: We compared E-MAGMA to three eQTL informed gene-based approaches using simulated phenotype data.
Phenotypes were simulated based on eQTL reference data using GCTA for all genes with at least one eQTL at
chromosome 1. We performed 10 simulations per gene. The eQTL-h2 (i.e. the proportion of variation explained by
the eQTLs) was set at 1%, 2% and 5%. We found E-MAGMA outperforms other gene-based approaches across a
range of simulated parameters (e.g. the number of identified causal genes). When applied to genome-wide associ-
ation summary statistics for five neuropsychiatric disorders, E-MAGMA identified more putative candidate causal
genes compared to other eQTL-based approaches. By integrating tissue-specific eQTL information, these results
show E-MAGMA will help to identify novel candidate causal genes from genome-wide association summary statis-
tics and thereby improve the understanding of the biological basis of complex disorders.

Availability and implementation: A tutorial and input files are made available in a github repository: https://github.
com/eskederks/eMAGMA-tutorial.

Contact: zachary.gerring@qimrberghofer.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have identified thousands
of single nucleotide polymorphisms (SNPs) associated with disease
risk (Visscher et al., 2017). However, the functional relevance of
most SNPs remains unknown, due in part to their position in non-
protein coding regions of the genome (Gamazon et al., 2018).
Mapping trait-associated SNPs to their nearest gene often fails to
identify the functional gene, since regulatory effects on gene expres-
sion, known as expression quantitative trait loci (eQTLs), can be

long-range (Smemo et al., 2014). Gene-based mapping methods that
rely on arbitrary genomic windows to assign SNPs to genes, such as
MAGMA (de Leeuw et al., 2015), do not allow inferences on causal
genes. Furthermore, assignment of SNPs to the nearest gene for
gene-level association testing does not eliminate the necessity of
functionally connecting SNPs to genes (e.g. via genetic regulation)
for improved understanding of possible underlying mechanisms.

In recent years, several methods have been developed to integrate
GWAS and gene expression information to improve our understand-
ing of the functional mechanisms that underlie statistical genetic
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associations, known as a transcriptome-wide association study
(TWAS). These methods are now widely used as GWAS secondary
analyses using software packages such as FUSION (Gusev et al.,
2016) and S-PrediXcan (Barbeira et al., 2018), and have identified
novel genes and mechanisms underlying a range of diseases
(Gamazon et al., 2018, 2019). Another related method, summary-
based Mendelian Randomization (SMR) (Zhu et al., 2016), integra-
tes GWAS summary statistics with eQTL data to identify pleiotropic
effects (i.e. a single causal variant affecting with gene expression and
the manifestation of a phenotype). Both TWAS FUSION and S-
PrediXcan rely on a two-stage regression procedure. In the first
stage, they train multi-variant prediction models in a sample with
both genotype and gene expression data. In the second stage, these
weights are then combined with summary-level data from GWAS to
perform association analysis of imputed gene expression with a
phenotype. SMR and its extension, the HEIDI test, aims to test for
pleiotropic association between the expression level of a gene and a
complex trait of interest using summary-level data from GWAS and
expression quantitative trait loci (eQTL) studies within a Mendelian
Randomization framework.

TWAS methods test the association between the genetically
determined component of gene expression and disease risk, ideally
removing unwanted influences of environmental and technical fac-
tors on gene expression. However, this means only those genes
whose expression can be reliably imputed from genotype data (i.e.
moderately highly heritable genes) can be tested for an association
with a trait. Indeed, only 6759 genes in GTEx (v8) whole blood—a
relatively highly powered tissue—can be tested using S-PrediXcan,
and 6006 genes using FUSION. While the number of significant cis-
heritable genes detected by each approach is a function of sample
size, the relatively small number of testable genes reduces the search
space for prioritizing candidate causal genes. We therefore created
an alternative method, called E-MAGMA, which modifies the
MAGMA pipeline by mapping variants to genes based on tissue-
specific eQTL information. We have used eQTL information from
48 tissues of the GTEx reference panel version 8 (The GTEx
Consortium atlas of genetic regulatory effects across human tissues,
2020), although the method can be easily extended to other eQTL
reference datasets. This approach was developed to identify func-
tional gene associations that may be missed using proximity-based
SNP assignment in MAGMA and may therefore identify alternative
causal pathways from SNPs to trait.

In this article, we introduce the E-MAGMA gene-based annota-
tion approach and perform a systematic comparison of four differ-
ent methods using data simulations and a real-life example using
summary statistics from GWAS of attention-deficit hyperactivity
disorder (Demontis et al., 2019), autism spectrum disorder (Grove
et al., 2019), bipolar disorder (Stahl et al., 2019), depression
(Howard et al., 2019) and schizophrenia (Pardi~nas et al., 2018).
Our aims are to: (i) compare the statistical power of E-MAGMA
and other gene-based methods to detect a true association; (ii) com-
pare type-I error rates; (iii) test the influence of the number of
eQTLs on statistical power (i.e. weak instrument bias); and (iv)
compare the strength of association across methods. We plan to ex-
tend our simulations by modelling the performance of each method
across different estimates of trait heritability and prevalence, and
the proportion of overlap between causal GWAS variants and eQTL
variants. A tutorial and input files are made available in a github re-
pository: https://github.com/eskederks/E-MAGMA-tutorial.

2 Materials and methods

2.1 Gene-based methods
We used five gene-based methods: S-PrediXcan (Barbeira et al.,
2018), TWAS FUSION (Gusev et al., 2016), SMR (version 1.0)
(Zhu et al., 2016), conventional MAGMA (de Leeuw et al., 2015)
and our newly developed E-MAGMA (Gerring et al., 2019). S-
PrediXcan and TWAS FUSION are prediction-based approaches
that impute the genetically regulated component of gene expression
from SNP genotype data and regress the imputed expression on a

given phenotype. SMR uses a Mendelian randomization approach
to estimate the effect of gene expression on a phenotype due to a sin-
gle genetic marker (i.e. SNP), and tests whether a SNP’s association
with gene expression is due to linkage or pleiotropy (HEterogeneity
In Dependent Instruments [HEIDI] test). Conventional MAGMA
simply links SNPs to genes based on physical proximity, before com-
bining the SNP-level P values using a modified version of Brown’s
method that adjusts for linkage disequilibrium. Our E-MAGMA ap-
proach, a modification of MAGMA, leverages significant
(FDR<0.05) tissue-specific cis-eQTL information from GTEx (v8)
to assign SNPs to putative genes.

2.2 SNP genotype data for simulation analyses
The original genotype file from the QIMR Adult Twin Study (Duffy
et al., 2018; Medland et al., 2009) included 3 738 240 SNPs from
28 110 individuals. We excluded non-founders (N¼20 825), SNPs
with >1% missingness (N¼1 023 785) and SNPs with minor allele
frequency (MAF) < 0.05 (N¼2 653 824). We subsequently
excluded individuals with >1% missing data (N¼147). SNP identi-
fiers were transformed to chr_chrposition to enable matching with
GTEx eQTL reference data. This resulted in 43 duplicate SNPs,
which were excluded from further analysis. Finally, we selected only
SNPs from chromosome 1. The cleaned dataset included 7138 sub-
jects and 60 585 SNPs. eQTL information was obtained from whole
blood samples of the GTEx eQTL database.
(Whole_Blood.v8.signif_variant_gene_pairs.txt.gz). Significant
eQTLs (FDR<0.05) were included in subsequent analyses. This
eQTL reference database included 655 939 eQTL-gene combina-
tions for 8235 unique genes.

2.3 Phenotype simulation
Phenotypes were simulated using GCTA (Yang et al., 2011) using
genotype and eQTL reference data from chromosome 1 (N¼811
genes). For each gene, a phenotype was simulated using all signifi-
cant (FDR<0.05) cis-eQTLs as predictors, based on the eQTL re-
gression coefficients from the GTEx reference dataset. We
performed 10 simulations per gene. Only those genes with at least
one significant eQTL are included in the analysis (N¼651). The
eQTL-h2 (i.e. the proportion of variation explained by the eQTLs
was set at 1%, 2% or 5%). We evaluated the type-I error rate across
methods by calculating the proportion of genes that are significant
in the absence of true association between eQTLs and phenotypic
values. For this purpose, phenotypes were simulated using GCTA
with the proportion of variation explained by the eQTLs set at 0%.

2.4 GWAS analysis
GWAS analyses of the 6510 generated phenotypes were performed
using the linear regression option in Plink (Purcell et al., 2007). SNP
identifiers were replaced with rs identifiers using a lookup table to
enable alignment with the annotation files in subsequent statistical
analyses. We used the same significance level (P¼6.25�10�5) for
all analyses and corrected for the total number of genes in the GTEx
whole blood reference dataset located at chromosome 1 (i.e. 0.05/
811¼1.2�10�3).

2.5 E-MAGMA gene-level analysis
Since we are primarily interested in identifying variants with prior
functional support associated with complex disorders, we leveraged
eQTL data from 48 tissues in GTEx (version 8). Using the tissue-
specific GTEx datasets, we generated SNP-gene pairs (FDR<0.05)
that reflect functional relationships between SNPs and genes (cis-
eQTLs), which serves as an input annotation file for the MAGMA
software. We use the statistical framework from MAGMA to calcu-
late gene-based P values using the updated (eQTL) annotation files.
Gene-level analysis was done using default parameters and snp-wise-
mean gene analysis model. We share comprehensive instructions on
how to run E-MAGMA in a github repository: https://github.com/
eskederks/eMAGMA-tutorial
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2.6 Real-life example
We compared each gene-based method using real GWAS summary
statistics for five neuropsychiatric disorders: attention hyperactivity
disorder (ADHD) (Demontis et al., 2019), autism spectrum disorder
(ASD) (Grove et al., 2019), bipolar disorder (BIP) (Stahl et al.,
2019), depression (DEP) (Howard et al., 2019) and schizophrenia
(SCZ) (Pardi~nas et al., 2018). eQTL data from GTEx (v8) brain tis-
sues were used to calculate the expression-phenotype association for
all gene-based methods, with the exception of conventional
MAGMA which does not use eQTL data. For conventional
MAGMA, the gene-based analysis was done using default parame-
ters and snp-wise¼mean gene analysis model. We compared the
number of unique Bonferroni-corrected genes for each method,
using all gene-based results and after restricting each method to
genes with genetically regulated gene expression. We calculated the
correlations between the test statistics of each method using
Pearson’s correlation coefficients.

2.7 Comparative gene-level analyses
For the comparative analysis with S-PrediXcan, FUSION and SMR,
we applied prediction models trained in whole blood (GTEx v8) to
analyse the generated simulated phenotype files, using the gene ex-
pression weight files provided by each package. We used software-
specific default options for our analyses and used 1000 Genomes
(Delaneau et al., 2014) data as the reference panel. For the
MAGMA annotation, we specified an annotation window 5 kb up-
stream and 1.5 kb downstream of each gene. For E-MAGMA, we
assigned SNPs to genes using significant (FDR<0.05) eQTL data
from GTEx (v8). Gene-level analyses for E-MAGMA were done
using default parameters and snp-wise¼mean gene analysis model.

3 Results

We first counted the number of genes included in each post-GWAS
method, after running the expression-phenotype association analysis
in GTEx (v8) whole blood (Table 1). There was a wide range in the
number of genes output from each approach, ranging from 401 in
SMR to 628 in S-PrediXcan. A total of 6510 (651 genes with 10
simulations each) causal genes were used as input for phenotypic
simulations. We first assessed the false positive rate (type-I error) of
each method (i.e. under simulated conditions with no significant
eQTLs/non-eQTLs) (Supplementary Fig. S1), and found all methods
showed good control of the type-I error rate. We subsequently eval-
uated statistical power to detect association at a gene-based level,
for varying levels of eQTL-h2. We assessed the proportion of signifi-
cant associations relative to both the total number of causal genes
(Fig. 1A) and when accounting for the total number of causal genes
included in each method (Fig. 1B). E-MAGMA outperformed all
methods across different proportions of variance explained by gene
expression. After correcting for the number of genes included in
each gene-based method, E-MAGMA still outperformed other meth-
ods (Fig. 1B).

All of the gene-based methods, with the exception of SMR, com-
bine statistical evidence across multiple SNPs to derive a gene-based
association. We therefore estimated statistical power as a function
of the number of eQTLs per gene, with 1% of phenotypic variance

explained by eQTLs. Power significantly increased with the number
of eQTLs per gene (Fig. 2; Supplementary Table S1). There was a
significant association between the number of eQTLs per gene and
statistical power for all methods (P < 0.01), however E-MAGMA
was less sensitive to the number of eQTLs than the other methods.

We assessed the overlap in genes between eQTL-based methods
at 1% of phenotypic variance explained (Supplementary Fig. S2).
The number of genes unique to each method far outweighed the
overlap between any two methods, however there was good overlap
across all four methods (n¼851 from a total of 6511 tests). We cal-
culated the pairwise correlation of the Z-scores between gene-based
methods. Effect sizes of transcriptome-imputation methods were
strongly correlated, particularly S-PrediXcan and FUSION
(r ¼ 0.97, P < 2.2 � 10-16, df ¼ 402), but only low-moderate correl-
ation of the absolute z-scores was observed with E-MAGMA (e.g. S-
PrediXcan versus E-MAGMA; r ¼ 0.47, P < 2.22 � 10-16,
df ¼ 429) (Supplementary Table S2).

Finally, we compared the number of significant (Bonferroni-cor-
rected for the number of tests performed) risk genes detected by each
gene-based approach using GWAS summary statistics for five neuro-
psychiatric disorders and (if applicable) expression weights from 13
brain tissues in GTEx (version 8). E-MAGMA results for each of the
five neuropsychiatric disorders is displayed in Supplementary Table
S3; MAGMA results are displayed in Supplementary Table S4; S-
PrediXcan results are displayed in Supplementary Table S5;
FUSION results are displayed in Supplementary Table S6; and SMR
results are displayed in Supplementary Table S7. Compared to
eQTL-based methods, E-MAGMA identified more significant asso-
ciations for bipolar disorder (N ¼ 32), depression (N ¼ 119) and
schizophrenia (n ¼ 254), and a comparable number of gene associa-
tions for attention deficit hyperactivity disorder (N ¼ 5) (Table 2),
thereby improving gene discovery for hypothesis generation. It
should be noted, however, that E-MAGMA gene discovery is driven
by genes with significant eQTLs in GTEx, rather than significant
genetically regulated gene expression in TWAS approaches. After

Table 1. Number of genes and causal genes in each gene-based

method

Method Number of

genes in

model

Causal

genesa

Proportion

of

causal genes

E-MAGMA 565 530 0.81

S-PrediXcan 628 490 0.75

SMR 401 387 0.59

FUSION 588 186 0.29

aFrom simulations.

Fig. 1. Proportion of significant associations (A) relative to the total number of

causal genes and (B) relative to the total number of causal genes per method.

Legend: 0.5%, 1% and 2% denote the percentage of phenotypic variance explained

by eQTLs

Fig. 2. Statistical power as a function of the number of eQTLs per gene
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restricting to genes with genetically regulated gene expression, the
number of unique significant genes found by E-MAGMA was less
than the TWAS approaches (Supplementary Tables S8 and S9), high-
lighting the value of running multiple gene-based tests with different
underlying models and assumptions.

4 Discussion

We developed a gene-based method called E-MAGMA which uses
functional tissue-specific eQTL information from GTEx to assign
SNPs to genes with the aim of improved annotation and interpret-
ation of GWAS association signals. Our approach uses the statistical
framework from MAGMA, but rather than assigning SNPs to genes
based on physical proximity during gene annotation (i.e. mapping
SNPs to genes using a pre-defined and arbitrary genomic window),
we use significant (FDR<0.05) SNP-gene expression associations
(eQTL) in GTEx. Our extension therefore provides more biological-
ly meaningful and interpretable results compared to conventional
MAGMA. We compared E-MAGMA to three other eQTL-informed
gene-based approaches (S-PrediXcan, FUSION and SMR) using
both simulated and observed GWAS data. We show that E-
MAGMA maintains appropriate control of the type-I error rate
while outperforming other methods in detecting causal associations.

We used the methodological framework of MAGMA, rather
than similar gene-based methods such as EUGENE (Ferreira et al.,
2017), because it is one of the most widely used secondary analyses
for the interpretation of GWAS results. Furthermore, the framework
can be modified to include any type of annotation that maps SNPs
to genes. For example, recent work to integrate chromatin inter-
action data from relevant tissues using the MAGMA framework
increased power to identify putative risk genes and biological path-
ways for a range of neuropsychiatric traits (Sey et al., 2020). With
the availability of tissue-specific multi-omic (transcriptome, chroma-
tin, Hi-C, DNA methylation) datasets through projects such as
GTEx (The GTEx Consortium atlas of genetic regulatory effects
across human tissues, 2020) and psychENCODE (Wang et al.,
2018), it will be possible to link SNPs to target genes using the most
functionally relevant data and improve the biological interpretation
of GWAS results.

Recent gene-based methods integrate genetic and transcriptomic
information to estimate the effect of genetically determined gene ex-
pression on phenotypic variation. No systematic comparison of the
three most commonly used methods—S-PrediXcan, FUSION and
SMR—has been done. However, a head-to-head comparison of S-
PrediXcan and FUSION found both methods recapitulate known
associations between genotype and expression, and produced accur-
ate and reliable results when compared to observed eQTL data
(Fryett et al., 2020). Furthermore, both methods produced highly
correlated results when applied to the same eQTL reference data.
These data suggest the models underlying TWAS FUSION and S-

PrediXcan perform similarly, and produce negligible differences in
gene-based results.

We found all of the tested methods maintained control of the
false positive rate under simulated conditions, where no single vari-
ant contributes to phenotypic variation. Under simulated conditions
where 0.5%, 1% or 2% of the phenotypic variation was explained
by eQTLs (or non-eQTLs), S-PrediXcan captured more causal genes
compared to SMR and FUSION. The performance of each method
improved when measured against the actual total number of causal
genes tested, correcting for the fact that some methods test fewer
genes than others. E-MAGMA was least influenced by the number
of eQTLs of a gene, while all other methods tended to show a mono-
tonic relationship with the number of eQTLs.

Our framework provides a more functionally valid gene-based
test of association for GWAS compared to conventional MAGMA.
However, it is prone to many of the same limitations of existing
eQTL gene-based approaches. First, E-MAGMA is not immune for
the influence of linkage—where two or more variants in linkage dis-
equilibrium independently affect gene expression and phenotypic
variation—and pleiotropic SNP effects—where a single causal vari-
ant affects both gene expression and phenotypic variation. Our
method may therefore yield non-causal SNP-gene associations in the
disease-associated region. Second, the power of E-MAGMA is lim-
ited by the sample size of the annotation eQTL dataset and includ-
ing genes with weaker eQTL signals (based on less stringent 5%
false discovery rate) may increase false positive associations. This is
especially problematic with brain tissue eQTL datasets, which tend
to be underpowered given the inaccessibility of brain tissue. The
meta-analysis of multiple independent brain eQTL datasets, per-
formed by the psychENCODE consortium (Wang et al., 2018), will
improve the power and interpretation of E-MAGMA. Third, unlike
TWAS methods, E-MAGMA does not provide information on the
gene expression effect direction (that is, whether a gene is predicted
to be up-regulated or down-regulated in cases). This limits the trans-
lation of results to higher order molecular mechanisms.
Furthermore, the lack of effect direction may increase false positive
associations, as opposite effects (for the same gene across different
tissues) may be counted as valid associations. Fourth, our simula-
tions might favour E-MAGMA over the other TWAS approaches
because the eQTLs used in the annotation files were derived from
the same reference eQTL dataset (GTEx) used to simulate gene ex-
pression. Future simulations using independent reference eQTL
datasets will be required to confirm the better performance of E-
MAGMA. Finally, gene expression is highly cell-type specific
(Mathys et al., 2019). The use of bulk tissue eQTL datasets may
therefore reduce power to identify cell-type specific disease signals.
The use of existing (Mathys et al., 2019) and impending (Wang
et al., 2018) single cell expression datasets may therefore improve
the resolution of eQTL-based gene-mapping.

Future work will refine both the methodological framework of
E-MAGMA and the simulated data comparisons. First, our simula-
tions were developed to compare statistical power of transcriptome
imputation methods with MAGMA and E-MAGMA. The simula-
tions might be improved upon by modelling the impact of the pro-
portion of causal eQTLs that contribute to phenotypic variation;
that is, how do the methods perform under scenarios where only a
subset of cis-eQTLs contribute of gene expression variation.
Furthermore, we will assess the performance of each method across
different estimates of trait heritability and prevalence. These add-
itional analyses will provide a biologically valid and comprehensive
assessment of model performance. Second, the tissue-specificity of
E-MAGMA may provide novel insights into biological mechanisms
of disease, but at the cost of limited sample size—and statistical
power—of tissue-specific eQTL datasets. Future work will annotate
genes with eQTL from larger datasets blood-based eQTL datasets to
improve gene discovery, before prioritising genes using tissue-
specific results. Furthermore, when sample sizes become sufficient
powered, trans-eQTL effects may be integrated into the E-MAGMA
annotation files. Finally, the use of a co-localisation method such as
ENLOC (Wen et al., 2017) to calculate the probability that the top
eQTL from the eMAGMA association and GWAS signals share the

Table 2. Number of unique significant (Bonferroni corrected) asso-

ciations for 5 neuropsychiatric disorders across different gene-

based methods

E-MAGMA MAGMA S-PrediXcan FUSION SMR

ADHD 5 17 7 10 –

AUT 1 5 2 4 –

BIP 32 47 20 31 0

DEP 119 190 89 45 7

SCZ 254 460 210 236 37

Note: Association statistics using SMR for ADHD and AUT could not be

calculated because publicly available summary statistics for these disorders do

not include SNP minor allele frequency. Supplementary Table S6 shows the

number of associations for each method after restricting to genes with genetic-

ally regulated levels of gene expression, as defined by S-PrediXcan and TWAS

FUSION.
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same causal variant would further refine a credible set of causal
genes.

In conclusion, we present a modified MAGMA framework, E-
MAGMA that aggregates eQTL summary statistics into gene level
association statistics for gene-level analyses. Using simulated data,
we showed E-MAGMA has greater power to detect causal associa-
tions compared to other popular gene-based approaches, while
maintaining appropriate control of the type I error rate. Therefore,
E-MAGMA can provide a functionally relevant alternative to exist-
ing methods to identify genes and pathways from GWAS. A tutorial
and input files can be found in the github repository: https://github.
com/eskederks/E-MAGMA-tutorial.
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