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Abstract

Motivation: To better understand the molecular features of cancers, a comprehensive analysis using multi-omics
data has been conducted. In addition, a pathway activity inference method has been developed to facilitate the inte-
grative effects of multiple genes. In this respect, we have recently proposed a novel integrative pathway activity in-
ference approach, iDRW and demonstrated the effectiveness of the method with respect to dichotomizing two sur-
vival groups. However, there were several limitations, such as a lack of generality. In this study, we designed a
directed gene–gene graph using pathway information by assigning interactions between genes in multiple layers of
networks.

Results: As a proof-of-concept study, it was evaluated using three genomic profiles of urologic cancer patients. The
proposed integrative approach achieved improved outcome prediction performances compared with a single gen-
omic profile alone and other existing pathway activity inference methods. The integrative approach also identified
common/cancer-specific candidate driver pathways as predictive prognostic features in urologic cancers.
Furthermore, it provides better biological insights into the prioritized pathways and genes in an integrated view
using a multi-layered gene–gene network. Our framework is not specifically designed for urologic cancers and can
be generally applicable for various datasets.

Availability and implementation: iDRW is implemented as the R software package. The source codes are available
at https://github.com/sykim122/iDRW.

Contact: dokyoon.kim@pennmedicine.upenn.edu or kasohn@ajou.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

To better understand the complex biological mechanism underlying
cancer progression and prognosis, a comprehensive analysis using
multi-omics data has attracted great attention to reveal the distinct-
ive and shared molecular features of cancers. Many multi-omics
studies have been conducted to discover novel biomarkers associated
with cancers and predict clinical outcomes precisely (El-Manzalawy
et al., 2018; Huang et al., 2017; Kim et al., 2014; 2015b, 2012; Lee
et al., 2017; Shivakumar et al., 2017; Sohn et al., 2013). For a

comprehensive analysis of multi-omics data, it is crucial to under-
stand the complex interplay between genes across different omics
layers. To utilize the interaction effect between genes across multi-
omics data, network-based integrative approaches have several
advantages, such as utilizing the inter-relationships among multi-
omics data, better biological interpretation and improved outcome
prediction power, as shown in many studies (Di Nanni et al., 2019,
2020; Jeong et al., 2015; Kim et al., 2015a; 2017; Lee et al., 2019;
Martı́nez et al., 2015; Nguyen et al., 2016; Vangimalla et al., 2016;
Wang et al., 2017).
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To effectively combine different types of genomic features on the
graph, most network-based integrative methods have focused on
incorporating prior knowledge such as pathway or subtype informa-
tion in many cancer studies (Dimitrakopoulos et al., 2018; Hung
and Chiu, 2017; Liu et al., 2015; Mitrea et al., 2018; Nguyen et al.,
2017). Biological pathways contain interactions among molecules in
a cell, and enormous amounts of information on pathways and
interactions are readily available in many pathway databases. To
identify biologically meaningful molecular features and investigate
interaction effects among them, many pathway-based approaches
have been proposed based on the network structure (Hu et al.,
2017; Nguyen et al., 2020; Stoney et al., 2018). In this respect, path-
way activity inference methods have been developed to produce
pathway-level features and corresponding activity scores for robust
and accurate prediction and better interpretation. In this study, we
utilized the pathway activity inference method to effectively com-
bine multi-omics data into a single pathway-level data. The reason
why we inferred pathway activities is that our approach aims at not
only integrating multi-omics data based on the graph, but also a
pathway-level representation of multiple genomic profiles to better
analyze the prioritized pathways considering interactions between
genes and to improve outcome prediction performance using ma-
chine learning models.

The pathway activity score can be simply computed with sum-
mary measures of gene sets, which take the arithmetic mean or the
median of the gene expression values of the pathway member genes
(Guo et al., 2005). Lee et al. proposed a precise disease classification
model by inferring pathway activities for each patient (Lee et al.,
2008). The pathway activity is defined as the summarized gene ex-
pression levels of its condition-responsive genes (CORG), which are
the subset of genes in the pathway for which the combined expres-
sion shows optimal discriminative power for the disease phenotype.
Tomfohr et al. proposed a pathway-level analysis of gene expression
(PLAGE), which derived activity scores from a vector of the singular
value decomposition of the given gene set (Tomfohr et al., 2005). In
addition, many other pathway activity inference approaches have
been proposed in different cancers or other complex diseases
(Temate-Tiagueu et al., 2016; Wang et al., 2019). Those pathway
activity inference methods simply take pathways as the set of genes
and summarize the gene expression levels; thus, the interaction
effects between genes are not considered. In this respect, several
studies utilized gene interactions based on network structure. A
denoising algorithm based on relevance network topology (DART)
derived perturbation signatures that reflect gene contributions in
each pathway on the relevance network for improved pathway ac-
tivity inference (Jiao et al., 2011). Liu et al. proposed a directed ran-
dom walk-based pathway activity inference method (DRW) to
consider the topological importance of the genes on the network
that can be highly associated with diseases (Liu et al., 2013). DRW
has been extensively studied with many variations, including DRW
based on a gene-metabolite graph and DRW for survival prediction
(Liu et al., 2017, 2015).

However, most existing pathway activity inference methods tar-
geted a single genomic profile alone. In this respect, we have recently
investigated the effectiveness of the network-based integrative path-
way activity inference method for multi-omics data integration
(iDRW) (Kim et al., 2019, 2018). One of the limitations of previous
studies on iDRW lies in the lack of a comprehensive analysis of dif-
ferent levels of genomic data. The integrated gene–gene network in
iDRW was formally designed specifically based on the data struc-
ture, resulting in a lack of generality. Due to the complexity of the
multi-omics network, multiple network scenarios should be consid-
ered. Furthermore, it was validated in a classification model that
divides long-term and short-term survival groups, not survival pre-
diction. As there are no clear criteria for dichotomizing two survival
groups, it highly depends on the data.

To overcome those limitations, we propose a general framework
for integrative pathway activity inference on the multi-omics net-
work and investigate multiple network scenarios. To reflect the
interaction effects of genes, we designed a directed gene–gene graph
in multiple layers by assigning within-layer interactions and

between-layer interactions considering multiple scenarios. We
inferred pathway activities by performing a random walk with re-
start (RWR) on the multi-layered network. As a result, iDRW trans-
forms the multiple genomic profiles into a single pathway profile on
the graph. The inferred pathway profile is validated with the out-
come prediction models. We prioritized pathways, visualized the
multi-omics network and extensively analyzed the pathway activity
patterns.

As a proof-of-concept study, the proposed method is applied for
the integrative analysis of urologic cancer. Urologic cancers include
prostate, kidney and bladder cancer that share a common genetic
architecture across different types. Here, we considered two types of
outcome prediction models (overall survival days and regional
lymph node or distant metastasis) for bladder and kidney cancer.
The proposed method selects cooperative potential driver pathways
associated with clinical outcomes. We also provide extensive analy-
ses of distinguishable and shared molecular features across two dif-
ferent cancers. The overview of the integrative urologic analysis
using the proposed method is illustrated inFigure 1. The main con-
tributions of this study are summarized as follows.

• We propose a generally applicable framework that integrates

multi-omics data by constructing a multi-layered network. We

investigate multiple network construction scenarios.
• We not only integrate multiple types of data but infer pathway

activities to facilitate a sophisticated pathway-level analysis:

inferred pathway activity pattern analysis, pathways prioritiza-

tion and pathway-based integrative network visualization.
• We validate our integrative network-based analysis framework

with urologic cancers using three types of genomic profiles con-

sidering two types of clinical outcomes.

2 Materials and methods

2.1 Pathway-based multi-layered gene–gene graph
Let the multi-layered gene–gene graph G ¼ ðV;E;XÞ be composed
of L layers. A gene–gene graph on the ith layer is defined as
Gi ¼ ðVi;Ei;XiÞ, where Vi is a set of nodes (genes), Ei is a set of dir-
ectional edges and Xi 2 R

jVi j�/ is a feature matrix of the nodes at
the ith layer. Then, G ¼ fGigi¼1;...;L.

Let v 2 Vi; w 2 Vj be a node of the graph on the i, jth layer,
evw ¼ ðv;wÞ 2 E be an edge between the node v and w, and xv;xw 2
R

/ feature vectors of the nodes v and w. In this study, Xi is a genom-
ic profile of a gene-by-sample matrix and x is the /-sized gene ex-
pression vector. E is composed of within- and between-layer
interactions. The within-layer interactions are derived from the
pathway-based gene–gene interactions. The set of pathways P are
obtained from pathway databases such as KEGG, Reactome and
WikiPathways, i.e. P ¼ P1 [ � � � [ PN for N pathways. Then, P ¼
ðM; IÞ where M are molecules (genes) and I are molecular interac-
tions of genes, defined in the pathway database. For each layer, the
nodes and edges of Gi were derived from P:

Vi �M;Ei � I; i ¼ 1; . . . ;L

When we define between-layer interactions, we considered two
different scenarios. First, we assign bi-directional edges between all
pairwise combinations of v and w:

evw 2 E; 8v 2 Vi;8w 2 Vj if i 6¼ j

Second, we assign edges if there is a higher correlation between
nodes v and w than a threshold, i.e. if jcorrðxv; xwÞj � h, where
jcorrðxv;xwÞj represents the magnitude of the Pearson correlation
coefficient between feature vectors of node v and w (correlation of
the gene expressions between gene v and w) in two different layers,
and h is a threshold value of the correlation. We set the threshold
value h to 0.5, as it is generally accepted to have a low correlation
when it is lower than 0.5 (Hinkle et al., 2003). We note that the four
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different network construction scenarios including two possibilities
of between-layer connections were considered and showed the final
prediction performance is not sensitive to the graph structure in the
following experiments. The adjacency matrix A of the multi-layered
graph G is derived as Avw ¼ 1 if evw 2 E and 0 otherwise. We note
that A is an asymmetric matrix because G is a directed graph, i.e.
A 6¼ AT.

2.2 Directed random walks with restart on the multi-

layered graph
To infer pathway activities from multiple genomic profiles, we per-
formed random walk with restart (RWR) on the multi-layered
directed gene–gene graph G. The purpose of performing RWR is to
update genes considering their interaction effects within- and
between-genomic layers and transform them into a pathway-level
activity matrix. It should be noted that this step was performed
using the entire dataset, and the transformed pathway profile (path-
way-by-sample matrix) was used as an input to the training model.
In the training phase, the samples were divided into training and val-
idation sets for cross-validation. A set of genes, so-called seeds, the
starting points of the random walk algorithm, was used to explore
the neighborhood and iteratively update the nodes of the graph. To
start a random walk on a graph, we initialized the seed genes by uni-
variate statistical analysis to assess the significant association be-
tween each gene and the clinical outcome. For each node (gene) v,
we obtained a statistic score (zv) and P-value of the statistical signifi-
cance of the model (pv) using a feature vector xv. The method took
three kinds of the outcome variables: survival time, binary and
multi-class outcomes. To measure the significant associations of
genes with survival time, univariate cox regression analysis was per-
formed for each gene, stratified by several confounding factors
including age, gender and TNM stage, using a cox proportional haz-
ards regression model (Andersen and Gill, 1982). We assessed the
Wald statistic value as a statistic score and P-value corresponding to
the ratio of each gene’s regression coefficient to its standard error.
For binary or multi-class outcome, it performed a two-tailed t-test
or an analysis of variance (ANOVA) for each gene to test the signifi-
cant differences between the group means of each class. This process
produced a T or F value as a statistic score and a P-value for each
gene. The initial weight vector W

ðiÞ
0 for the ith layer is formally

defined as:

W
ðiÞ
0 ¼ �logðpv þ �Þ; v 2 Vi; � ¼ 2:2e�16 (1)

W
ðiÞ
0 is normalized to scale the range between 0 and 1 and combined

to develop W0 ¼ ½Wð1Þ
0 � � �W

ðLÞ
0 �. Then, W0 is l1-normalized to a unit

vector. A random walker starts on a source node s (seeds) and tran-
sits to a randomly selected neighbor or returns to the source node s
with a restart probability r at each time step t. Wt is iteratively
updated with:

Wtþ1 ¼ ð1� rÞÂT
Wt þ rW0 (2)

where Wt is the weight vector in which the ith element represents
the probability of being at node i at time step t, r is the restart prob-
ability and Â is a row-normalized matrix of the adjacency matrix A
of the multi-layered gene–gene graph G. We set the restart probabil-
ity r to 0.3 as it has been shown that the performance is not sensitive
to the varying r (Liu et al., 2013). After a number of iterations, it is
guaranteed to converge to a steady state W until the l1-norm be-
tween Wt and Wtþ1 < 10�10, as previously shown (Liu et al., 2017,
2013, 2015). The final weight vector of nodes in the multi-layered
graph G was obtained as W 2 R

jVj. We note that the same gene can
have different weight in different layers, as the gene weights are it-
eratively updated by the random walk process based on the graph
structure.

2.3 Pathway activity inference
We inferred pathway activities with the set of statistically significant
genes. Let the ith pathway Pi include ni number of genes that are sig-
nificantly associated with the outcome (p� value < 0:05), and vk

be the kth significant gene, i.e. vk 2 Pi; k ¼ 1; . . . ;ni. The pathway
activity PAi for the ith pathway is defined as:

PAi ¼

Pni

k¼1

WðvkÞ � sgnðzkÞ � xkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPni

k¼1

ðWðvkÞÞ2
s (3)

where WðvkÞ is the final weight of node vk (gene) which was
updated from Equation (2); xk is the node feature vector (vector of
gene expression values from the original genomic data); zk is the
statistic score derived from the univariate statistical analysis (cox

Fig. 1. Overview of an integrative directed random walk-based pathway activity inference on the multi-layered gene–gene graph (iDRW). The iDRW was applied for the inte-

grative urologic cancer analysis using three genomic profiles. The genes of each genomic profile are represented as nodes on each layer of the graph. A directed random walk

with restart (RWR) is performed on the multi-layered graph and the gene weights are iteratively updated based on the graph structure. Pathway activities are inferred using the

subset of pathway member genes that are significantly associated with the outcome (P<0.05) by combining the normalized gene expression values, a statistical score of genes

that represents the statistical significance, and the updated gene weights by performing RWR on the multi-layered graph. For a systematic view, iDRW transforms the multiple

genomic profiles into a single pathway profile at the first stage. After that, the inferred pathway profile is used as an input to train the prediction model. The framework was

evaluated for survival and metastasis prediction performance and prioritization of the top-k pathways for cancer prognosis and metastatic progression. Note that the proposed

framework is generally applicable to any number of different types of data

Multi-layered network-based pathway activity inference using directed random walks 2407



regression/t-test/ANOVA); and sgnðzkÞ is the sign of the statistic
score indicating a positive or negative correlation between the gene
expression values and clinical outcome. This formula makes the
pathway activity score low when it is combined with negatively cor-
related genes with the risk of patients. Note that we utilized the
directed random walk-based approaches to be applicable to multi-
omics data. More details of the pathway activity inference method
are provided in (Liu et al., 2013, 2015, 2017). For each pathway,
the pathway activity is computed across all samples, considered as a

pathway profile, i.e. PA 2 R
N�/. The high value of the pathway ac-

tivity score indicates that the corresponding pathway highly affects
the risk of patients. Finally, iDRW combines the feature matrices in
L layers into a single pathway profile based on the multi-layered

graph as X1;...;L;A! PA where Xi 2 R
jVi j�/; A 2 R

jVj�jVj;

PA 2 R
N�/.

3 Experiments

3.1 TCGA urologic cancer datasets
We obtained RNA-Seq gene expression, copy number variation and
DNA methylation profiles of the TCGA bladder cancer (BLCA) and
kidney clear cell carcinoma (KIRC) dataset. Gene expression data
were measured using Illumina HiSeq 2000 RNA Sequencing, which
is level 3 data from the TCGA data coordination center. It consisted
of 20 530 genes, which are gene-level transcription estimates, as in
the log-transformed RSEM normalized count. The gene-level copy
number variation (CNV) data were estimated using the GISTIC2
method, which consisted of 24 776 genes. RNA-Seq gene expression
and CNV data were downloaded from the UCSC Xena platform
(Goldman et al., 2019). DNA methylation data were obtained as a
gene-level feature by selecting the probe having a minimum correl-
ation with the expression data for each gene from the Broad
Institute GDAC Firehose (GDAC, 2016). In this study, the overlap-
ping 16 904 genes and 400 patients were in BLCA data across three
genomic profiles. Likewise, 17 125 genes and 313 patients were in
KIRC data.

Although there are 6 types of urologic cancer datasets in TCGA,
we excluded the testicular cancer (TGCT), kidney chromophobe
(KICH), dataset due to the extremely small number of cases, which
were 134 and 65, respectively. The kidney papillary cell carcinoma
(KIRP) and prostate cancer (PRAD) dataset had a sufficient number
of samples; however, those cancers were excluded due to the exces-
sive rate of censoring, which was 85.1% and 98.2%. Excessive cen-
soring rate leads to the risk of bias to the prediction model and
severely harms the model performance and interpretation of the
results (Zhu et al., 2017).

3.2 Data preprocessing
There were 811 and 756 missing values in the DNA methylation
data for BLCA and KIRC, respectively. We imputed them with a
median of the corresponding patient’s data. We excluded patients
whose clinical outcome variables were not recorded or inaccurate
such as the negative values of survival days.

For each cancer dataset, overall survival (OS), event status, age,
gender and TNM stage were used as clinical variables. The event
status is a binary variable with the event occurred (1) and right-
censored (0). There were 223 censored and 173 uncensored samples
in BLCA (censoring rate: 56.3%), and 209 censored and 102 uncen-
sored samples in KIRC (censoring rate: 67.2%). The clinical varia-
bles were dichotomized as ages into 0 (<65 years) or 1 (�65 years),
T stages into 0 (T0-2) or 1 (T3-4), N stages into N0 or N1-3 (Nþ)
and M stages into M0 or M1. We filled some of the unknown patho-
logic stages based on the American joint committee on cancer
(AJCC) staging system. In addition, the missing N or M stages were
filled according to the number of lymph nodes that were positive or
metastatic sites. For example, if the number of lymph nodes positive
was greater than 0, they were categorized as Nþ. If the metastatic
site was recorded as ‘lymph node only’, they were regarded as M0.
Metastatic site features were recorded only in the BLCA dataset.

We considered OS and three types of metastasis prediction mod-
els; the model to predict the risk of patients with any metastasis (any
T/Nþ/M1); patients with regional lymph node metastasis without
distant metastasis (any T/Nþ/M0); patients with distant metastasis
without regional lymph node metastasis (any T/N0/M1). Due to the
number of samples for each class, we evaluated our model with any
or regional metastasis in BLCA, and any or distant metastasis pre-
diction model in the KIRC dataset. The total number of samples for
each clinical feature are shown in Table 1.

3.3 Multi-layered network construction
We investigated the integrative effect of the iDRW method with a
comparison of the single-layered graph, which corresponds to the
DRW method, for each genomic profile, denoted as GE; GC and
GM. To investigate the prognostic effect of combining each genomic
profile, we experimented with all possible combinations between
each layer, denoted as GEC; GEM; GCM and GECM. For example,
GEC ¼ fGE;GCg is a two-layered gene–gene graph combining the
gene expression and CNV profile. We experimented with four scen-
arios of constructing GECM: the one that assigns within-layer edges
based on pathway-based gene–gene interactions to (1) all genomic
profiles or (2) the gene expression profile only to demonstrate the ef-
fect of combining them with the copy number variation (CNV) or
DNA methylation profile. For each of the former scenarios, we
assigned between-layer edges from (a) all pairwise combinations of
genes or (b) a pair of genes with a correlation coefficient of the ex-
pression value greater than 0.5.

To assign pathway-based gene–gene interactions to within-layer
edges for each layer, we constructed a pathway-based directed gene–
gene graph using the KEGG pathway database (Kanehisa and Goto,
2000). We parsed KGML (KEGG XML) files of 327 KEGG path-
ways into graph models using the R package, KEGGgraph (Zhang
and Wiemann, 2009). For each pathway, we included all the nodes

Table 1. Summary statistics of clinical features in the TCGA bladder

cancer (BLCA) and kidney clear cell carcinoma (KIRC) data

Data type BLCA KIRC

Number of samples 400 313

Age

<65 years 147 (36.8%) 193 (61.7%)

�65 years 253 (63.2%) 120 (38.3%)

Gender

Male 295 (73.8%) 201 (64.2%)

Female 105 (26.2%) 112 (35.8%)

Stage T

T0-2 148 (37.6%) 196 (62.6%)

T3-4 246 (62.4%) 117 (37.4%)

Stage N

N0 261 (67.4%) 244 (87.8%)

Nþ 126 (32.6%) 34 (12.2%)

Stage M

M0 340 (86.1%) 258 (82.7%)

M1 55 (13.9%) 54 (17.3%)

Overall survival (OS)

Survival days 810.5 6 833.8 1310.3 6 1062.7

Uncensored 173 (43.7%) 102 (32.8%)

Censored 223 (56.3%) 209 (67.2%)

Any metastasis

Positive (any T/Nþ/M1) 51 26

Negative (any T/N0/M0) 260 216

Regional metastasis

Positive (any T/Nþ/M0) 70 –

Negative (any T/N0/M0) 260 –

Distant metastasis

Positive (any T/N0/M1) – 28

Negative (any T/N0/M0) – 216
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and edges where the node type is a gene. The genes in the pathway
were annotated as the respective HUGO gene symbols. We merged
327 human pathways into a pathway-based gene–gene graph. In
total, 7390 nodes and 58 426 edges were obtained. For each cancer
dataset, we had three types of genomic profiles: RNA-Seq gene ex-
pression, CNV and DNA methylation profile, which were consid-
ered as three layers. For each layer, the overlapping genes between
genes from the genomic profile and pathway-based gene–gene graph
were present: jVEj ¼ 6827 (BLCA & KIRC), jVCj ¼ 7077 (BLCA &
KIRC), jVMj ¼ 5805 (BLCA) and 5894 (KIRC). Each genomic pro-
file was normalized for the mean to be 0 and standard deviation to
be 1 across all the samples.

To demonstrate the effectiveness of the DRW-based integrative
approach, we additionally compared iDRW with three state-of-the-
art pathway activity inference methods for each genomic profile:
CORG (Lee et al., 2008), PLAGE (Tomfohr et al., 2005) and DART
(Jiao et al., 2011). CORG and PLAGE were implemented with the R
package GSVA, with default settings (Hanzelmann et al., 2013). As
each of those pathway activity inference methods has been previous-
ly developed based on a single genomic profile, we assessed pathway
activities across samples from GE; GC and GM, respectively.

3.4 Pathway feature selection and outcome prediction
The iDRW computes the pathway profile based on the multi-layered
gene–gene graph from multiple genomic profiles. The pathway pro-
file is used as an input to the prediction model. We experimented
with our proposed method on two types of outcome prediction
models: Lasso-Cox regression model to predict OS survival time and
the RFE-RFC model to predict metastasis (binary outcome). The
prediction performances of pathway profiles obtained from other
pathway activity inference methods were evaluated as described for
iDRW to achieve a fair comparison.

3.4.1 Lasso-Cox regression model

The Cox proportional hazard model estimates the hazard of each
pathway feature at a specific survival time, considering the event sta-
tus. The regression coefficients represent the degree of correlation of
pathway features to the corresponding hazard. We fit a generalized
linear model by a maximum likelihood estimation with the l1 pen-
alty (Lasso), implemented in the R glmnet package (Simon et al.,
2011). We performed 5-fold cross-validation in the training set to
find the optimal parameter s by choosing the minimum over a grid
of k ¼ 10P, where P is the sequence decreasing by 0.1 from 10 to -
2. The pathway features with non-zero coefficients were selected.
We then estimated the hazard of pathways across samples in the test
set using the risk scores of the selected pathway features, obtained
from training the Lasso-Cox model. In our experiments, the Cox re-
gression model was trained to predict OS adjusted by age, gender
and TNM stage as covariates.

3.4.2 RFE-RFC model

A recursive feature elimination (RFE) is a backward selection algo-
rithm based on the predictors’ importance ranking, and it is a clas-
sical and effective method for gene selection (Guyon et al., 2002).
The algorithm sequentially eliminates less important features based
on their ranks. For each iteration, it fits the random forest classifica-
tion (RFC) model to predict binary outcomes and assesses the im-
portance ranking for predictors. We denote the model as RFE-RFC.
As in the Lasso-Cox model, we performed 5-fold cross-validation as
a resampling method for important feature selection to reduce the
overfitting issue. We fitted the random forest model in the training
set, selected the optimal set of pathway features and evaluated the
model with the area under the precision-recall curve (AUPRC) in the
validation set. The details of the model evaluation are described in
Section 3.5 below. The optimal number of features that should be
assessed is also found by the experiments with a varying number of
features N ¼ ½1; 2; . . . ;9; 10;15; . . . ; 95; 100�. We refitted the ran-
dom forest model with the optimal features and assessed the predic-
tion performance with AUPRC on the test set. In our experiments,

we trained the RFE-RFC model to predict regional lymph node or
distant metastasis, adjusted by age and gender as covariates.

3.5 Performance evaluation
We randomly split the samples into 70% training and 30% test sets
and repeated the process 100 times. To validate each prediction
model, we performed 5-fold cross-validation on the training set,
which trains the model using four folds (56%) and validates with
the remaining one-fold (14%). In the training phase, we fit the opti-
mal model by tuning the hyper-parameters by cross-validation and
selected the set of pathway features. The fitted model was then eval-
uated in the test set. As a result, we assessed the performances and
the set of selected features after 100 iterations of the entire process
for each model in each dataset. The pathways were ranked by their
frequencies of being selected for each iteration. Finally, the top-k
pathways with more than half frequencies were prioritized.

The Cox regression model that predicts OS was evaluated with a
concordance index (C-index). The C-index measures the probability
that the observation who is predicted to have a higher risk, has a
shorter time-to-event than the other, for a random pair of samples
(Harrell et al., 1996). The performance of metastasis prediction
models was measured with precision-recall (PR) curves. There are
three types of binary classification problems: regional lymph node
metastasis, distant metastasis and any metastasis prediction.
Precision is the ratio of correctly predicted positive observations of
the total predicted positive observations. Recall (Sensitivity) is the
ratio of correctly predicted positive observations of all observations
in an actual class. PR curves represent the plot of the precision and
recall for different thresholds, and the prediction performance is
measured with the integral area under the PR curves (AUPRC).
Note that we denote the area under the PR curves as AUPRC rather
than AUC, as AUC usually refers to the area under the ROC curves.
When there is a skew in the class distribution, PR curves provide
more accurate performance and better measurements than receiver
operating characteristic (ROC) curves (Davis and Goadrich, 2006;
Saito and Rehmsmeier, 2015). To address the class imbalance prob-
lem, we assigned class weights to the prediction model based on the
class distribution, which provides a larger weight on the minority
class such that the classifier learns equally from the classes. If the
size of the majority class is Nm, and minority class is Nn, we assign
the weight of Nm

Nn
to the minority class. The weight value Nm

Nn
for each

prediction model is 3.7 (regional metastasis in BLCA), 5.06 (any me-
tastasis in BLCA), 7.6 (distant metastasis in KIRC) and 8 (any me-
tastasis in KIRC). The classification performances were measured
with PR curves. Finally, the median of 100C-indices or AUPRCs
was used as a final performance.

4 Results

4.1 iDRW contributes to an improved outcome

prediction performance
When constructing the multi-layered graph on multiple genomic
profiles, we considered four different scenarios (Details are
described in Section 3). We compared the performances of iDRW
(ECM) between four scenarios for each prediction model in two can-
cers, and the difference between the maximum and minimum per-
formance was less than 0.01 (C-index and AUPRC) in any
prediction model for both cancers (Supplementary Table S2). This
result showed that the overall performance was not sensitive to the
underlying graph structure. Thus, the iDRW experiments on the
multi-layered graph was derived from the scenario (1-a). We eval-
uated the predictive power of iDRW-based pathway activities for
BLCA and KIRC, respectively. We compared the four types of other
pathway activity inference models (CORG, PLAGE, DART and
DRW) in each single genomic profile with iDRW for all possible
combinations of multiple genomic profiles. Then, we predicted four
types of outcomes using the inferred pathway profile as an input:
OS, regional lymph node metastasis for distant metastasis-free sam-
ples, any metastasis for BLCA; OS, distant metastasis for regional
metastasis-free samples, and any metastasis for KIRC.
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The prediction results in Figure 2 showed that pathway activities
inferred by DRW mostly performed better than other methods on a
single genomic profile when predicting OS in both cancer patient
samples. As DART and DRW-based approaches incorporated the
significance test results of genes and interaction effects on the graph,
they performed better than CORG and PLAGE in all prediction
models. The performance improvement of DRW over DART dem-
onstrated that DRW better inferred pathway activities, effectively
reflecting the interactions on the graph. When we compared the per-
formances of the DRW-based pathway profile on each genomic pro-
file, we found that the gene expression profile contributed the best
to the prediction performances, especially in BLCA and the methyla-
tion profile showed comparable performances in KIRC. We
observed that the overall prediction performances on the CNV pro-
file were lower than the other profiles, especially in KIRC, but im-
provement was observed when we combined it with others using
iDRW.

Likewise, the metastasis prediction results showed the effective-
ness of DRW-based approaches including iDRW on multiple gen-
omic profiles in both cancer datasets. In general, the tendency of
performance differences between iDRW and other approaches was
similar to the survival prediction results. However, we observed that
the contribution to the methylation profile was relatively prominent
in kidney cancer metastasis prediction. These results were noticeable
in regional lymph node metastasis prediction in BLCA, and in dis-
tant or any metastasis prediction in KIRC. The baseline in PR curves
of metastasis prediction models corresponded to the proportion of
the majority class to the total number of samples, i.e. the junk classi-
fier which predicted with all negatives, denoted as a gray horizontal
line in Figure 3. In general, the different combinations of integration
on three genomic profiles did not significantly differentiate the per-
formances in either cancer. The performances of iDRW on multiple
genomic profiles were improved compared to the single genomic
profile-based approaches, although it was marginal. These results
show that iDRW effectively integrates complementary information,
utilizing the interaction effects on the multi-layered network. The
prediction performances for each prediction model in both cancer
datasets are summarized in Table 2.

4.2 iDRW jointly prioritizes potential driver pathways

and genes on multi-omics data
The pathway activities inferred by iDRW were evaluated with pre-
diction models in BLCA and KIRC. Important pathway features
were selected for each iteration of training and validating the model.
The selected pathways with a frequency of being selected greater
than 50 among 100 iterations were prioritized. The complete lists of
prioritized features by each prediction model are provided in

Supplementary Table S3 (BLCA) and S4 (KIRC). The total number
of pathway member genes and significantly associated genes with
the outcome from the univariate statistical analysis are shown.

Supplementary Table S5 shows the list of iDRW-prioritized
pathways for each prediction model in both cancer datasets. To
demonstrate the effectiveness of iDRW when prioritizing pathways,
we showed pathways only when we integrated multiple genomic
profiles on the graph, not in single omics-based approaches. The
best-performing combinations of iDRW models are shown. The
results showed that iDRW identified 15 significantly associated
pathways with bladder cancer prognosis. The pathways are catego-
rized into the main- and sub-class derived from the KEGG pathway
database, as shown in Supplementary Table S5. Forty-two pathways
were found to be related to regional or any metastasis in BLCA.
Most of the dominant pathways were related to metabolism or or-
ganismal systems such as the digestive system. Interestingly, 11
human disease pathways were identified in bladder cancer metasta-
sis, and 7 out of 11 pathways were related to infectious diseases,
such as bacterial, parasitic and viral diseases. In addition, four im-
mune system-related pathways and others including neurodegenera-
tive disease and microRNAs in cancer pathways were found in
bladder cancer metastasis. There were a relatively small number of
pathways in KIRC compared with BLCA. iDRW identified six path-
ways related to kidney cancer prognosis. There were 12 distant
metastasis-associated pathways in KIRC, and 9 out of 12 pathways
were related to metabolism. The one bacterial infectious disease
pathway (pertussis) was identified in any metastasis for KIRC.

In addition to the iDRW-prioritized pathways, we obtained the
pathways that were important both in single- and multi-omics pro-
files, which appeared more than three (count >3) among seven
DRW-based models: DRW on GE; GC and GM; iDRW on
GEC; GEM; GCM and GECM, as shown in Supplementary Table S6
(The frequently appeared pathways were emphasized as bold).
There were 10 and 4 commonly identified pathways to both single-
and multi-omics based models in BLCA and KIRC, respectively.
They include five pathways related to bladder cancer prognosis. Five
pathways were found to be associated with bladder cancer

Fig. 2. Overall survival (OS) prediction performance comparison between four types

of pathway activity inference methods on single genomic profile and iDRW on mul-

tiple genomic profiles in bladder cancer (BLCA) and kidney clear cell carcinoma

(KIRC). The performance was measured with the median C-index after 100 itera-

tions of the entire process of training and validating models

Fig. 3. Metastasis prediction performance comparison between four types of path-

way activity inference methods on a single genomic profile and iDRW on multiple

genomic profiles in bladder cancer (BLCA) and kidney clear cell carcinoma (KIRC).

Performance was measured with the area under the precision-recall curves (AUPRC)

after 100 iterations of the entire process of training and validating the model
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metastasis, mostly regional metastasis. We found four metabolism
pathways related to kidney cancer prognosis or distant metastasis,
such as glycan biosynthesis and metabolism, and lipid metabolism.

In summary, the most dominant pathways were related to me-
tabolism both in iDRW-prioritized and commonly identified path-
ways. The metabolism, infectious disease and digestive or endocrine
system-related pathways were specifically found using iDRW. We
observed that the commonly important pathways were mostly asso-
ciated with metabolism, cell growth and death and human diseases
(not infectious disease). Especially in human disease pathways, in-
fectious disease pathways were found only in iDRW-prioritized
pathways, and there were mostly related to regional metastasis in
BLCA, e.g. toxoplasmosis pathway (KEGG: map05145), malaria
(KEGG: map05144), leishmaniasis (KEGG: map05140). We found
that both the iDRW-prioritized and commonly identified pathways
were associated with cancer survival or metastasis. The evidences
were shown in Supplementary Discussion.

4.3 iDRW facilitates integrative gene–gene network

analysis
We visualized the top-10 pathways prioritized by iDRW on the
multi-layered network GECM for the OS prediction model in BLCA.
The genes that were significantly associated with bladder cancer
prognosis within pathways from three genomic profiles were jointly

analyzed on the network. The graph was formally constructed by
assigning between-layer edges from all pairwise combinations of
genes in different layers, but 20-25 edges that were randomly chosen
between each pair of different layers are shown for visualization.
The size of nodes represents the log-transformed P-value of signifi-
cant genes, i.e. the larger the node size, the higher is the significance
level of the gene. We differentiated each node into different colors
and shapes according to the type of genomic profile.

As shown in Figure 4, there was an exclusively large number of sig-
nificant genes related to alcoholism (N¼67), necroptosis (N¼54) and
neuroactive ligand-receptor interaction pathways (N¼77); the last one
was ranked 12th by frequency. The results showed that these three path-
ways and genes greatly contributed to bladder cancer prognosis. The 36
histone genes, which were mostly included in the largest cluster HIST1,
were found in the alcoholism or necroptosis pathway, the biggest path-
ways among the top-10 pathways. Overall, the most significant genes on
average were from the methylation profile; ARSB (methylation),
ALOX15 (methylation), CPT1B (gene expression), ITGB7 (gene expres-
sion), ABCA (methylation) and MAPK3 (methylation). The phototrans-
duction, necroptosis and intestinal immune network for IgA production
pathways were prioritized specifically by iDRW. There were 5 commonly
identified pathways both in single- and multi-omics profiles: ubiquitin-
mediated proteolysis pathway, fatty acid metabolism pathway, ABC
transporters pathway, glycosaminoglycan degradation pathway, and
phenylalanine, tyrosine and tryptophan biosynthesis pathway.

5 Discussion

In this study, we proposed the multi-layered network-based pathway
activity inference method on multi-omics data (iDRW) and experi-
mentally validated the method with two types of clinical outcome
prediction models for urologic cancer integrative analysis. The main
advantages of our framework are summarized as follows. First, it is
generally applicable to any type of data that integrates multi-omics
data on the pathway-based network while other competitive meth-
ods targeted a single genomic profile. Second, as it is not sensitive to
the underlying graph structure, the researchers can customize multi-
layered network. Finally, it facilitates the integrative network-based
pathway-level analysis: pathway activity pattern analysis, outcome-
related pathways prioritization and integrated network visualiza-
tion. The experimental results showed that the method not only con-
tributes to an improved outcome prediction performance but also
provides better biological insights into the pathways and genes pri-
oritized by the model from a comprehensive perspective.

The marginal performance improvements in iDRW may have
been affected by the incomplete mapping of genes within pathways.
In our experiments, approximately 30% of genes in genomic profiles
were mapped on average in the pathway-based gene–gene graph

Table 2. Performance summary for each prediction model in bladder cancer (BLCA) and kidney clear cell carcinoma (KIRC)

BLCA KIRC

OS Regional metastasis Any metastasis OS Any metastasis Distant metastasis

C-index AUPRC AUPRC C-index AUPRC AUPRC

CORG(E) 0.64 6 0.007 0.8600 6 0.0062 0.8615 6 0.0057 0.7819 6 0.0073 0.9465 6 0.0041 0.8936 6 0.0064

PLAGE(E) 0.6611 6 0.0061 0.8615 6 0.0061 0.8928 6 0.0042 0.7909 6 0.0077 0.9521 6 0.0037 0.8714 6 0.0064

DART(E) 0.6977 6 0.0068 0.9021 6 0.0042 0.9146 6 0.0037 0.802 6 0.0079 0.9549 6 0.0038 0.8831 6 0.0064

DRW(E) 0.7423 6 0.0063 0.9324 6 0.0032 0.9354 6 0.0047 0.8142 6 0.0076 0.9621 6 0.0027 0.9432 6 0.0047

DRW(C) 0.7167 6 0.0067 0.8914 6 0.0042 0.9348 6 0.0036 0.7851 6 0.0078 0.9333 6 0.0055 0.9223 6 0.0048

DRW(M) 0.7216 6 0.006 0.9069 6 0.0050 0.9175 6 0.0039 0.8125 6 0.0074 0.9721 6 0.0036 0.9628 6 0.0044

iDRW(CM) 0.7402 6 0.0057 0.9251 6 0.0040 0.9420 6 0.0043 0.8297 6 0.0066 0.9666 6 0.0042 0.9678 6 0.0039

iDRW(EC) 0.7379 6 0.0061 0.9288 6 0.0048 0.9310 6 0.0048 0.8249 6 0.0068 0.9731 6 0.0028 0.9482 6 0.0045

iDRW(EM) 0.7488 6 0.0063 0.9196 6 0.0040 0.9366 6 0.0039 0.8249 6 0.0073 0.9709 6 0.0029 0.9576 6 0.0047

iDRW(ECM) 0.7489 6 0.0059 0.9318 6 0.0038 0.9477 6 0.0042 0.8325 6 0.007 0.9710 6 0.0027 0.9642 6 0.0048

Baselinea 0.7879 0.8360 0.8926 0.8852

Note: The mean C-indices/AUPRCs 695% confidence interval after 100 iterations of the entire process of training and validating the model are shown. The

best prediction performance is emphasized in bold.
aBaseline: the performance when predicting with all negatives, which corresponds to the proportion of the majority class to the total number of samples.

Fig. 4. Integrated pathway-based gene–gene network using the top-10 pathways pri-

oritized by iDRW (ECM) for OS prediction in BLCA. We note that the node size

represents the log-transformed P-value of significant genes, and the node color and

shape represent the type of genomic profiles; gene expression profile (yellow ellipse),

CNV profile (blue round rectangle), methylation profile (red diamond). (Color ver-

sion of this figure is available at Bioinformatics online.)
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using the KEGG pathway database. This issue can be resolved
through complete mapping by merging with another existing path-
way database, such as Reactome, BioPAX and WikiPathways. In
addition, the performance improvement of iDRW in metastasis pre-
diction was insignificant, even though we alleviated the class imbal-
ance problem in the metastasis prediction model by giving class
weights when training the model. As iDRW contributed to an
improved OS prediction power, we expect a more improved classifi-
cation performance, given the balanced class distribution. We identi-
fied that iDRW showed the complementary effect when integrating
multi-omics data with large variances, as shown in Supplementary
Figure S2. These results demonstrated that iDRW robustly combines
heterogeneous data, reducing the noise. Furthermore, we visualized
and analyzed the multi-layered gene–gene network for the integra-
tive urologic cancer analysis.

To show that the model is generally applicable to different
types of data, we obtained three types of data as gene-level fea-
tures in the experiments. The genes can also be represented by
the number of mutations on a certain gene, multiple methylation
loci and so on. As the network can be constructed by utilizing
different representation of genes or other types of omics data if
we can map them to pathways, integration with various types of
omics data is also possible in future studies. When constructing
the multi-layered network, the model can have a different num-
ber of genes in each layer. Although the number of samples
should be the same in this study, there is a possibility that we
can utilize the non-overlapping samples when we weight genes
using their statistical significance with the outcome. In this re-
spect, the proposed framework can be expanded to utilize the dy-
namic number of samples towards a more generalizable one in
future studies. Since cancer is a complex disease caused by genet-
ic and/or epigenetic changes at different molecular levels such as
the DNA sequence, expression, methylation, copy number vari-
ation, metabolite and proteome, the effective multi-omics data in-
tegration framework is essential to understand the complex
nature of cancer biology. Based on the prioritized pathways,
genes and gene–gene network provided by our framework, we
might be able to provide a holistic understanding of the patho-
physiological mechanisms in cancer development and progression.
It is possible to identify novel biomarkers for cancer diagnosis
and prognosis, provide risk prediction of cancer patients and dis-
cover efficient targeted anti-cancer agents. Although the import-
ance of multi-omics approaches has emerged so far, it is still
challenging to obtain all the patients’ multi-omics data in the
real-world. We believe that various types of omics data would be
available for clinical use in the real-world. Therefore, the selected
pathways by the integrative approach can be targeted for select-
ing novel biomarkers for clinical use. In this respect, future
works are still needed that include pan-cancer analysis and inte-
gration with other omics data such as proteomics and
metabolomics.
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