
Genome analysis

Gene-set integrative analysis of multi-omics data using

tensor-based association test

Sheng-Mao Chang1,†, Meng Yang2,†, Wenbin Lu2, Yu-Jyun Huang3, Yueyang Huang4,

Hung Hung3, Jeffrey C. Miecznikowski5, Tzu-Pin Lu3 and Jung-Ying Tzeng 1,2,3,4,*

1Department of Statistics, National Cheng Kung University, Tainan 701, Taiwan, 2Department of Statistics, North Carolina State

University, Raleigh, NC 27695, USA, 3Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 100,

Taiwan, 4Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA and 5Department of Biostatistics,

University at Buffalo, Buffalo, NY 14214, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Alfonso Valencia

Received on May 15, 2020; revised on December 30, 2020; editorial decision on February 12, 2021; accepted on February 24, 2021

Abstract

Motivation: Facilitated by technological advances and the decrease in costs, it is feasible to gather subject data from
several omics platforms. Each platform assesses different molecular events, and the challenge lies in efficiently ana-
lyzing these data to discover novel disease genes or mechanisms. A common strategy is to regress the outcomes on
all omics variables in a gene set. However, this approach suffers from problems associated with high-dimensional
inference.

Results: We introduce a tensor-based framework for variable-wise inference in multi-omics analysis. By accounting
for the matrix structure of an individual’s multi-omics data, the proposed tensor methods incorporate the relation-
ship among omics effects, reduce the number of parameters, and boost the modeling efficiency. We derive the
variable-specific tensor test and enhance computational efficiency of tensor modeling. Using simulations and data
applications on the Cancer Cell Line Encyclopedia (CCLE), we demonstrate our method performs favorably over
baseline methods and will be useful for gaining biological insights in multi-omics analysis.

Availability and implementation: R function and instruction are available from the authors’ website: https://www4.
stat.ncsu.edu/~jytzeng/Software/TR.omics/TRinstruction.pdf.

Contact: jytzeng@ncsu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Integrative multi-omics studies consider the molecular events at dif-
ferent levels, e.g. DNA variations, epigenetic marks, transcription
events, metabolite profiles and clinical phenotypes. With recent
technological advances, an increasing number of projects, e.g. The
Cancer Genome Atlas (TCGA), International Cancer Genome
Consortium (ICGC), the Encyclopedia of DNA Elements
(ENCODE) and GTEx Project, have measured multiple omics fea-
tures on the same samples. By incorporating complementary levels
of information, integrative analyses of multi-platform data have
helped to identify novel disease genes and pathways (e.g. Assié et al.,
2014), enhance risk prediction (e.g. Seoane et al., 2014) and eluci-
date disease mechanisms (e.g. Chow et al., 2012).

One major focus of integrative multi-omics analysis has been
on studying the relationships among different platforms and

identifying regulatory modules or gene-sets that are associated
with or predictive of clinical outcomes (e.g. Kristensen et al.,
2014). In gene-set multi-platform studies, a collection of genes is
examined on several platforms, each of which is designed to in-
terrogate different aspects of the gene, e.g. methylation status,
expression or copy number and the gene effects of a platform
can be more accurately revealed when accounted together with
other platforms. By assessing gene effects in a functional context
(e.g. pathways and biological processes), gene set integrative ana-
lysis improves the detectability, reproducibility and interpretabil-
ity of significant findings and facilitates the construction of
follow-up biological hypotheses (Sass et al., 2013; Tyekucheva
et al., 2011; Xiong et al., 2012).

Gene-set integrative approaches can be roughly classified into
two types: (a) ‘meta’-based methods and (b) ‘joint-modeling’-based
methods. (a) ‘Meta’-based methods first evaluate the association of
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single genes in a single platform, multi-genes in a single platform or
multi-platforms of a single gene, and then integrate relevant sum-
mary statistics to obtain the multi-platform association of a gene set
(e.g. Paczkowska et al., 2020; Xiong et al., 2012) (b) ‘joint-model-
ing’-based methods regress the outcome simultaneously on all omics
variables from different platforms in a gene set. Such simultaneous
modeling can be conducted either in a parallel fashion (which treats
omics variable from different platforms equally, e.g. Tyekucheva
et al., 2011); or in a hierarchical fashion (which incorporates the
regulatory relationships among different platforms as prior know-
ledge, e.g. Wang et al., 2013; Zhu et al., 2016). Joint modeling
approaches tend to outperform meta-based approaches (e.g. Huang
et al., 2012; Hu and Tzeng, 2014) because they conduct simultan-
eous integration across genes and platforms and account for rela-
tionships among omics variables. However, joint-modeling methods
encounter the challenges of high dimensional variables, which is
exacerbated by the typically moderate sample size in multi-omics
studies. Various strategies have been proposed to address the high-
dimension issue, e.g. dimension-reduction based methods via princi-
pal component analysis (PCA; as discussed in Meng et al., 2016),
and penalization regressions (as reviewed in Wu et al., 2019).

In this work, we focus on joint modeling methods and propose
to use tensor regression framework (Lock, 2018; Zhou et al., 2013)
to enhance model efficiency in gene-set integrative analysis. A tensor
is a multi-dimensional array (e.g. a vector is an order-1 tensor and a
matrix is an order-2 tensor). Because an individual’s gene-set data
from multi-platforms have a P�G matrix structure, where P (or G)
is the total number of platforms (or genes), the gene-set data of the n
samples form an order-3 (P�G� n) data tensor. Consequently, the
regression coefficients form a P�G matrix (denoted by B hereafter)
and we can utilize the matrix structure of B to facilitate high-
dimensional inference. Specifically, we explore the potential low
rank structure of B induced by biological relationship among omics
variables so as to use less degrees of freedoms to model the multi-
platform variables. Compared to PCA-based methods, which only
output pathway-level associations, the tensor-based methods can re-
tain the variable-wise resolution during dimension reduction and re-
veal associations at gene and platform levels. Compared to
penalized-based regressions (e.g. Wu et al., 2019), tensor-based
modeling gains additional efficiency by accounting for the inherent
structure among omics effects to reduce the number of parameters.
More importantly, a tensor model can achieve dimensional reduc-
tion even if the coefficient matrix B has a non-sparse structure, such
as the polygenic etiology for complex diseases, where signal sparsity
can be low due to the likely involvement of many small-effect genes,
rather than a few strong-effect genes.

Tensor-based modeling has been used in a variety of genomic
applications and demonstrated its utility, e.g. to integrate multiple
datasets and explore hidden features among genomic variables (e.g.
Li et al., 2011; Ng and Taguchi, 2020; Omberg et al., 2007), to pre-
dict patient survival (e.g. Fang, 2019) and to identify genetic interac-
tions (e.g. Wu et al., 2018). These tensor-based methods mainly
focus on dimension reduction, feature extraction and outcome pre-
diction. While there exist methods dealing with signal detection,
they are either based on variable selection or designed to detect glo-
bal signals. For example, Wu et al. (2018) use penalization techni-
ques to select significant gene-gene interactions; Hung et al. (2016)
consider rank-1 tensor interaction model as a screening tool; and
Hung and Jou (2019) derive a global interaction test for tensor
regression.

Here, we use the tensor regression framework developed by
Zhou et al. (2013) to generalize the conventional regression from 2-
dimension data (e.g. n � PG) to 3-dimensional data (e.g.
n� P�G). Specifically, we consider the rank-R tensor decompos-
ition of coefficient matrix and adaptively determine the optimal
rank based on the data. We introduce a tensor association test to
generate inferences results that can facilitate the prioritization of im-
portant omics variables and the comprehension of the relationship
between omics variations and outcomes.

2 Materials and methods

2.1 Tensor regression for integrative gene-set analysis
Consider a dataset of n samples. Let yi, i ¼ 1; . . . n, be the continuous
clinical outcome of subject i. The multi-platform data of the n samples
are stored in an order-3 tensor, X 2 R

P�G�n, where P is the number
of platforms and G is the number of genes. Let Xi be the i-th slice of
X with respect to the third order, i.e. Xð:; :; iÞ; then X ¼ fXigi¼1;...;n

and Xi is the design matrix for the i-th sample with its (p, g)-entry
denoted by xpgi, p ¼ 1 � � �P and g ¼ 1 � � �G. Also define zi the q� 1
covariate vector of sample i including the intercept. In multi-platform
analysis, the effects of different platforms for a gene and the effects of
different genes within a platform can be highly structured due to the
regulatory connections among different levels of molecular events.
Therefore, we posit the following order-2 tensor regression model to
study the integrative gene-set effects of multi-platform:

yi ¼ z>i bþ hXi;Bi þ �i with B ¼ B1B>2 ; (1)

where b is the parameter vector of the covariates; �i is the error term
for i-th sample following a normal distribution with mean 0 and

variance r2; B 2 R
P�G is the parameter matrix for the gene-set omics

variables; h�; �i is the inner product, and hXi;Bi ¼ vecðXiÞ>vecðBÞ ¼

PP
p¼1

PG
g¼1

xpgiBpg with Bpg the (p, g)-entry of B. Model (1) considers a

rank-R tensor decomposition of B, i.e. B ¼
PR
r¼1

B1½; r�B2½; r�>

¼ B1B>2 , with B1 2 R
P�R; B2 2 R

G�R; R � minðP;GÞ, and B•½; r�
being the rth column of Matrix B•. A rank-R tensor decomposition
(also known as canonical polyadic or CANDECOMP/PARAFAC
decomposition) factorizes a tensor into a sum of R rank-1 tensors,
where a rank-1 tensor of order D is a tensor which can be expressed
as the outer product of D vectors. For D¼2, the outer product of 2

vectors, a and b, is ab>. Figure 1 gives a graphical view of the rank-
R decomposition of B, where B is expressed as the product of two
factor matrices B1 and B2, with their columns formed by the vectors
from the corresponding rank-1 components in the decomposition.

Conceptually we can view that a rank-R tensor model tries to ex-
press Bpg, the effect of gene g in platform p, as certain combinations

of platform effects and gene effects. To fix the idea, let B1½; r� �
ar ¼ ½ar1; . . . ; arP�> and B2½; r� � dr ¼ ½dr1; . . . ; drG�>; 1 � r � R.
Then in a rank-1 tensor model, B1 ¼ a1; B2 ¼ d1 and Bpg ¼ a1pd1g,

i.e. the effect of gene g in platform p is the product of platform effect

Fig. 1. Rank-R tensor decomposition of the (order-2) parameter tensor B 2 R
P�G.

In the decomposition, B is expressed as the sum of R tensors of rank 1, i.e.

B ¼
PR
r¼1

B1½; r�B2½; r�> ¼ B1B>2 , where B1 2 R
P�R and B2 2 R

G�R are called factor

matrices, with their columns formed by the vectors from the corresponding rank-1

components
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a1p and gene effect d1g. The rank-2 model considers a more complex

model, i.e. B1 ¼ ½a1; a2�; B2 ¼ ½d1; d2� and Bpg ¼ a1pd1g þ a2pd2g,

which uses two parameters for a platform effect (i.e. a1p and a2p)

and two parameters for a gene effect (i.e. d1g and d2g).
Model (1) is overparameterized and additional constraints are

needed to ensure the identifiability of B1 and B2. To see this, con-
sider an non-singular matrix O 2 R

R�R such that OO�1 ¼ I; then
given the same B, multiple decompositions are available because
B ¼ B1B>2 ¼ fB1OgfO�1B>2 g. To address the non-identifiability
issues, we restrict B1 and B2 to take the following forms:

B1 ¼
C

B12

� �
and B2 ¼

B21

B22

� �
(2)

such that B1B>2 ¼ B, where C 2 R
R�R is a constant matrix of rank

R, B12 2 R
ðP�RÞ�R; B21 2 R

R�R and B22 2 R
ðG�RÞ�R. We show in

Supplementary Section S1 that the constrained forms in (2) assure
identifiability of B1 and B2.

For the effect matrix B, when R < minðP;GÞ, the tensor regres-
sion can account for the inherent structure among omics effects and
reduce the degrees of freedom (df) on modeling omics effects (referred
to as omics df) from PG to RðPþGÞ � R2, where R2 df are lost be-
cause the R2 constraints imposed to ensure model identifiability.
When R ¼ minðP;GÞ, Model (1) has omics
df¼ RðPþGÞ � R2 ¼ PG and is a compact and structural formula-
tion of the linear regression based on vectorized Xi. We show in
Supplementary Section S2 that B of rank R ¼ minðP;GÞ has its ele-
ments identical to the regression coefficients in the linear model with
vectorized Xi. In other words, tensor regression includes the ordinary
linear model with vectorized omics covariates as a special case.

To evaluate the significance of the effect of gene g in platform p,
we consider a Wald test for H0 : Bpg ¼ 0 under Model (1) with the
test statistic Tpg ¼ B̂pg=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½RðCÞ�pg

q
where B̂pg is the tensor coefficient

estimators, and RðCÞ is the variance-covariance matrix of B̂ with
½RðCÞ�pg equal to the variance of B̂pg. In Supplementary Section S3,
we give the specific formula of RðCÞ and show that B̂ follows a nor-
mal distribution asymptotically. Consequently, Tpg follows Normal
(0,1) under the null hypothesis. We note that such variable-specific in-
ference has also been discussed in the literature: Zhou et al. (2013)
describes general results of the asymptotic property of the order-D
tensor parameter estimators; Hung and Jou (2019) discusses the local
test as a possible extension of their proposed global test though with-
out further investigations. Here we complement these results by pro-
viding the details for the special case of matrix-covariate regressions
(i.e. D¼2), and conducting comprehensive numerical examinations
on the validity and effectiveness of the tensor testing procedure.

2.2 Estimation and implementation
We use the alternating least square (ALS) algorithm as described in
Supplementary Section S4 to estimate the parameters in tensor regres-
sion. There are a few issues involved in the estimation of tensor parame-
ters. First, Model (1) is a piece-wise convex function with respect to B1

and B2 (i.e. it is non-convex with respect to B1 and B2 together though
is convex in either B1 or B2). To avoid the solutions corresponding to a
local minima of the objective function instead of the global minima, we
use multiple random initial values and select the solutions resulting
from the minimal objective values as the final estimates.

Second, an appropriate rank has to be determined for Model (1).
To identify the optimal rank R, we first fit a tensor model using the
ALS algorithm for a given rank r, r ¼ 1; . . . minðP;GÞ, and then use
information criterion to select the optimal model. We consider two
information criteria, (a) Akaike information criterion (AIC), i.e.
AIC¼ �2 log Lþ 2kr, and (b) Bayesian information criteria (BIC),
i.e. BIC¼ �2 log Lþ logðnÞkr, where �2 log L ¼ cþ n log

f
Pn
i¼1

ðyi � z>i b̂� hXi; B̂1B̂
>
2 iÞ

2=ng, c is the constant in the log-likeli-

hood function logL, and kr is the degree of freedom in the rank-r

model with kr ¼ qþ rðPþGÞ � r2.
Third, to improve computational efficiency, we show, in

Supplementary Section S3.B, that the proposed tensor inference

procedure allows the constant constrain matrix C in B1 to be data-
dependent. Consequently, we can (i) estimate the tensor parameters
using the proposed ALS algorithm, which greatly reduces the com-
putational cost because B1 and B2 estimates do not need to be re-
scaled with respect to the constrain matrix C in each iteration, and
(ii) conduct valid inference based on the tensor estimators obtained
in this fashion. In variance calculation, we also bypass the need of
permutation matrices by using the box products, which avoid the
storage and matrix multiplication involved with permutation matri-
ces and further save computational time.

2.3 Simulation studies
We conduct simulations to evaluate the performance of the pro-
posed tensor regression for identifying important omics variables.
For evaluation purposes, we implement 3 tensor regression (TR)
models: TR evaluated at true rank (TR.true); TR evaluated at AIC-
selected rank (TR.AIC); and TR evaluated at BIC-selected rank
(TR.BIC). We consider two baseline methods that represent the two
common strategies applied on vectorized omics variables: (i) linear
regression model (LM) and (ii) penalized regression via lasso
(LASSO) using BIC to select the tuning parameter.

We generate the design matrix of an individual based on the
pathway, Reactome Processing of Capped Intron-Containing Pre-
mRNA (M13087), as defined in MSigDB; the pathway data are
obtained from the TCGA breast cancer dataset as in Hu and Tzeng
(2014). Briefly, level 3 gene-summary data were obtained from copy
number variation (CNV), methylation and RNA-Seq values for 530
samples and 10 371 common genes shared among the 3 platforms.
The CNV values were provided in log2 format. For methylation, the
beta values of all probes mapped to a gene were first computed and
then converted into the mean M value (Du et al., 2010). For RNA-
Seq data, the log2 reads per kilobase million (RPKM) were used as
gene expression values. Within each platform, the data were then
standardized to have mean 0 and standard deviation 1 across sam-
ples. Finally data from pathway M13087 were retrieved, which con-
tains 74 genes and are used to simulate the outcome variables.

Denote the data tensor of pathway M13087 as X�, which has di-
mension (3, 74, 530), and rewrite the ith slice of X� as X�i . Then
given X�i , we simulate the outcome value yi, i ¼ 1; . . . ;530, from the
model yi ¼ z>i bþ hX�i ;Bi þ �i, where zi is a 5�1 covariate vector
generated from N(0,1), b ¼ ð1;1; 1; 1;1Þ>, the error term �i is also
from N(0,1), and the non-zero entries of coefficient matrix B are
generated from normal with mean d and standardized deviation
d2=4. We consider 4 signal patterns of B (i.e. the shape of the non-
zero coefficients in B) as shown in Figure 2: i) a horizontal bar shape
of B with rank 1, which is referred to as the ‘flat’ shape and repre-
sents multiple causal genes in a single platform; (ii) a rectangular
shape of B with rank 1, which is referred to as the ‘I’ shape and rep-
resents a few local causal genes with effects from all platforms; (iii)
a upside-down T shape of B with rank 2, which is referred to as the
‘T’ shape and represents a few master CNVs and methylations
affecting the expressions of multiple genes; and (iv) a random pat-
tern of B with rank 2, which is referred to as the ‘Random’ shape
and represents a random but low-rank structure.

For a given B shape and effect strength d, we simulated k replica-
tions to evaluate the performance of TR, LM and LASSO in select-
ing important omics variables. We consider d¼0.125, 0.25 or 1,
and k¼200 (or 105 in some sub-scenarios). We compute 3 metrics:
true positive rate (TPR), false discovery rate (FDR) and the
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Fig. 2. Signal shapes of coefficient matrix B considered in the simulation. The rec-

tangles represent matrix B; rows represent different platforms; and columns repre-

sent different genes. Omics variables with non-zero effect coefficients are marked in

black and the null variables with zero coefficients are marked in white.
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composite metric F-measure. TPR is obtained by first computing the
proportion of selected omics variable among all causal variables (i.e.
Bpg 6¼ 0) in each replication and then averaging across all replica-
tions. FDR is obtained by first computing the proportion of null var-
iables (i.e. Bpg ¼ 0) among all selected variables in each replication
and then averaging across all replications. F-measure is obtained by
first computing the harmonic mean of the TPR and (1–FDR) in each
replication and then averaging across all replications. For LM and
TR, a variable is selected if the P-value of a variable <0.05 unless
stated otherwise; for LASSO, a variable is selected if the LASSO co-
efficient is not 0. We conduct all analyses using the standardized
variables, i.e. each variable has mean 0 and variance 1 for better
comparability among omics variables.

The data tensor of pathway M13087, X�, has a high degree of
correlation among the omics variables: Among the 3�74 omics var-
iables, there are 413 variable pairs with the absolute pairwise correl-
ation >0.6, and 26 pairs >0.9. The median, third quartile and
maximum of the variance inflation factors (VIF) of the omics varia-
bles are 5.04, 7.85 and 140.39, respectively. To examine the impact
of correlated variables on the method performance, we also repeat
the simulation studies using pseudo-data tensors that remove the
correlation among genes. We refer to the simulations as ‘gene de-
correlation’ simulations, and describe the design and results in
Supplementary Section S5.

3 Results

3.1 Simulation studies
We first examine the performance of AIC and BIC in determining
the model rank. Table 1 summarizes the rank of TR model deter-
mined using AIC and BIC across different B shapes and effect
strength d, with 200 replications under each scenario. The results
suggest that (i) BIC has higher proportions to select the true rank
than AIC when the effect strength is large (e.g. d¼1). However,
when the effect strengths are moderate or small, both AIC and BIC
cannot always select the true rank, and BIC has lower correct pro-
portions (e.g. in T-shape and random-shape). (ii) When an incorrect
rank is selected, BIC tends to under-estimate the model rank while
AIC tends to over-estimate the model rank.

Supplementary Figure S1 shows the quantile-quantile (QQ) plots
of the null P-values of TR test from different TR models. For a given
B shape, the null P-values are obtained from those omics variables
with Bpg ¼ 0 when causal omics variables have effect strength

d¼0.125, 0.25 or 1. Under TR.true, the null P-values are around the
45 degree line across different B shapes and different effect strength,
confirming the validity of the tensor test. When the TR model is fitted
with estimated rank (i.e. TR.AIC and TR.BIC), most of the QQ plots
indicate valid null distributions; the two exceptions are the null P-val-
ues from TR.BIC under the scenario of T-shape with d¼0.125 and
0.25, where the null distributions are severely deviated from the
expected Uniform (0,1). Under the T-shape scenario with d¼0.125
and 0.25, BIC tends to under-estimates the model rank and results in
incorrect estimates of Bpg’s and incorrect null distributions. On the
other hand, the QQ plots for TR.AIC suggest that over-estimating the
rank has little impact on the null distributions. Although fitting a
lower-rank model may not always lead to a deviated null distribution
(e.g. ‘Random’-shape with d¼0.125 and 0.25), for robustness, we
recommend to use AIC to determine model rank.

Tables 2 explores the performance of selecting causal omics vari-
ables under different B shapes and effect strength d. We focus on the
comparisons of TR.AIC against other models. Compared to
TR.true, TR.AIC has similar or higher F-measures, indicating a
minor impact on selection performance due to unknown rank.
Compared to LM, TR.AIC has higher or comparable F-measures,
and the gain of TR.AIC is more obvious when the effect strength is
not large (e.g. d<1). The higher F-measures of TR.AIC tend to arise
from higher TPRs while retaining comparable FDRs compared to
LM. While LASSO can have higher F measures than LM in multiple
scenarios, it has lower F measures than TR.AIC in almost all scen-
arios except one (i.e. B shape ‘Flat’ with d¼0.125). Although
LASSO tends to have the highest TPRs among TR.AIC, LM and
LASSO, it also has the highest FDRs, which results in lower F meas-
ures than TR.AIC. Finally, we observe that under the ‘T’ shape with
d¼0.125 and 0.25, TR.BIC has unusually high FDRs compared to
other TR methods, which agrees with the deviation observed in the
QQ plots in Supplementary Figure S1.

In Supplementary Table S1, we repeat the above simulation 105

times based on d¼0.25, and evaluate the selection performance of
TR models using two different selection rules for TR and LM: (a) P-
value < 0.05 and (b) Benjamini-Hochberg FDR (BH-FDR) < 0.05
for multiple testing. The results show that using either selection rule,
TR.AIC has higher F measures than LM and LASSO in almost all B
shapes, except for ‘Flat’ with Rule (b), where LASSO has the highest
F measure. In Supplementary Section S5 (i.e. Supplementary Figure
S2; Supplementary Tables S2A–C), we show that the results of the
‘gene de-correlation’ simulation agree with the aforementioned find-
ings based on correlated variables.

Table 1. Model rank determined using AIC and BIC for tensor regression (TR) model

TR.AIC TR.BIC

Selected Rank Selected Rank

B shape ¼ Flat 1 2 3 1 2 3

d ¼ 0.125 0.990 0.005 0.005 1.000 0.000 0.000

d ¼ 0.25 1.000 0.000 0.000 1.000 0.000 0.000

d ¼ 1 0.995 0.000 0.005 1.000 0.000 0.000

B shape ¼ I 1 2 3 1 2 3

d ¼ 0.125 0.640 0.360 0.000 1.000 0.000 0.000

d ¼ 0.25 0.630 0.360 0.010 0.630 0.370 0.000

d ¼ 1 0.615 0.375 0.010 0.620 0.380 0.000

B shape ¼ T 1 2 3 1 2 3

d ¼ 0.125 0.020 0.640 0.340 1.000 0.000 0.000

d ¼ 0.25 0.000 0.605 0.395 0.600 0.400 0.000

d ¼ 1 0.000 0.850 0.150 0.000 0.910 0.090

B shape ¼ Random 1 2 3 1 2 3

d ¼ 0.125 0.790 0.190 0.020 0.930 0.070 0.000

d ¼ 0.25 0.150 0.800 0.050 0.890 0.110 0.000

d ¼ 1 0.000 0.945 0.055 0.000 1.000 0.000

Note: The table shows the proportion of a certain rank value is selected by AIC or BIC. For a given B shape, results of true rank are shown in shaded bold; d

indicates the effect strength of causal omics variables.
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3.2 Analysis of the CCLE dataset
3.2.1 Omics biomarkers for Vandetanib

Lung cancer is the leading cause of cancer-related death in the
United States and worldwide (Siegel et al., 2019). Targeted therapy,
especially drugs that target EGFR, has been shown to be a promis-
ing therapeutic method against lung cancer (e.g. Murtuza et al.,
2019; Rolfo et al., 2015). Our previous study suggested that
Vandetanib (ZD6474) has the strongest inhibitory effects among
those drugs targeting EGFR for lung cancer treatment (Lu et al.,
2013). Focusing on Vandetanib, here we analyze the multi-platform
data from the cancer cell line encyclopedia (CCLE) project
(Barretina et al., 2012; https://portals.broadinstitute.org/ccle/about),
with an aim to identify important omics variables affecting the drug
sensitivity of Vandetanib. CCLE provides a detailed genetic and
pharmacologic characterization of human cancer models, which
contains (i) multi-omics data of 947 human cancer cell lines encom-
passing 36 tumor types, e.g. DNA copy numbers, methylation and
mRNA expression; as well as (ii) pharmacologic profiling of 24
compounds across 	500 of these cell lines.

For the analysis, we focus on lung-cancer cell lines and down-
load their CCLE data from P ¼ 3 platforms, i.e. copy-number values
per gene, DNA methylation (promoter 1 kb upstream TSS) and
RNAseq gene expression (for 1019 cell lines). We use the mean M
values of a gene for methylation. For gene expression, we first per-
form quantile-normalization of the RPKM values across all genes
and then retrieve the values of the targeted genes. We consider the
gene set that consists of genes involved in the protein–protein inter-
action (PPI) network of EGFR (as defined in STRING, Version
11.0; https://string-db.org/). For method evaluation purposes, we
also include 3 ‘null’ genes to serve as negative controls, for which
we arbitrarily select 3 housekeeping genes (i.e. ACTB, GAPDH and
PPIA) and reshuffle their values across individuals. After removing
genes and cell lines with substantial missing values, there are n¼68
lung-cancer cell lines with omics variables from 7 PPI genes of
EGFR (i.e. EGFR, EREG, HRAS, KRAS, PTPN11, STAT3 and
TGFA). The outcome variable is the drug sensitivity of Vandetanib,
quantified by the log-transformed activity area. Higher activity area
indicates that a cell line has better sensitivity to the drug. We stand-
ardize each omics variable to mean 0 and variance 1, and conduct
integrative gene-set analysis using 3 methods: TR.AIC, LM and
LASSO. For TR.AIC and LM, we select a variable if P-value <0.05.

The TR model of rank 1 has the smallest AIC values among the 3
possible ranks (1, 2 and P¼3). TR.AIC (rank-1) model identifies 2
important omics variables, i.e. EGFR methylation (coefficient -
0.2416; P-value 0.0022) and EGFR CNV (coefficient 0.2508; P-value
0.0061). LM does not select any variables as important, although
both EGFR methylation and CNV have their P-values around 0.05
[i.e. (coefficient, P-value) ¼ (-0.2094, 0.0584) and (0.2260, 0.0568),
respectively]. LASSO identifies 11 variables as important, including
the two TR.AIC-selected variables and four variables from negative
control genes (see Table 3). It is not surprising to observe that LASSO
selects many variables, given the performance patterns observed in the
simulation studies. A rough, conservative estimate of FDR for LASSO
is 4/11¼0.36, which generally agrees with the FDR observed in the
simulations. For those variables identified by both LASSO and
TR.AIC, the LASSO estimates are closer to 0 compared to the esti-
mates of TR.AIC and LM, which are not unexpected as LASSO tends
to shrink the coefficients to zero. Finally, as a sensitive analysis, we
also perform multi-platform gene-set analysis on the 7 PPI genes only
(see Supplementary Table S3). The results are generally comparable
with the 10-gene analysis. Some subtle differences include (i) in LM,
EGFR methylation and EGFR CNV have their P-values < 0.05 [with
(coefficient, P-value) ¼ (-0.2671, 0.0112) and (0.2818, 0.0127), re-
spectively)] and (ii) LASSO selects one additional variable, EREG
methylation, though its coefficient is very small (i.e. 0.0035).

Because the direct gene target of Vandetani is EGFR, one may
expect EGFR expression to be associated with Vandetanib efficacy.
Indeed, in single-platform gene-set analyses using linear model on
CNV, methylation and expression separately, EGFR expression is
the most significant variable associated with Vandetanib efficacy
(coefficient 0.2575; P-value 0.0008), followed by EGFR CNVT
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(coefficient 0.2335; P-value 0.0046). EGFR methylation also has its
P-value <0.05 (coefficient -0.2104; P-value 0.0354) in the single-
platform analysis, and becomes the most significant variable in the
joint multi-platform TR analysis. The single-platform and multi-
platform results suggest that the association between EGFR expres-
sion and Vandetanib efficacy might be modulated by its methyla-
tion, and the impact of methylation appears when all platforms are
evaluated together. Previous studies have demonstrated that the
methylation level of EGFR can regulate its downstream gene expres-
sion level of EGFR (e.g. Pan et al., 2015). Pan et al. (2015) also
showed that methylation changes in the EGFR promoter region can
be a predictor of the EGFR-targeted therapy. The results concurred
with our findings, with the negative coefficient of EGFR methyla-
tion suggesting that an increase in methylation decreases the drug
sensitivity (Zhang and Chang, 2008). In addition, Kris et al. (2003)
directly manipulated the methylation level of EGFR in lung cancer
cells and investigated the drug response of gefitinib, which is another
EGFR-target therapy drug. Their results further suggest that block-
ade of DNA methylation level in EGFR may improve the anti-tumor
effects of EGFR-target therapy in non-small cell lung cancer.

3.2.2 Omics biomarkers for Paclitaxel

Supplementary Section S6 presents another application that focuses
on the drug sensitivity of paclitaxel, one of the most commonly used
chemotherapy drug. The data consist of P ¼2 platforms (i.e. mRNA
expression and protein expression), G ¼55 genes from 5 KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathways related to
cell cycle and cell death, and n¼340 pan-cancer cell lines.

4 Conclusion and discussion

In this work, we illustrate the use of tensor regression (TR) for joint
modeling of gene-set multi-omics variables and propose a tensor-
based association test for identifying important omics biomarkers
for continuous outcomes. With the derived normality of tensor ef-
fect estimates, it is also straightforward to compute confidence inter-
vals of the omics effects. The rationale behind tensor modeling is
based on the observation that omics variables are structurally
related—genes from a biological process regulate and interact with
each other, and the omics variables across platforms follow a nat-
ural flow as described in the central dogma of biology. Accounting
for the fundamental relationships among omics variables across
genes and platforms can more precisely model the biological effects
and enhance the ability to detect true associations. TR adopts a
matrix-structured formulation of the omics effects B to account for
the inter-relationship among omics effects and may improve model-
ing efficiency: If B has a low-rank structure, TR can use fewer
parameters to capture the underlying relationship between outcome
and omics variables and boost detecting power. If B has full rank,
TR is equivalent to the conventional linear regression model (LM)
on vector-valued omics variables. Our investigation suggests that
using AIC to determine the model rank would yield better perform-
ance on selecting important variables than using BIC.

Existing tensor-based tests mainly focusing on variable screening
or global testing; variable screening aims to retain majority of true
signals by tolerating a fair amount of false positives; global testing
aims to assess the overall effect of a variable set and lacks variable-
wise information. Here we explore variable-specific tensor tests that
aims to have enhanced power and well-controlled false positive rates
for selecting important omics biomarkers. We investigate the behav-
ior and utility of tensor test under different effect strength and effect
patterns. With a small number of platforms (i.e. P ¼ 3Þ, we observe
substantial performance gain; we expect the gain can be more sig-
nificant when more different types of omics data become available
in real practice. To assure the validity of the variable-specific tensor
test, in the proposed TR analysis, we do not always impose low-
rank approximation of the parameter tensor B as typically done in
global tests (e.g. Hung et al., 2016; Hung and Jou, 2019). Instead,
we let the data determine the optimal rank of B among multiple pos-
sible models, including the full-rank LM. For integrative analysis,T
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such strategy also makes tensor analysis an appealing alternative to
LM (e.g. Tyekucheva et al., 2011), as tensor modeling not only
includes LM as a special case, but also other low-rank models that
are more parsimonious and may boost selection performance. The
major price is perhaps the additional computational cost, as one
needs to fit a tensor model for every possible rank r,
1 � r � minðP;GÞ. To reduce computational burden, we adopt a
‘speed-up’ version of ALS algorithm, which is achieved by relaxing
the constrain matrix C in B1 to be data-dependent and consequently
simplifies the computation in each iteration. We derive the normal-
ity, variance formula and inference procedure for the tensor estima-
tors obtained in this fashion. We also avoid permutation matrices in
our variance calculation to further save computational time.

One commonly encountered issue in joint analysis of gene-set
multi-platform data is multicollinearity induced by strong correlation
among different genes and platforms. Although TR does not specific-
ally address multicollinearity, we notice that standardizing each omics
variable, which was implemented to assure comparability among vari-
ables, helps to fix multicollinearity. The reason is twofold. First, TR
by nature is more robust to multicollinearity than LM because TR
uses a more parsimonious parameterization. Second, standardization
increases the numerical stability of matrix inversions involved in TR
model fitting when variables are correlated, and hence stabilizes the
estimation of the TR coefficients and their standard deviations under
multicollinearity. We also note that an alternative remedy for multi-
collinearity is to impose a ridge penalty (Hoerl and Kennard, 1970);
yet doing so would invalid the ordinary significant tests of the coeffi-
cients. We are studying different methods for inference on ridge coeffi-
cients under TR framework, including those based on Cule et al.
(2011), bootstrapping and debiasing.

There are also limitations with the proposed tensor tests for bio-
marker detection. First, because the rank of B ¼ 0 is undefined, the
gene set to be analyzed needs to include at least one outcome-
associated variable. Therefore the proposed test would be more suit-
able for follow-up analysis of a gene set that has shown set-level of
significance. Second, the parameter tensor requires omics variables
of different platforms to be aligned to the same genes. Hence tensor
regression modeling would suffer more severely from the impact of
missing data if complete-data analysis is performed. As missing data
are commonly observed in multi-platform studies due to experimen-
tal conditions and platform constraints, careful treatments of miss-
ing data with imputation-based methods may further ensure the
utility of tensor-based analysis of gene-set multi-omics data. Finally,
as a proof of concept, we introduce the tensor test by focusing on
continuous outcomes. Although theoretically feasible, extension to
binary outcomes is a more challenging task than expected in its nu-
merical implementation, because specifying omics parameters in a
structural tensor format complicates the numerical properties such
as convergence and stability, as encountered in our studies of binary
outcomes. We are continuing to explore algorithms to enhance nu-
meral stability of the tensor estimates with binary outcomes.
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