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Abstract

Computed tomography (CT) is often performed as the initial imaging study for the workup of 

patients with known or suspected liver disease. Our article reviews liver CT techniques and 

protocols in clinical practice along with updates on relevant CT advances, including wide-detector 

CT, radiation dose optimization, and multi-energy scanning, that have already shown clinical 

impact. Particular emphasis is placed on optimizing the late arterial phase of enhancement, 

which is critical to the evaluation of hepatocellular carcinoma (HCC). We also discuss emerging 

techniques that may soon influence clinical care.
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Introduction

CT is often chosen for the initial workup of focal and diffuse liver disease because it is well 

tolerated, the images have few artifacts, and the entire abdomen and pelvis can be imaged 

quickly within a single breathhold (1). In the past decade, CT technology has advanced 

rapidly such that most modern scanners have the capability to image with wide detector 

arrays, low kilovoltage (kVp) settings, iterative reconstruction, dual energy CT (DECT) and 

now deep learning image reconstructions (2). Attention to imaging parameters is now more 

important than ever for optimal evaluation of liver disease.
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General technique considerations

Hardware

Multi-detector row CT (MDCT) has become the norm such that modern CT scanners 

typically have 4–64 detector rows that allow large Z-axis coverage in a single rotation with 

isotropic resolution (down to 0.5-mm)(3). Premium CT scanners offer even wider detectors 

with up to 320 detector rows that cover up to 16 cm in the z-axis and fast gantry rotation 

times down to 0.25sec(3). Such scanners include the Revolution Apex, General Electric 

Healthcare; the Force, Siemens; and Aquilion ONE Vision, Canon. Scanning in the axial 

mode eliminates artifacts that are associated with the helical scanning technique(4), but 

should be performed with caution in the liver so as to not exclude portions of the organ.

CT systems with wide-detector configuration are at disadvantage from increased scatter, heel 

effect, cone-beam artifacts, and the trade-off between spatial resolution and image noise 

due to the large cone angle that may impact low contrast resolution. To compensate for 

such negative effects on image quality, some CT manufacturers have introduced advanced 

3-D anti-scatter grids(5). Although wide-detector systems have shown encouraging results in 

cardiovascular applications, it’s value in other applications such as liver imaging needs to be 

established.

Scan times of less than one second can minimize motion in patients who are not cooperative 

or unable to breathhold and decrease radiation exposure(3, 4). Wide-detector CT systems 

permit protocols to image the entire liver (in axial mode) at multiple time points during 

the early/late arterial phase which may potentially detect more hypervascular liver lesions 

than single arterial phase scans(6). Wide-detector scanners also allow whole-liver dynamic 

perfusion imaging which is not feasible on CT systems with limited Z-axis coverage(7).

Radiation dose considerations

The need to limit radiation dose at CT to as low as reasonably allowable (ALARA) is 

universally recognized, particularly for multi-phase exams which are required for most 

dedicated liver scans(8). Despite the need to limit radiation exposure, an essential guiding 

principle is that CT images must be diagnostic to be useful(5). Radiation dose tracking 

software is used at many institutions to flag CT scans that are obtained with unexpectedly 

high doses. Generally these scans are obtained in morbidly obese patients and are justified, 

but monitoring helps reduce inadvertent over-radiation and allows for follow-up of affected 

patients.

Radiation dose is proportional to the tube current (mA). Modern CT scanners allow for 

automatic tube current modulation (ATCM) along the Z-axis based on patient density on 

the scout image to achieve a target acceptable noise level(9). Use of ATCM may reduce 

radiation dose by up to 50% compared with fixed mA(10).

Radiation dose is exponentially reduced at lower kVp settings(11). When the tube current 

is held constant, lowering the tube potential from 120 to 100 kVp or 120 to 80 kVp may 

reduce dose by 33% and 65%, respectively (12, 13). Reduced kVp settings also increase the 

attenuation of iodine contrast by up to 70% (Figure 1). Although the low kVp technique 
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can be applied in thinner adults while maintaining acceptable image noise, its application 

to large patients is commonly limited due to noise, owing to excessive attenuation of 

low energy X-rays by thick body parts(14). In fact, for severely obese patients, high kVp 

settings (140 or 150 kVp) are frequently needed to achieve sufficient X-ray penetration 

for diagnostic scans. New CT systems with high output X-ray tubes partially overcome 

the X-ray attenuation concerns of lower kVp, and automated kVp selection may assist in 

choosing appropriate kVps for patients of different sizes(12, 15).

Powerful X-ray tubes have also been developed that help exploit the benefits of low kVp 

technique in patients across different body habitus, including large patients, with some high

end tubes capable of providing tube current up to 1800mA even at 70/80kVp settings(3). 

Although one may perceive that higher tube power means a higher dose to the patient, high 

tube power allows for using a stronger prefiltration by using dedicated prefilters to remove 

excessively low energy photons from the beam that would contribute disproportionately to 

the patient dose but not to image quality(15).

Iterative reconstruction has further enabled radiation dose reduction by reducing CT image 

noise. In conjunction with other approaches, iterative reconstructions has enabled radiation 

dose reduction of up to 75% while maintaining acceptable image noise and quality (Figure 

1). However, one should be cautious with aggressive radiation dose reduction as several 

recent studies have demonstrated that low contrast lesion detection is not maintained at 

moderate to large levels of dose reduction and can limit the detection and characterization 

of hypodense hepatic lesions such as liver metastases, particularly for sub-centimeter 

lesions(13, 16, 17).

Liver CT technique

Although CT is generally considered to be non-operator dependent and robust, careful 

attention to imaging technique remains crucial for optimal detection and characterization of 

liver pathologies. Table 1 describes general CT and contrast parameters for multiphase liver 

CT.

Unlike for angiographic imaging which can be obtained with small doses of accurately 

timed contrast material to opacify the arteries, optimal liver imaging generally requires 

robust contrast enhancement of the entire hepatic vasculature (artery, portal vein, and hepatic 

veins) and liver parenchyma which can only be consistently acquired by the rapid injection 

of relatively large doses of intravenous (IV) contrast material. Use of adequately large 

IV contrast doses is particularly important for multiphase imaging for the detection and 

characterization of liver lesions including metastases and hepatocellular carcinoma (HCC). It 

is valuable to use the same kVp setting for all phases of a liver exam so that HU values are 

directly comparable between phases.

Noncontrast Phase

The noncontrast (precontrast) phase serves as a baseline for determining the extent of liver 

lesion enhancement with IV contrast and is useful to assess background liver disease such 

as steatosis. For certain tumors such as neuoroendocrine metastases, the noncontrast CT is 
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often the best phase by which to compare scan-to-scan tumor size. For HCC evaluation, 

the precontrast phase helps identify subtle areas of arterial phase hyperenhancement (18, 

19). Some institutions use lower radiation dose for the noncontrast phase compared to the 

postcontrast phases. If the patient has undergone locoregional treatment, the precontrast 

phase is valuable to distinguish iodized oil staining, blood, and proteinaceous material from 

true arterial phase hyperenhancement (20). Nevertheless, controversy exists for its use in 

assessing focal liver lesions. For CT imaging of treatment-naïve HCC, the inclusion of a 

noncontrast phase is optional by LI-RADS and other HCC staging standards.

Post-Contrast Phases

Intravenous contrast plays a critical role in the detection and characterization of focal liver 

lesions. While the portal venous phase is sufficient for the detection of hypovascular liver 

metastases, the late arterial and delayed phases are most important for the evaluation of 

hypervascular tumors including HCC. Multiple factors govern the quality of a multiphase 

liver CT (21). While portal venous phase parenchymal enhancement is mainly related to 

iodine dose as delineated by contrast medium volume and iodine concentration, the quality 

of late arterial images depends on rapid contrast injection and accurate scan timing (22).

Late Arterial Phase

Achieving an optimal late arterial phase scan is critical for the detection of hypervascular 

liver lesions, such as HCC. The late arterial phase shows hypervascular lesions against a 

minimally enhanced liver parenchyma, and is characterized by excellent hepatic arterial 

enhancement with good portal vein enhancement, but no forward enhancement of the 

hepatic veins(23, 24) (Figure 2). In comparison, the early arterial phase shows enhancement 

of the hepatic arteries without significant contrast in the portal or hepatic veins and 

generally does not show hypervascular lesions well(23). Because the late arterial phase is 

well-established for the detection of arterial phase hyperenhancing lesions, we use the term 

“arterial phase” to specifically refer to the late arterial phase in our article.

Unlike MRI and US, which allow multiple arterial phase images to be acquired without a 

radiation dose penalty, CT imaging requires accurate scan delay timing to capture a single 

optimal arterial phase consistently. Unlike the other phases of enhancement (noncontrast, 

portal venous, and delayed phases), the late arterial phase occurs in a brief moment -- 

mis-timing can render a liver CT scan insufficient for HCC or other hyperenhancing lesion 

detection and staging. For this reason, we recommend that late arterial phase scan protocols 

should be patient-specific (Tables 2a-2c) and use rapid bolus injections of large contrast 

material doses followed by a rapid bolus injection of saline to flush contrast agent into the 

general circulation(25). Fixed scan delays do not account for inter-individual comorbidities 

or catheter placement issues which often profoundly affect contrast arrival time in the 

liver. We recommend the test-bolus method which aims for an optimal scan but is more 

time-consumimg or the bolus-tracking method which aims for a good scan and is more 

automated. Both of these patient-specific methods monitor the abdominal aorta every 1 to 2 

seconds with low mA technique and have proven robust in clinical practice.
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Given the relative importance of the late arterial phase, some practices utilize higher 

radiation dose to achieve lower image noise for this critical phase than for other phases 

of a liver CT exam.

Portal Venous Phase

The portal venous phase of CT liver imaging typically occurs at 60 to 90 seconds after the 

start of IV contrast injection and is characterized by full enhancement of the portal veins 

and hepatic arteries, forward enhancement of the hepatic veins, and bright liver parenchymal 

enhancement. This phase of contrast optimally displays hypovascular metastases and biliary 

abnormalities (26, 27) and may be better than the arterial phase in detecting residual disease 

enhancement after arterial embolization for the treatment of HCC (28). Washout in HCC 

may be seen on this phase, but is often better seen on the delayed phase (Figure 3). Timing 

of the portal venous phase is more forgiving than for the arterial phase, but erring on slightly 

late acquisition (80 seconds) may be better than acquisition that is too early. When using a 

timing bolus for the arterial phase, the optimal portal venous phase scan delay may also be 

calculated(29, 30) (Table 2c).

Delayed Phase

The delayed phase, also known as the “equilibrium phase” is obtained at 3 to 5 minutes after 

contrast injection. During this phase, contrast has equilibrated between the intravascular and 

interstitial water of the liver, such as in areas of liver fibrosis. The delayed phase is the 

optimal phase for the detection of washout, capsule appearance, and mosaic architecture 

of HCC, particularly in small < 2 cm lesions (Figure 3) (26, 27, 31–33). Multiple studies 

have shown that the use of delayed phase increases the detection of and confidence in 

the diagnosis of HCC, and increases the rate of detection of hypovascular tumors and 

cholangiocarcinomas (26, 27, 31–33).

Dual Energy CT

DECT is a valuable tool for liver imaging that can brighten contrast attenuation, reduce 

artifacts, and increase lesion detection. DECT exploits the fact that all materials attenuate 

X-rays to a degree unique to that material at low versus high energy. Unlike conventional 

CT [single energy CT (SECT)], DECT obtains two separate sets of CT data, one from low 

and one from high energy X-ray photon spectra(34). In particular, iodine contrast can be 

delineated from calcium and organic material by DECT, even if they have similar HU values 

at SECT.

Image Reconstructions

Various vendor-specific implementations of DECT are available, and a detailed discussion 

on each of these is beyond the scope of this review article. Nevertheless, all clinical DECT 

systems produce similar image reconstructions. The DECT image reconstructions most 

relevant to liver imaging are 120-kVp-like images which closely resemble conventional 

SECT scans, virtual unenhanced images (VUE), virtual monochromatic images (VMC), and 

material-specific images, particularly the iodine image(34, 35).
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VUE Images

VUE images resemble true noncontrast scans in appearance (36, 37). VUE images can 

help differentiate calcium and hemorrhage from iodine enhancement in a lesion or liver 

tissue to aid diagnosis and allow elimination of a separate noncontrast CT, which simplifies 

multiphase CT and reduces radiation dose exposure(35). Although early results are 

encouraging, the attenuation values on VUE images may depend on the dual-energy scanner, 

patient’s body habitus, and the acquisition phase of the DECT protocol(38). Incomplete 

iodine subtraction and inability to measure HU value on some vendor-specific VUE images 

are other challenges(35, 38). Also, lipiodol chemoembolization material in a treated lesion 

may be subtracted on VUE and hence may be mistaken for contrast enhancement(39). For 

the evaluation of ambiguous high attenuation foci, VNC images should always be viewed 

alongside iodine and 120-kVp-like images.

VMC Images

VMC images simulate the appearance of a CT scan acquired with a monochromatic X-ray 

beam at a given X-ray energy (keV)(40). These images resemble 120-kVp single energy 

CT (SECT) images but with increased attenuation of iodine contrast when reconstructed at 

low keV (<60 keV), and reduced beam hardening artifact at high keV (>80 keV)(40). Low 

keV VMC images (<55 keV) can improve the conspicuity of hypervascular liver lesions 

(Figure 4) (41) and may be helpful to “rescue” CT scans with poor contrast enhancement 

such as from a poor bolus(42). Portal venous phase DECT scans may benefit from low keV 

VMC images to better delineate hypovascular lesions such as metastases and infiltrating 

liver masses(41, 43).

Iodine images

Iodine images show the distribution of iodine contrast and can be displayed as a gray-scale 

image or as a color-coded overlay on the 120-kVp-like image(44). In comparison to the 

iodine enhancement assessment on SECT, iodine images and low keV images provide better 

image contrast and more reliable measurement of tissue enhancement(45) (Figure 5 and 

6). When viewed in conjunction with VNC images, tissue enhancement can be determined 

without the need for true noncontrast images (Figure 6). For example, calcified lesions may 

be differentiated from enhancing masses and tumor thrombi may be differentiated from 

bland thrombi. (46). Early reports suggest that the use of DECT iodine concentration may 

be better than SECT as an imaging biomarker of HCC response to local therapy (47) (48) 

Figure 6.

Diffuse liver disease

Diffuse liver disease is an important public health problem and a major cause of liver

related morbidity and mortality in the United States and worldwide (49). Steatosis, iron 

deposition, inflammation, and cholestasis can lead to diffuse liver parenchymal injury, 

which if untreated, may progress to cirrhosis and its complications (50). Liver biopsy 

remains the reference standard for diffuse liver disease diagnosis, but is invasive, can be 

limited by sampling error, and not feasible for monitoring treatment and long-term clinical 

follow-up(51). Non-invasive imaging by MRI is the most accurate for liver fat and fibrosis 
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quantification, and US is valuable for fat and fibrosis quantification. Nevertheless, CT 

is commonly obtained, highly reproducible, and may be obtained in circumstances when 

patients are unable to undergo MRI.

Liver Steatosis and Iron Deposition

Liver steatosis is associated with metabolic X syndrome and non-alcoholic fatty liver disease 

(NAFLD) which may progress to steatohepatitis and cirrhosis(52). Liver iron overload may 

be primary (idiopathic) or secondary and, if untreated, can lead to cirrhosis and multiorgan 

failure(53). A concern for CT assessment of fat and iron deposition is these two materials 

have opposite effects on CT attenuation such that the presence of one may interfere with 

the assessment of the other: fat decreases and iron increases liver attenuation. While SECT 

may not be sensitive for the detection of mild steatosis, several noncontrast 120-kVp SECT 

thresholds (e.g. <37 or <48 HU) have shown value for the detection of moderate to severe 

steatosis (≥30% fat at histology)(54). Conversely, the noncontrast SECT thresholds for iron 

overload (e.g. >75 HU) are suggestive but nonspecific since high liver CT attenuation may 

be seen in other scenarios such as treatment with amiodarone or colloidal gold, Wilson’s 

disease, and glycogen storage disease. When intravenous contrast is given for SECT, the 

detection of steatosis or iron deposition becomes even less accurate.

To an extent, DECT mitigates some of the limitations of SECT since material decomposition 

may allow for more specific quantification of either fat or iron. Unlike water and normal 

liver tissue which show negligible changes in the attenuation at different kVp settings, the 

liver attenuation varies linearly with varying degrees of liver iron overload and steatosis. 

In cases of steatosis, the CT attenuation increases with higher kVp imaging. Conversely, in 

cases of iron deposition, the CT attenuation decreases slightly with higher kVp imaging. 

But clinical study results for DECT quantification of deposition disease have been mixed 

particularly for low level steatosis and iron deposition (55–58)(Table 5). Better results 

are seen with DECT quantification of liver iron in patients with moderate to severe 

iron overload, which is a population where MRI quantification is less accurate(59–62). 

Potentially, newer multi-material decomposition algorithms may allow for differentiation of 

iron from other materials including fat, and large-cohort clinical studies for the validation of 

DECT is warranted.

Liver Fibrosis

Liver fibrosis results from repeated injury to the liver. Fibrosis staging carries important 

prognostic implications as early stage can be treated and even reversed with anti-viral 

therapy for hepatitis B or C infections and lifestyle modifications in nonalcoholic 

steatohepatitis (NASH) (63). Among imaging techniques, MRI, and ultrasound elastography 

are most commonly used in clinical practice(64). Nevertheless, several CT methods of 

staging fibrosis are being studied. Morphologic measures of fibrosis include liver segmental 

volume ratio(65) and liver surface nodularity score which are simple methods but may 

require specialized software(66). Contrast-enhanced CT methods include perfusion CT 

which can show correlation of contrast mean transient time and arterial fractional flow 

with fibrosis stage. Such methods require dedicated CT protocols, high radiation dose, 

and software. Simpler measurement of the hepatic extracellular volume fraction (fECV) 
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on equilibrium and noncontrast phases, as calculated by the formula - fECV (%) = liver 

enhancement/aorta enhancement × (100 - Hematocrit [%]), showed good prediction of 

cirrhosis and modest prediction of fibrosis stage at routine imaging(64, 67). DECT further 

simplifies fECV calculation from a single equilibrium (delayed) phase scan without need for 

an additional unenhanced scan(68). Further studies are needed to validate the role of DECT 

to quantify liver fibrosis.

Future directions

Several advances in CT loom on the horizon and promise to be available within the next 

5 to 10 years. Artificial intelligence (AI) is already changing radiology practice(69) and 

will improve many basic aspects of our specialty. Deep learning using convolutional neural 

networks (CNNs) is used to reduce image noise, reduce required radiation dose, increase 

contrast attenuation, and reduce artifacts at CT(3, 70). (Figure 7). Deep learning in image 

recognition promises to reduce radiologist workload and improve diagnostic consistency(69) 

for detecting and characteriaing focal(71) (72) and diffuse liver diseases(73).

Photon-counting Computed Tomography (PCCT) utilizes tiny detectors that sort incident 

photons by energy. Theoretically, these small detectors should provide superior spatial 

resolution, reduce required radiation dose, reduce beam hardening artifact, and provide more 

detailed spectral delineation of the imaged body parts than possible with existing clinical 

CT scanners which all use energy-integrating detectors(74, 75). PCCT, should enable the 

reconstruction of more accurate material-specific maps and differentiate more than two 

materials(74), such as needed for the quantification of hepatic steatosis, iron, and contrast 

enhancement. In parallel, novel non-iodine contrast agents are under development that can 

be given simultaneously with iodine agents yet appear as different “colors” at DECT and 

even more vivdly at PCCT(74, 76) These contrast agents generally utilize high atomic 

number reporter atoms, such as tantalum, bismuth, gold, ytterbium, or hafnium and may 

provide CT attenuation benefits even with SECT(77). Multi-contrast PCCT exams, such as 

with iodine and gadolinium contrast agents in a single acquisition could provide both the 

arterial and venous phase exam of the liver with perfect image co-registration(76, 78). Of 

course, such images would further improve the value of AI for liver CT analysis.

Conclusion

CT remains a cornerstone of liver disease evaluation. Wide-detector and dual-energy CT 

technologies allow for improved detection and characterization of focal liver lesions and, 

to a lesser extent, assessment of liver steatosis, iron deposition, and fibrosis. Attention 

to CT technique, and in particular accurately capturing the late arterial phase, improves 

the evaluation for HCC and other hypervascular tumors. Emerging technologies including 

artificial intelligence, photon counting CT, and novel contrast agents will further improve the 

capabilities of liver CT diagnoses.
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Abbreviations

AI artificial intelligence

ATCM automatic tube current modulation

cm centimeters

CNNs convolutional neural networks

CT computed tomography

DECT dual energy CT

DLIR Deep learning image reconstruction

dl-DECT dual layer detector DECT

ds-DECT dual source DECT

IV intravenous

HCC hepatocellular carcinoma

HU Hounsfield Unit

keV kiloelectron volt

kVp kilovoltage peak

LI-RADS Liver Reporting & Data System

mA milliampere

mm millimeters

MRI Magnetic Resonance Imaging

NAFLD non-alcoholic fatty liver disease

PCCT photon counting

CT sec seconds

SECT single energy CT (conventional CT)

ss-DECT single source DECT
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US ultrasound

VIC Virtual iron content

VMC virtual monochromatic

VUE virtual unenhanced
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key points:

• Attention to technique for the late arterial phase is critical for evaluation of 

possible arterial phase hyperenhancing lesions

• Delayed phase imaging provides superior assessment of washout compared to 

portal venous phase imaging

• CT technology is advancing rapidly.
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Key Point:

Achieving an optimal late arterial phase scan is critical for the detection of hypervascular 

liver lesions
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Figure 1: Low kVp technique.
Contrast enhanced portal venous phase images of a patient acquired at a) 120kVp and b) 

80 kVp setting (three months apart). By use of 80kVp and iterative reconstruction technique 

(ASiR-V), almost 50% radiation dose reduction was achieved with minimal increase in 

image noise and with improved contrast attenuation.
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Figure 2: Multiphase liver CT protocol for HCC.
Late arterial (A), portal venous (B), and equilibrium (C) phases. The hepatic late arterial 

phase is when the hepatic artery (white arrows) is fully enhanced with good portal vein 

(*) enhancement, but without visible antegrade hepatic vein enhancement (black arrows). 

During the portal venous phase, the hepatic arteries, portal veins, and hepatic veins are 

all well-enhanced. During the equilibrium phase, also known as the delayed phase, the 

contrast enhancement of all vessels is uniform and contrast has largely equilibrated with the 

interstitial space of the liver parenchyma.
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Figure 3: HCC on multiphase CT.
HCC (arrow) on the late arterial (A), portal venous (B) and equilibrium phases. Although 

faint washout is seen on portal venous phase, the tumor washout and pseudocapsule features 

are best seen on the equilibrium phase. This case shows the importance of including an 

equilibrium phase for the evaluation of HCC.
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Figure 4: DECT Low energy VMC images improve lesion conspicuity.
Axial contrast enhanced DECT VMC images at the level of liver obtained during late arterial 

phase of contrast enhancement. Two hypervascular liver metastases (arrows) are barely seen 

on the 70keV VMC image (A) and are more conspicuous on the 50keV (B) and 40keV (C) 

VMC images.
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Figure 5: Improved lesion visibility on material density (MD) iodine image.
Axial contrast enhanced 70 keV (A) and iodine (B) images of the liver obtained during 

portal venous of contrast enhancement. An incidental small lesion in the left lobe lateral 

segment is better seen on iodine image due to its inherent superior contrast. Although the 

lesion eventually turned out to be a hemangioma (on MR not shown here), this example 

highlights the benefit of iodine images for the detection of small lesions.
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Figure 6: Therapy Monitoring following HCC Ablation.
Based on 70keV VMC image alone (A), it is difficult to differentiate between hemorrhage 

vs residual enhancement in the ablation bed (arrow). Iodine image (B) confirms lack of 

enhancement/residual disease in the ablation bed. The example highlights the benefit of 

iodine images in material differentiation, especially when unenhanced CT is not available 

for interpretation.
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Figure 7: Deep learning image reconstruction (DLIR) for improved CT image quality.
Figure shows CT image reconstructed at different iterative reconstruction strengths (A-C) 

and DLIR levels (D-F). High DLIR strength image (F) has the least amount of noise and 

most optimal image quality. While iterative reconstruction images may reduce image noise, 

such images have been associated with unacceptable image texture as in (C) which was 

reconstructed with 100% iterative reconstruction strength. DLIR reconstructions allow for 

reduction in image noise with better preservation of image texture (F).
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Table 1.

Basic Recommendations for Liver CT Imaging [19, 23]

Parameters Recommendation Rationale

CT Scanner 
Configuration

≥ 8-row multidetector CT Enables rapid acquisition for multiphase imaging
Enables thinner slices

Slice Thickness 2 to 5 mm Limits volume averaging
Improves detection of small lesions.
Reduces noise compared to thinner slices

Multiplanar 
Reformats

Coronal and Sagittal planes for arterial and portal 
venous phases

Improves anatomical assessment.
Improves lesion characterization
Improves assessment for recurrence or residual disease along 
periphery of observations

Contrast Dose Weight-based dosing at 1.5–2 mL/kg body weight to 
achieve
521–647 mg I/kg
Maximum dose of 63 to 70 g Iodine in large patients

Allows for ideal maximum hepatic enhancement of at least 50 
HU [20]
Individualizes dosing. Maximum hepatic enhancement is 
inversely related to body weight. Larger patients have larger 
plasma and interstitial fluid volumes, diluting contrast dose 
[19]

Contrast 
Concentration

≥300 mg I/mL Provides a reasonable volume when adjusted for appropriate 
contrast dose

Injection Rate 5 mL/sec if possible Increases magnitude of arterial enhancement [23].
Increases temporal separation of arterial and portal venous 
phases [23]

Saline Flush 20–50 mL at same injection rate as contrast.
For test bolus, use same amount and rate of saline 
flush as for the diagnostic bolus.

Improves contrast enhancement [23]
Increases efficiency of contrast use [23].
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Table 2.

Scan Delay Techniques for Capturing Late Arterial Phase [19,20,23]

Method Advantages Disadvantages

Fixed Scan 
Delay

Easiest to perform
No additional radiation to determine delay

Does not account for variations in cardiac output or IV catheter issues
High frequency of poorly timed late arterial phase exams in patients with 
non-average cardiac output or poor venous catheter placement

Bolus-Tracking Individualizes scan delay
Aims for good late arterial scan
Full contrast dose used for diagnostic imaging

Additional radiation to assess target vessel density

Test-Bolus Individualizes scan delay
Aims for optimized late arterial scan
Tests IV catheter integrity prior to full bolus

Least time-efficient to perform
Additional radiation to assess target vessel density
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Table 3.

Multiphase Liver CT Imaging and Contrast Bolus Timing [20,23]

Scan Delay After Start of Diagnostic IV Contrast Bolus Injection

Method Late Hepatic Arterial Phase Portal Venous Phase Delayed Phase

Fixed Scan 
Delay

35–45 sec after start of injection 60–80 sec after start of injection 3–5 min after start of 
injection

Bolus-
Tracking

Aortic threshold density: 100–150 HU
Image acquisition: 10–30 sec after aortic 
threshold density attained

60–80 sec delay after start of injection 3–5 min after start of 
injection

Test-Bolus Image acquisition:
10 to 20 seconds after peaking aortic 
enhancement
Or
Scan delay proportional to time to peak aortic 
enhancement (See
Table 2c)

60 – 80 sec after start of injection
Or
Scan delay proportional to time to peak 
aortic enhancement (See
Table 2c)

3–5 min after start of 
injection
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Table 4.

Timing bolus scan delay look-up table [26,27].

Time to peak aortic enhancement (sec) Late Arterial phase scan delay (sec) Portal venous phase scan delay (sec)

6 28 60

8 30 60

10 33 60

12 36 60

13 37 62

14 39 63

15 (average patient) 40 68

16 42 71

17 43 74

18 44 78

19 46 80

20 47 84

22 50 91

24 53 97

26 56 104

28 58 110

30 61 116

32 64 122

34 67 129

36 70 136

38 72 140

40 75 147

42 78 154

44 81 161

46 84 167

48 86 172

50 89 179

Scan delays are for 5cc/sec injection, 30 mL timing bolus, 50 mL saline chase. For portal venous phase scans, add 8 seconds for 4cc/sec or 16 
seconds for 3cc/sec IV contrast injections. Scan delays are based on time to peak enhancement correlations, with corrections based on IV contrast 
bolus durations. Timing boluses must be performed with the same injection rate and saline chase volumes as for the subsequent diagnostic contrast 
bolus.
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