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Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) allows for non-invasive imaging of 

the local fiber architecture of the human brain at a millimetric scale. Multiple classical approaches 

have been proposed to detect both single (e.g., tensors) and multiple (e.g., constrained spherical 

deconvolution, CSD) fiber population orientations per voxel. However, existing techniques 

generally exhibit low reproducibility across MRI scanners. Herein, we propose a data-driven 

technique using a neural network design which exploits two categories of data. First, training data 

were acquired on three squirrel monkey brains using ex-vivo DW-MRI and histology of the brain. 

Second, repeated scans of human subjects were acquired on two different scanners to augment the 

learning of the network proposed. To use these data, we propose a new network architecture, the 

null space deep network (NSDN), to simultaneously learn on traditional observed/truth pairs (e.g., 

MRI-histology voxels) along with repeated observations without a known truth (e.g., scan-rescan 

MRI). The NSDN was tested on twenty percent of the histology voxels that were kept completely 

blind to the network. NSDN significantly improved absolute performance relative to histology by 

3.87% over CSD and 1.42% over a recently proposed deep neural network approach. Moreover, 

it improved reproducibility on the paired data by 21.19% over CSD and 10.09% over a recently 

proposed deep approach. Finally, NSDN improved generalizability of the model to a third in vivo 
human scanner (which was not used in training) by 16.08% over CSD and 10.41% over a recently 

proposed deep learning approach. This work suggests that data-driven approaches for local fiber 

reconstruction are more reproducible, informative and precise and offers a novel, practical method 

for determining these models.
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1 Introduction

Diffusion-weighted MRI (DW-MRI) provides orientation and acquisition-dependent 

imaging contrasts that are uniquely sensitive to the tissue microarchitecture at a millimeter 

scale [1]. Substantial effort has gone into modeling the relationship between observed 

signals and underlying biology, with a tensor model of Gaussian processes being the 

most commonly used model [2]. Voxel-wise models that characterize higher order spatial 

dependence than tensors fall under the moniker of higher angular resolution diffusion 

imaging (HARDI) [3]. Recently, a myriad of techniques has emerged to estimate local 

structure from these diffusion measures [4–7]. However, broad adoption and clinical 

translation of specific methods has been hindered by a lack of reproducibility [8, 9], 

inter-scanner stability [10, 11], and anatomical specificity when compared to a histologically 

defined true microarchitecture [24]. There are known critical issues of the inter-scanner 

diffusion harmonization that go beyond noise effects [12–14].

Recently, it has become feasible to apply a data-driven approach to estimate tissue 

microarchitecture from in vivo diffusion weighted MRI using deep learning [25]. This 

approach relied on a histologically defined truth with correspondingly paired voxels with 

diffusion weighted magnetic resonance imaging data. Yet, no approaches to date have 

addressed inter-scanner variation and scan-rescan reproducibility. Moreover, traditional 

deep learning architecture do not specifically create models that have these necessary 

characteristics for clinical translation. Here, we propose a new learning architecture, the null 

space deep network (NSDN), to address the short comings of precision and reproducibility 

across scanners. Within the NSDN framework, we use inter-scanner paired in vivo human 

data to stabilize the data driven approach linking preclinical DW-MRI with histological data. 

Using a withheld dataset, the NSDN method is compared against a previously published 

fully connected network and the leading model-based approach, super resolved constrained 

spherical deconvolution (CSD) [4] in terms of the precision with which the model captures 

histologically defined truth from DW-MRI data, the reproducibility of the approach on in 
vivo human data, and the generalizability of the model to in vivo data acquired on an 

additional MRI scanner.

The remainder of this manuscript is organized as follows. Section 2 presents the acquisition 

and processing of all the data that has been used for the study. Section 3 presents the design 

and the parameters of the proposed network architecture. Section 4 presents the results. 

Section 5 presents the conclusion.

2 Data Acquisition and Processing

Three ex-vivo squirrel monkey brains were imaged on a Varian 9.4T scanner (Fig. 1). A 

total of 100 gradient volumes were acquired using a diffusion-weighted EPI sequence at 

a diffusivity value of 6000 s/mm2, acquired at an isotropic resolution of 0.3mm. Once 
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acquired, the tissue was sectioned and stained with fluorescent dil and imaged on a LSM710 

Confocal microscope following procedures outlined in [24]. A similar procedure is outlined 

by [15]. The histological fiber orientation distribution (HFOD) was extracted using 3D 

structure tensor analysis. A multi-step registration procedure was used to determine the 

corresponding diffusion MRI signal. A total of 567 histological voxels were processed. 54 

voxels of these were labelled as outliers qualitatively and were rejected from the analysis. A 

hundred random rotations were applied to the remaining voxels for both the MR signal and 

the HFOD to augment the data and bringing the total to 51,813 voxels [16]. A withheld set 

of 72 test voxels was maintained for validation. With rotations, these total to 7,272 voxels.

The in vivo acquisitions of the human subjects’ data were acquired on three different sites, 

referred to as ‘A’, ‘B’ and ‘C’. Three healthy human subjects were acquired with a scan 

each at the sites in the following manner. Subject 1: Site ‘A’ and Site ‘B’. Subject 2: site ‘A’ 

and site ‘B’. Subject 3: site ‘B’ and site ‘C’. Structural T1 MPRAGE were acquired for all 

subjects at all sites. The diffusion acquisition protocol and scanner information are listed for 

each of the sites as follows.

Site ‘A’ was equipped with a 3T scanner with a 32-channel head coil. The scan was acquired 

at a diffusivity value of 2000 s/mm2 (approximating diffusion contrast of fixed ex-vivo scan 

at a b-value of 6000 s/mm2). 96 diffusion weighted gradient volumes were acquired with 

a ‘b0’. Briefly the other parameters are: SENSE=2.5, partial Fourier=0.77, FOV=96×96, 

Slice=48, isotropic resolution: 2.5mm.

Site ‘B’ was equipped with a 3T scanner with a 32-channel head coil. All the parameters of 

the scan acquisition were as of scanner at site ‘A’ except for the isotropic resolution which 

was 1.9mmx1.9mmx2.5mm and up-sampled to 2.5mm isotropic.

Site ‘C’ was equipped with a 3T scanner with a 32-channel head coil. The scan acquisition 

parameters were same as that of site ‘A’, except for the number of slices (n=50) and 

GRAPPA=2 (instead of SENSE).

All in vivo acquisitions were pre-processed with standard procedures eddy, topup, b0 

normalization and then registered pairwise per subject [17–19]. T1s were registered and 

transformed to the diffusion space. Brain extraction tool was used for skull stripping [19]. 

FAST white matter (WM) segmentation was performed using the T1 for the in vivo data 

[20]. Note that there were three pairs of pre-processed acquisitions in total.

The pair of data from Subject 1 along with the histology data set was used for the training 

of NSDN. The pairs of data from Subject 2 and 3 were used for quantitative and qualitative 

evaluation of the network. No site ‘C’ data were used in training.

3 Method: Network Design

Our proposed null space architecture is motivated by the linear algebra null spaces in that 

we need to design/constrain the aspect of the network that has no impact on the outcome. 

This work is inspired by [21] in which a person re-identification classification problem in 

computer vision was addressed using a Siamese architecture deep network. The novelty of 
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our approach is that we use paired (but unlabeled) data to train the data-driven network to 

ignore potential features that would lead it to differentiate between the paired data.

The proposed network design takes three inputs of 8th order spherical harmonic (SH) 

coefficients (Fig 2). Each input provides an orthonormal representation of the DW-MRI 

signal and is known to characterize the angular diffusivity signal well [22]. The network 

outputs a 10th order SH FOD. The base network consists of five fully connected layers; the 

numbers of neurons per layer are 45, 400, 66, 200 and 66 in the respective order. Activation 

functions of ‘ReLU’ have only been used for the first two layers. They have not been used 

for the remainder of the layers to allow for negativity in the network because SH coefficients 

need not be positive. The three outputs obtained by the network are merged with a common 

loss function which optimizes on the assumption that the pairwise difference should be 

zero given the subject is the same and there should not be a difference in the FOD being 

predicted. For implementation simplicity, a modified weighted square loss function was 

defined as (here in λ = 1):

L = 1
m ∑i = 1

m ytruei − ypredi
2 + λ Pai − Pbi

2, (1)

where m is the total number of samples. Pa and Pb are paired in vivo voxels.

A sample size of 37,648 pairs of paired WM voxels were extracted from subject 1 using 

the acquisitions from site ‘A’ and site ‘B’. A random selection of 37,648 data points was 

made from the training data set of the histology voxels. While training the network a K-fold 

cross-validation was used with K=5. The cross-validation set size was set to 0.2. ‘RMSProp’ 

was used as the optimizer of the network [23]. The number of iterations was determined at 3 

using cross-validation. A batch size of 100 has been used.

To evaluate the performance, we use Angular Correlation Coefficient (ACC) which 

describes the correlation between two FOD’s on a scale of −1 to 1 [6], where ‘1’ is the 

best outcome.

4 Results

The median of the ACC computed from the blind set of 7,272 augmented histology voxels 

for CSD, DN and NSDN were 0.7965, 0.8165, and 0.8281, respectively. Non-parametric 

signed rank test for all pairs of distributions were found to be p < 0.01. Qualitatively, we 

explore the results relative to the truth voxel in Fig 3. At 25th percentile it can be observed 

that CSD and DN show a crossing fiber structure when compared to HFOD. NSDN is 

representative of more similar single fiber structure of histology. At 50th percentile CSD 

tends to show a crossing fiber structure, while DN and NSDN show a higher ACC and 

are like the structure of histology. At 75th percentile all three methods closely resemble the 

histology.

For subject 2, the histogram distribution of ACC for NSDN is most skewed (towards higher 

ACC) compared to DN and CSD (Fig 4A). The median values for the ACC distributions of 

CSD, DN and NSDN are: 0.67, 0.74 and 0.82. The gain in performance is (calculated by 
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the difference of the medians) is 21.19% for (CSD, NSDN) and 10.09% for (DN, NSDN). 

Non-parametric signed rank test for all pairs of ACC metrics per voxels for subject 2 

resulted in p< 0.001.

Qualitatively, we explore the spatial diffusion inferred structure in the WM of the frontal 

lobe of the middle axial brain slice (Fig 5). CSD (A & D) show low correlation and spurious 

fibers in the crossing fiber regions. DN (B & E) improves correlation in crossing fiber 

regions however NSDN (C & F) shows the highest correlation for crossing fiber regions. For 

single fibers, all three methods show high correlation.

In the quantitative results for subject 3, we observe that the skewed distribution towards 

higher ACC for NSDN is the highest as compared to both the other methods (Fig 4B). 

The median for three distributions of CSD, DN, and NSDN are 0.62, 0.67 and 0.74. The 

performance gain of NSDN over CSD is 16.08% and DN is 10.41%. Non-parametric signed 

rank test for all pairs of voxels for subject 3 show p < 0.001.

5 Conclusion

The NSDN method for reconstructing local fiber architecture is (1) more accurate 

when compared to histologically defined FODs, (2) more reproducible qualitatively and 

quantitatively on scan-rescan data, and (3) more reproducible on previously unseen scanners. 

While histological-MRI paired datasets are exceedingly rare, scan-rescan data are ubiquitous 

and often acquired as part of multi-site studies. The NSDN method provides a natural 

framework for harmonization that can use already acquired scan-rescan data to ensure that 

analysis methods are as reproducible across all sites. A much wider comparative study with 

multiple different HARDI methods and using multiple scanners is warranted. It would be 

interesting to explore the impact of including data from diffusion phantoms to enhance the 

diversity of signals captured in a data-driven approach.

While this work focused on DW-MRI, the NSDN approach can naturally be applied to other 

deep learning-based networks with two relatively simple modifications. First, one needs to 

construct a multiple channel network graph of the same form as “base network,” but with 

shared weights for all channels and without cross-connections between the channels. This 

will ensure that one input can be placed per channel and all inputs will see the “same” base 

network. Second, the loss function needs to be modified so it combines a traditional loss 

with a reproducibility loss. The traditional loss comes with (without loss of generality) 

from the first channel’s output relative to a traditionally provided truth dataset. The 

reproducibility loss is then computed by a metric of reproducibility between the remaining 

channels (herein a weighted squared error metric, but Dice, surface distance, etc. could be 

used as appropriate for the datatype). The potential synergies with data augmentation and 

neighborhood information have yet to be explored.
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Fig. 1. 
Formation of the training dataset where 2D histology was performed on the squirrel monkey 

brains and FOD’s were constructed per voxel basis using ensemble structure tensor analysis 

which correspond to ex vivo MRI acquisition of the squirrel monkey brains. Comparative 

analyses were performed between the reconstructed histology FOD’s and FOD’s from CSD, 

DN and NSDN.
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Fig. 2. 
Network design for the null space architecture. The architecture depicts how pairwise inputs 

of in-vivo voxels can be incorporated in a deep neural net architecture and can be added in 

the loss function as a noise enhancement/augmentation technique.
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Fig. 3. 
Representative voxels are shown for the 25th, 50th, and 75th percentiles of CSD ACC along 

with corresponding DW-MRI, DN and NSDN glyphs and ACC’s.
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Fig. 4. 
A.) Histogram peaks of ACC per bin distributed over 100 bins for subject 2 of CSD, DN and 

NSDN. B) Histogram peak of ACC per bin distributed over 100 bins for subject 3 of CSD, 

DN and NSDN.
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Fig. 5. 
The selected ROI shows left side frontal lobe of WM. The image underlay for the ROI’s 

shown is Angular Correlation Coefficient (ACC) to indicate areas of agreement between 

scan-rescan (vertical pairs). CSD shows high correlation for core white matter where single 

fiber orientation exists (observer diagonal pattern of high ACC). DN shows increased 

correlation over a broader region which encompasses crossing fibers. NSDN shows a higher 

correlation across the most extended anatomical area.
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