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Abstract

Alchemical free energy calculations are a useful tool for predicting free energy differences 

associated with the transfer of molecules from one environment to another. The hallmark of these 

methods is the use of “bridging” potential energy functions representing alchemical intermediate 

states that cannot exist as real chemical species. The data collected from these bridging alchemical 

thermodynamic states allows the efficient computation of transfer free energies (or differences in 

transfer free energies) with orders of magnitude less simulation time than simulating the transfer 

process directly. While these methods are highly flexible, care must be taken in avoiding common 

pitfalls to ensure that computed free energy differences can be robust and reproducible for the 

chosen force field, and that appropriate corrections are included to permit direct comparison with 

experimental data.

In this paper, we review current best practices for several popular application domains of 

alchemical free energy calculations performed with equilibrium simulations, in particular relative 

and absolute small molecule binding free energy calculations to biomolecular targets.

1 What are alchemical free energy methods?

Alchemical free energy calculations compute free energy differences associated with transfer 

processes, such as the binding of a small molecule to a receptor, the transfer of a small 

molecule from an aqueous to apolar phase [1], or the effects of protein side chain mutations 

on binding affinities or thermostabilities. These calculations use non-physical1 intermediate 

states in which the chemical identity of some portion of the system (such as a small 

molecule ligand or protein sidechain) is changed by modifying the potential governing the 

interactions with the environment for the atoms being modified, inserted, or deleted.

Fig. 1 illustrates common free energy changes that may be difficult to compute with 

unbiased molecular dynamics methods, but are more tractable with alchemical methods. 

In alchemical simulations, the introduction of intermediate alchemical states that bridge 

the high-probability regions of configuration space between two physical endstates of 

interest, permits the robust computation of free energy for large transformations. Alchemical 

calculations can be used in a variety of scenarios, such as:

1Here, the non-physical nature of the transformation is referred to as “alchemical”, a term coined by Tembre and McCammon in Ref. 
[2].
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• computing the free energy of a conformational change for a molecule with a high 

barrier to interconversion (Fig. 1A);

• computing partition (log P) or distribution (log D) coefficients between 

environments (Fig. 1B) [3, 4]

• determining partitioning between compartments into membranes (Fig. 1C) [5].

Furthermore, alchemical calculations are frequently used to estimate changes in free 

energies upon modifying a ligand or protein:

• a protein residue can be alchemically mutated to probe the impact on binding 

affinity (Fig. 1D)[6, 7] or changes in protein thermostability [8–11];

• the entire ligand can be alchemically transferred from protein to solvent in an 

absolute binding free energy calculation (Fig. 1E) [12–14];

• small alchemical modifications can be made between chemically related ligands 

to estimate relative differences in binding free energies (Fig. 1F) [15–19].

After an alchemical calculation is performed, which generally involves multiple simulations 

at a variety of alchemical states, the data must be analyzed to compute an estimate 

of the free energy for the transformation of interest. Early work used simple but 

statistically suboptimal estimators for this: free energy perturbation (FEP) used a simple 

(but highly biased) estimator based on the Zwanzig relation [1] or numerical quadrature via 

thermodynamic integration (TI), for which the theory dates back the better part of a century 

but with the first computational applications emerging in the 1980’s and 90’s [20–24]. More 

recent developments have seen new, highly efficient statistical estimators that make better 

use of all the data, often building on the more efficient and less biased Bennett acceptance 

ratio (BAR) [25], producing multistate generalizations [26] or removing the need for global 

equilibrium [27–29].

Subsequent work in the 2000s led to improved implementations of alchemical methods in 

popular biomolecular simulation packages [15, 30–35]. This foundational work, combined 

with the methodological, technological, and hardware improvements of the last 5–10 years, 

has led to an explosion of interest and direct commercial application of these technologies 

[15, 19, 36–39].

As the field of molecular simulation can now routinely access microsecond timescales 

with the aid of GPUs [40], and millisecond timescales appear to soon be within reach, 

accurate alchemical calculations on even more challenging problems will become reasonable 

to perform. In the meantime, today’s users may find it difficult to get started with these 

complex calculations whilst also keeping up with the fast pace of change. This Best 

Practices guide provides current recommendations and tips for users of all experience. 

Updates and suggestions are welcomed via our GitHub repository at https://github.com/

alchemistry/alchemical-best-practices.
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2 Prerequisites and Scope

This Best Practices guide focuses on providing a good starting point for new practitioners 

and a reference for experienced practitioners. For this purpose we provide a convenient 

checklist (Sec. 12) to help ensure all calculations comply with currently-understood best 

practices for alchemical simulation and analysis. Where the best practices are currently not 

certain, we highlight areas where further research is needed to identify an unambiguous 

recommendation. This guide can also serve as a set of best practices to ensure simulation 

robustness and reproducibility which reviewers may wish to consider as they evaluate 

papers.

We assume that novice practitioners have at least moderate experience with molecular 

simulation concepts and use of simulation packages. Furthermore, basic familiarity with the 

principles of molecular mechanics, molecular dynamics simulations, statistical mechanics, 

and the biophysics of protein-ligand association are essential. If you feel unfamiliar with 

some of these concepts, good starting points can be found in these references [41–44].

While reading this Best Practices guide, it is important to bear in mind this is not a review of 

all free energy calculation methods at the cutting edge of current research. Instead this guide 

aims to answer the following questions:

• Is my problem suitable for an alchemical calculation?

• How do I select an appropriate alchemical protocol?

• What software tools are available to perform alchemical calculations?

• How should I analyze my data and report uncertainties?

Some other background information may be needed depending on the nature of the 

alchemical project. For example, often, if binding poses are not known, docking calculations 

can be used to generate an initial small molecule binding pose to start alchemical 

simulations. This will require some basic familiarity on how to perform docking to generate 

reasonable simulation starting points [45].

As some of the theoretical background can seem daunting, we do, however, provide a guide 

to the essential theory behind alchemical free energy calculations in Sec. 3. In the remainder 

of this paper, we will cover topics that are key to the preparation (Sec. 6), choice and 

use of correct protocols (Sec. 7), and finally the best practices that should be used in the 

analysis of alchemical calculations (Sec. 8). Particular focus will be given to aspects of 

the molecular simulations which are unique to alchemical calculations—these include the 

calculation of transfer free energies (hydration free energies, partition coefficients, etc.), and 

binding free energies (absolute and relative). We primarily focus on free energy calculations 

using simulations performed at equilibrium in this Best Practices guide, as best practices for 

these are more developed, and non-equilibrium techniques may warrant their own guide as 

such practices evolve.

While we try to address as many methods and practices as possible, the field of free 

energy calculations is broad, and there are many advanced topics that are left to future Best 
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Practices documents focusing on specific issues. Below, we provide a non-exhaustive list of 

topics we have not addressed, along with some references to provide starting points on these 

more advanced topics:

• covalent inhibition [46]

• free energies of mutation of protein side chains [7, 10]

• nonspecific binding or multiple binding sites [47]

• approximate and often less accurate endpoint free energy methods such as MM-

PBSA [48] and LIE [49]

• Free energy methods that extract the ligand using geometric order parameters 

and potential of mean force methods [50]

• forcefield dependence for protein, ligand, ions, cosolvents, and co-factors. A 

number of different studies have looked at the influence of force fields and it 

is assumed the user has made an appropriate choice for the system under study 

[51–53].

• non-equilibrium free energy calculations [18]

• Free energy calculations using QM/MM methods [54–56].

• Free energy calculations using machine learning methods [57–59]

For convenience we have also compiled a list of common acronyms and common symbols 

used throughout this paper.

3 Statistical mechanics demonstrates why alchemical free energy 

calculations work

Why would you want to run an alchemical free energy calculation and why do they work? 

In this section, we use the example of relative free energy calculations to sketch the theory 

of alchemical simulations and illustrate their utility. The emphasis here is placed on bridging 

theoretical foundations and intuition. A rigorous derivation of the standard (absolute) free 

energy of binding using the principles of statistical mechanics can be found in Gilson’s 

classic work [60].

3.1 Simulating binding events of receptor-drug systems can be computationally 
expensive

Suppose you want to compute the binding affinity, or free energy of binding, of a ligand L to 

a receptor R, given by:

R + L RL . (1)

The binding constant (Kb
∘) is given by the law of mass action as the ratio of concentrations of 

product [RL] and reactants [R], [L]:
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Kb
∘ = c∘ [RL]

[L][R] . (2)

The standard state concentration c∘ depends on the reference state, but it is usually set to 1 

mol/L assuming a constant pressure of 1 atm (see also Sec. 7.1.2). Eq. 2 also holds for dilute 

solutions if thermodynamic activities can be approximated by concentrations [60]. Thus, the 

standard Gibbs free energy of binding ΔGbind is given by:

ΔGbind , L = − kBT  ln Kb
∘, (3)

where kB is the Boltzmann constant and T the temperature of the system. Note that, unless 

otherwise specified, we use ΔG throughout the paper to refer to the standard free energy 

of binding (or solvation) (see also Sec. 7.1.2), which is often indicated in other works with 

ΔG∘ to differentiate it from non-standard free energies. This is in line with current literature 

on alchemical calculations, where the standard free energy is normally the only quantity of 

interest. Furthermore, we will use the term configuration for a single set of position vectors 

and occasionally use the term conformation to refer to a set of configurations that represent a 

metastable state.

The free energy of binding can be expressed as a ratio of partition functions
—The law of mass action in Eq. 2 is not directly applicable to typical molecular 

simulations as they normally include a single receptor/ligand in a small box (i.e., using large 

concentrations) [61]. Instead, a natural, though generally very computationally expensive, 

way to estimate the equilibrium constant is by directly simulating several binding and 

unbinding events and computing the probability of finding the receptor-ligand system in the 

bound state, P(RL), or the unbound state, P(R + L). Assuming the volume change upon 

binding to be negligible, which is often the case at 1 atm due to the incompressibility of 

water, then the Gibbs free energy ΔGbind,L is approximately equal to the Helmholtz free 

energy ΔAbind,L, and we can simulate the system in a box of volume V to obtain [61]

ΔGbind, L ≈ ΔAbind, L = − kBT ln P (RL)
P (R + L) + ln  c∘NAvV , (4)

where NAv is the Avogadro number, and the last term corrects for the simulated 

concentration being different than the standard concentration. Let Γbound and Γunbound be the 

set of receptor-ligand configurations q  that we consider bound and unbound respectively. 

The probability of a configuration q  is given by the Boltzmann probability density function

P ( q ) = exp ( − βU( q ))
∫Γexp ( − βU( q ))d q

, (5)

where β = (kBT)–1 is the inverse temperature, U( q ) is the potential energy of configuration 

q , and the integration is over the set of all possible configurations accessible in the 

simulation box volume Γ, with Γbound, Γunbound ⊂ Γ. If the simulation is long enough, 

we expect the fraction of configurations q  found in the bound state to converge to
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P (RL) = ∫
Γbound

P ( q )d q =
∫Γboundexp ( − βU( q ))d q

∫Γ exp ( − βU( q ))d q
. (6)

After similar considerations for P(R + L), we find that the ratio of visited bound and 

unbound conformations, in the limit of long simulations, should converge to

P (RL)
P (R + L) =

∫Γboundexp ( − βU( q ))d q
∫Γunboundexp ( − βU( q ))d q

= Z(RL)
Z(R + L) , (7)

where we have defined the configurational integral or configurational partition function as 

Z(state) ≡ ∫Γstateexp ( − βU( q ))d q .

Simulating binding events is computationally expensive—While simulating 

binding events has been used to estimate binding affinities [61, 62] or to get insights into 

the binding pathways and kinetics of receptor-ligand systems [63–67], the computational 

cost of these calculations is usually dominated by the rate of dissociation, which can be on 

the microsecond timescale even for millimolar binders [62] and reaches the microsecond 

to second timescale for a typical drug [68, 69]. Depending on system size and simulation 

settings, common molecular dynamics software packages can reach a few hundreds of 

ns/day using currently available high-end GPUs [70, 71], making these type of calculations 

unappealing and irrelevant on a pharmaceutical drug discovery timescale. Other methods 

compute the free energy of binding by building potential of mean force profiles along 

a reaction coordinate [50, 72–74], but these methods require prior knowledge of a high-

probability binding pathway, which is not easily available, especially in the prospective 

scenarios typical of the drug development process.

3.2 Alchemical free energy calculations yield predictions that do not require direct 
simulation of binding/unbinding events

In many cases, the quantity of interest is the change in binding affinity between a compound 

A and a related compound B (e.g., by modifying one of the drug scaffold’s substituents, see 

(Fig. 1F)), which, by using Eq. 4 and 7 is given by

ΔΔGbind, AB = ΔGbind, B − ΔGbind, A

≈ − kBT ln Z(RB)
Z(R + B) − ln Z(RA)

Z(R + A) . (8)

Note that the terms involving the standard concentration cancel out when we assume that 

the volume is identical for A and B. Predictions of ΔΔGbind,AB with non-alchemical methods 

generally require long simulations of both ligands, possibly through different binding 

pathways. Alchemical relative free energy calculations avoid the need to simulate binding 

and unbinding events by making use of the fact that the free energy is a state function and 

exploiting the thermodynamic cycle illustrated in Fig. 2. This is apparent after rewriting Eq. 

8 as
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ΔΔGbind, AB ≈ − kBT lnZ(RB)
Z(RA) − lnZ(R + B)

Z(R + A)

= − kBT lnZ(RB)
Z(RA) − lnZ(B)

Z(A)
= ΔGbound − ΔGunbound,

(9)

where ΔGbound/unbound is the free energy of mutating A to B in the bound/unbound state. 

Eq. 9 and Fig. 2 tell us that the difference in free energy of binding between toluene 

(A) and benzyl alcohol (B) can be computed by running two independent calculations 

estimating the free energy cost of mutating A into B in the binding pocket (ΔGbound) and 

in solvent (ΔGunbound), saving us the need to simulate the physical binding process of the 

two compounds. In particular, the second line of Eq. 9 is a consequence of ΔGunbound being 

independent of the presence of the receptor in the simulation box as the definition of the 

unbound state assumes receptor and ligand to be at a sufficient distance for them to have 

no energetic interactions. Note that, when A and B have a different number of atoms, the 

factors ln Z(RB)
Z(RA)  and ln Z(B)

Z(A)  in Eq. 9 appear both to have factors with units of volume in the 

logarithms, but these factors exactly cancel between the terms.

How are alchemical transformations performed in practice?—In practice, the 

mutation of A to B is carried out by introducing one or more parameters λ  controlling 

the potential energy function U( q ; λ ) such that the potential of compounds A and B is 

recovered at two particular values λ A and λ B. Briefly, this is achieved by simulating a 

“chimeric” molecule composed of enough atoms to represent both A and B. A subset of 

the energetic terms in U( q ; λ ) is then modulated by λ  so that at λ A, the atoms that form 

molecule A are activated and those belonging exclusively to B are non-interacting “dummy 

atoms”, while the opposite occurs at λ B (see Sec. 7.1.1 for details).

We can rigorously account for fluctuations in other thermodynamic parameters such as 

changes in volume V when simulating at constant pressure p or changes in number of 

molecules Ni of species i at constant chemical potential μi (e.g., number of waters or ions) 

by introducing the reduced potential [26]

u( q ; λ ) ≡ β U( q ; λ ) + pV ( q ) + ∑
i

μiNi( q ) + ⋯ . (10)

Here, the collection of thermodynamic and alchemical parameters {β, λ , p, μ, …} defines a 

thermodynamic state. In the context of alchemical calculations, in which the thermodynamic 

states vary only in their value of λ , these are also referred to as alchemical states. The free 

energy of mutating A to B in any environment (ΔGenv e.g., binding site, solvent) can then be 

computed as
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ΔGenv = − kBT  ln
Z λ B

Z λ A

= − kBT  ln
∫Γenvexp  u q ; λ B d q

∫Γenvexp  u q ; λ A d q
, (11)

over the configurational space of the environment (Γenv). While it is generally not feasible to 

compute the two partition functions Z(λ ), several estimators have been devised to robustly 

estimate the ratio of partition functions in Eq. 11 (see Sec. 8.3) from a set of configurations 

usually collected with MD simulations from the thermodynamic states defined at λ A and λ B

and intermediates thereof.

Why do alchemical calculations need unphysical intermediate states?—While 

it is theoretically possible to estimate the ratio of partition functions from samples collected 

only at states λ A and λ B, the efficiency of the free energy estimators rapidly decreases 

as the phase-space overlap between the two states also decreases [75, 76]. Roughly, the 

phase-space overlap between two thermodynamic states measures the degree to which high-

probability configurations (i.e., those with very negative potential energy) in one state are 

also high-probability configurations in the other state (see Sec. 8.5 and Fig. 7).

Equilibrium free energy calculations, our focus here, solve the problem of having poor 

overlap between the states of interest by introducing multiple intermediate alchemical 

states at values λ A = λ 0, λ 1, ⋯, λ K = λ B so that each pair of consecutive states λ K, λ K + 1

share good overlap. Each intermediate state models a ligand that is neither A nor B but 

a interpolation of the two. Many estimators (e.g., exponential reweighting (EXP) [1] and 

Bennett’s acceptance ratio (BAR) [25, 77]) can then be used to compute the free energy as

ΔGenv = kBT ∑
k = 0

K − 1
Δf λ k, λ k + 1 , (12)

from samples collected at all the alchemical states {λ k}, where Δf is the unitless free energy 

difference

Δf λ k, λ k + 1 = f λ k + 1 − f λ k = − ln
Z λ k + 1

Z λ k

. (13)

While this strategy usually results in sampling thermodynamic states whose Boltzmann 

distributions are very similar, thus collecting information that is to some degree redundant, 

some estimators, such as the Multistate Bennett acceptance ratio (MBAR) [26], can exploit 

similarities between states to improve the precision of the estimates. This is achieved by 

using the configurations sampled at all alchemical states {λ k} to compute the free energy 

difference Δf λ i, λ j  between any pair of states i, j (see Sec. 8.3).

Non-equilibrium free energy techniques provide an alternate approach to this problem, 

driving λ between states, but these are not our focus here. [18, 78–80]
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How do absolute free energy calculations differ from relative?—While absolute 

and relative free energy calculations have subtle differences in their practical applications 

(e.g., use of restraints, handling of the standard state), the fundamental ideas and concepts 

of relative free energy approaches remain unaltered in other types of alchemical calculations. 

Absolute binding, hydration, and partition free energies still use thermodynamic cycles that 

enable computing transfer free energies without actually simulating the physical transfer 

from one environment to another.

The main difference in these approaches lies instead in the thermodynamic cycle to which 

this strategy is applied. For example, a typical thermodynamic cycle for an alchemical 

absolute binding free energy calculation is represented in Fig. 6. In this case, two 

independent calculations compute the free energy of removing the interactions between the 

ligand and its environment in solvent or in the binding site respectively through a series of 

intermediate states in which the energy terms are only partially deactivated.

4 What can be expected from alchemical simulations?

When starting an alchemical free energy project, a key first step is to decide whether free 

energy calculations are really the right tool. Particularly, count the cost of your project: Can 

you even hope to tackle the problem with available resources and, if successful, will it be 

worth it in terms of human and computational cost?

4.1 How accurate are alchemical free energy calculations?

We first note that the accuracy of any free energy calculation method will depend on the 

quality of the underlying force field. Therefore, any description of the force field for the 

molecules under study must be carefully checked to be sufficiently accurate to experiment. 

In particular, one must make sure that if using automatically generated molecular 

descriptions from either one’s own workflow or some other computational chemistry 

program, there are no obvious problems in these files either through errors in the workflow, 

or lack of chemical coverage in the data used to construct the molecular description. 

Torsional parameters, in particular can be misassigned or improperly parameterized.

Alchemical free energy calculations involving small molecules seem to achieve, in favorable 

cases, root mean square (RMS) errors relative to experiment around 1–2 kcal/mol depending 

on force field, system, and a variety of other factors such as simulation time, sampling 

method, and whether the calculations employed are absolute or relative. A small selection 

of example datasets and case studies can be found in Sec. 11 at the end of this document. 

However, the domain of applicability is a significant concern [38, 39], especially for relative 

calculations, which typically require a high quality and usually experimental bound structure 

of a closely related ligand as a starting point. Additional factors such as slow protein or 

ligand rearrangements, uncertainties in ligand binding mode, or charged ligands can make 

these calculations far less reliable and more of a research effort.

It is worth noting that the accuracy of free energy calculations is highly variable across 

different protein targets, and likely across different ligand chemotypes as well. For instance, 

FEP+ with OPLS3 achieves an RMSE of 0.62 kcal/mol for a set of 21 compounds binding 

Mey et al. Page 10

Living J Comput Mol Sci. Author manuscript; available in PMC 2021 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to JNK1 kinase, but an RMSE of 1.05 kcal/mol for a set of 34 compounds binding to P38α 
kinase [81]. Furthermore, perturbations for the same chemotype in different pockets of the 

BACE enzyme gave varied errors [82]. Here the errors refer to the difference in ΔG derived 

from calculated ΔΔG’s while fitting a constant offset to best reproduce the experimental 

binding free energies for known compounds [15]. Each ΔΔG is associated with a particular 

free energy calculation or transformation, which can be thought of as an edge in the graph 

spanning the compound series, see examples of such graphs in Fig. 5.

The fact that we can analyze both ΔG values and ΔΔG values raises an important question 

about analysis – which calculated values should we assess? It is important to be clear on 

what error to report: ΔG after shifting by a constant to minimize the RMSE, unshifted ΔG, 

ΔΔG of computed edges, or ΔΔG of all edges. (See recommendations for reporting best 

practices, Sec. 8.7.) Additionally, as it is possible to perform calculations on a set of ligands 

using different pairwise comparisons of molecules, the performance of the method may be 

biased based on which pairs of comparisons are performed. Additionally, it is possible that 

the error associated with the relative free energy between a two ligands that was not directly 

computed, but can be deduced using one or more thermodynamic paths involving other 

ligands will likely be more uncertain. Given the need to understand the performance of the 

system with alchemical free energy calculations, we recommend that retrospective studies 

for a particular target and a particular chemical series be performed for each application 

case.

4.2 How reproducible are alchemical free energy calculations?

We restrict our analysis here to repetitions of the same calculation performed with precisely 

the same force field, as different force fields used to describe the same molecule can 

lead to wide differences in free energies in some cases. Even within this restriction, finite 

computing resources necessarily limit the generated number of uncorrelated samples of 

potential energy surfaces, and therefore alchemical free energy calculations only give free 

energy estimates to within finite precision. An important consideration is how reproducible 

alchemical free energy calculations are in practice. In simple cases such as absolute 

hydration free energies of small organic molecules, or relative hydration free energy 

calculations between structurally similar small organic molecules, it should be possible to 

obtain highly precise estimates with a given software package, i.e.with a sample standard 

deviation under 0.01 kcal/mol [83]. For more complex use cases such as protein-ligand 

binding free energies the repeatability is often substantially worse [83]. A good practice is to 

perform two or three runs of the same perturbation to assess precision with a given protocol, 

using different initial velocities. The sample standard deviation will give a crude estimate 

of the reliability of the estimates, and whether the precision is sufficient for the problem 

at hand. When practical, a more stringent test is to use different input coordinates for each 

repeat run as well as different velocities.

Note that these types of statistical differences concern calculations carried out with a single 

software package, but simulation package variations can introduce additional discrepancies. 

Such issues of reproducibility of free energy calculations across different simulation 

packages have attracted attention recently [51, 83]. Greater variability is expected between 
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packages due to methodological differences such as integrators, thermostats, barostats, 

treatment of long-range electrostatics, and potentially other factors. For absolute and relative 

hydration free energies of small organic molecules a variability of ca. 0.2 kcal/mol between 

popular simulation packages has been reported [51]. In the recent SAMPL6 SAMPLing 

challenge a larger variability of 0.3 to 1.0 kcal/mol was noted in the computed absolute 

binding free energies of host/guest systems even though the study sought to use identical 

input and simulation parameters [83] and, in many cases, single-point energies were 

identical or nearly so. Further work is needed to ensure reproducibility of alchemical free 

energy calculations across different software implementations to guarantee that force-field 

development efforts lead to transferable potential energy functions.

4.3 Is my problem suitable for alchemical free energy calculations?

Before even planning free energy calculations to study binding to a particular target, it is 

important to assess what is known about the system and its timescales and its suitability 

for free energy calculations, as well as the purpose of the calculations and the amount of 

available computer resources. In some cases, predicting accurate binding free energies for a 

particular target might be more challenging than simply measuring them! This is often the 

case when dealing with database screening problems, where compounds might be easily and 

quickly available commercially for testing and free energy calculations could consume far 

more resources. Free energy calculations thus typically only appeal when (slow or costly) 

synthesis would be required or experiments are otherwise cost-prohibitive.

Sometimes, however, free energy calculations can provide answers that are not readily 

available from experiments. For example, type II kinase inhibitors selectively bind to 

different kinases in the so-called DFG-out conformations [84]. The selectivity of such 

inhibitors may be attributed either to their differential binding to different kinases in the 

DFG-out conformations, or to different stability of the DFG-out conformations of different 

kinases.

Let KC be the equilibrium constant between DFG-in and DFG-out conformations of one 

kinase, and KD
*  be the dissociation constant of a type II inhibitor against this kinase, the 

apparent binding constant of this inhibitor against this kinase is then

KD = KD
* 1 + KC

KC
(14)

Since binding experiments cannot resolve KD
*  and KC individually, such experiments cannot 

address the basis of selectivity of the type II inhibitors. Absolute binding free energy 

calculations, in contrast, can take advantage of the slow kinetics of DFG-in/out conversion, 

and estimate the conformation-specific binding constant KD
* , thus yielding clues as to the 

source of selectivity.

4.4 Is the expected accuracy of the computation sufficient?

The requisite level of accuracy is another important consideration. If the goal is to guide 

lead optimization when many compounds will be synthesized, free energy calculations can 
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be appealing even with accuracies in the 1–2 kcal/mol range [85], but if the number of 

compounds to be synthesized is very small, this accuracy may not be enough to provide 

much value.

Here we provide a simple estimate of the value provided by alchemical free energy 

calculations in lead optimization. Let P(ΔΔG) be the probability distribution of the changes 

in the binding free energies of a new set of molecules during one round of lead optimization, 

and let P(ΔΔG†|ΔΔG) be the conditional probability of the binding free energy change 

computed by the free energy calculations, ΔΔG†, given the actual change ΔΔG. The latter 

conditional probability can be modeled by a normal distribution

P ΔΔG† ∣ ΔΔG = 1
2πσ2exp  −

ΔΔG† − ΔΔG 2

2σ2 , (15)

where σ signifies the accuracy of free energy calculations. Here we assume that there is 

no systematic bias in the free energy calculations, i.e., on average, the free energy change 

computed by free energy calculations agrees with the actual free energy change. Additional 

analysis of this type is presented in Brown et al. [86]

In lead optimization guided by free energy calculations, we will likely only synthesize and 

experimentally test molecules that are predicted to have favorable free energy changes. We 

are thus interested in how often a molecule predicted to bind stronger actually turns out to 

bind stronger. In other words, we are interested in the conditional probability:

P ΔΔG < 0 ∣ ΔΔG† < 0 . (16)

For illustrative purposes, consider a proposed set of new molecules, and assume that the 

changes proposed in these molecules yield a set of relative binding free energies that follow 

a normal distribution. That is, assume that the standard deviation in the relative binding free 

energies for the changes represented is RT ln 5 (corresponding to a 5-fold change in the 

binding affinities), and that 1 in 10 new molecules have increased binding affinity (ΔΔG ≤ 

0). Under such assumptions, the conditional probability in Eq. 16 can be easily computed.

If the accuracy of a collection of free energy calculations is σ = 1 kcal/mol, P(ΔΔG < 

0|ΔΔG† < 0) = 0.35, which means that out of every 10 molecules selected for predicted 

favorable free energy change, on average 3.5 molecules will have actual favorable free 

energy change. In other words, selection by free energy calculations yields 3.5 times more 

molecules of improved affinities than selection without free energy calculations under these 

assumptions.

Available computational resources and timescales of motion also factor into this initial 

analysis. An individual free energy calculation involves simulations at many different 

intermediate states (perhaps 20–40 or more) and each of these must typically be long enough 

to capture the relevant motions in the system. If such motions are microsecond events or 

longer, the computational cost of running 20–40 microsecond or longer simulations for each 
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of N ligands will likely be prohibitive for most users with today’s hardware. On the other 

hand, if key motions are fast and minimal (as is often assumed in practice), much shorter 

simulations may be sufficient.

4.5 Can I afford the calculation?

Furthermore, are available computational resources sufficient that throughput will be 

reasonable compared to needs of experimental collaborators working on this system? 

How many ligands (N) can you afford to handle given your computational resources? As 

cloud computing becomes more available, in-house GPU clusters may not be necessary if 

calculations are not run on a regular basis. This analysis should be done up front as part 

of “counting the cost” of involvement in a particular project. In some cases, the analysis 

may conclude that free energy calculations will not be feasible for the proposed problem. 

Here, by “cost”, we refer not just to financial cost of the calculations relative to experiments, 

but also time – can the calculations be run faster than experiments are done? How will the 

relevant resource and opportunity costs factor in? Both computation and experiment require 

human time, supplies (of different sorts), and equipment. In the extreme limit, for example, 

it would not make sense to spend a month running a binding free energy calculation if the 

equivalent experiment could be done in a day with resources already on hand. Such issues 

should be considered before deciding to conduct binding free energy calculations.

4.6 Is an exploratory study what I want?

An additional consideration is how much is known about your particular target, ligand 

binding modes in the target, and any relevant motions – essentially, has it been studied 

enough to know whether it might be suitable for free energy calculations? It is important to 

know if the system has hardly been studied, because should the initial calculations perform 

poorly, the effort may turn into an attempt to understand the relevant sampling, force field, 

or system preparation problems.

If you are unsure whether your project is feasible, as mentioned above, one recommended 

option is to conduct a short exploratory study to assess tractability for a small number 

of ligands. This can be sufficient to get an initial idea of feasibility and accuracy of the 

calculations for the proposed target [37].

5 How should alchemical simulations be applied to drug discovery?

Many practitioners expect alchemical methods to provide valuable guidance for drug 

discovery, and to exhibit accuracy superior to most alternative approaches for suitable targets 

[87]. Successful application in industry may require considerable knowledge of the “domain 

of applicability” of free energy calculations – where they work well and where they will 

not [39]. Successful application also requires robust protocols for preparing, submitting 

and analysing alchemical calculations. In this regard, the issues mentioned in the previous 

section such as understanding the suitability and timescales to capture the structure activity 

relationships (SAR), and performing up-front tests of performance are all relevant to drug 

discovery applications. Without venturing too far into details of system setup, which is 
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beyond the scope of this article, we highlight some critical factors affecting accuracy and 

successful application.

5.1 Capturing experimental conditions

The calculations aim to capture the alchemical change from one ligand to another as 

accurately as possible. Therefore, it is necessary to consider details of the experimental 

setup, such as pH. Biological assays are usually run at neutral pH but this is not always 

the case. For example, some enzymes exhibit pH-dependent activity and assays may thus 

be done in conditions other than neutral pH. Therefore, computational protein and ligand 

preparation protocols should reflect experimental pH.

The formal charge and/or tautomeric state of the small molecules can change within a series 

of analogs, necessitating care in treatment. Additionally, medicinal chemistry efforts might 

deliberately modify the pKa of a series to modify drug properties, requiring explicit efforts 

to incorporate these changes into alchemical calculations.

To ensure modeling matches experiment, we also need to accurately prepare and simulate 

the same system – which requires understanding what protein construct is used in the 

bioassay. For instance, does the X-ray structure that is to be used for the calculations match 

the construct used for screening (i.e. only the catalytic domain vs. full length, monomer vs. 

dimer, etc.) [88]? Also, were certain co-factors or partner proteins required in the bioassay?

5.2 Is my binding mode accurate?

As also mentioned, good performance of alchemical calculations requires an accurate 

representation of the ligand binding mode, usually from a high quality X-ray crystal 

structure. If more than one structure is available, the modeler should pay attention to 

choose the most suitable. The quality of the structure can be a concern, and the reader is 

referred to work of Warren et al. for a detailed discussion of choosing optimal structures for 

structure-based modeling [89].

It is also useful to study the structure activity relationship and understand the expected 

impact of any mutations on the binding site, such as whether side chain movement in the 

protein will be required, and whether there is evidence of this in any alternative X-ray 

structures of the same protein. Often, only one protein and water configuration is used for a 

series of alchemical calculations, so this needs to be capable of accommodating the smallest 

through to largest ligands in a way that allows stable and well behaved simulations. This 

can provide a practical limit on the alchemical changes that are feasible, though a simple 

work-around can be to separate compounds into sub-series for different calculations.

If multiple structures are available there is some evidence the higher affinity complex can 

give better match to experiment [90], at least in some cases. However, ligands and proteins 

can also undergo unexpected changes in binding mode for related ligands, which can make 

these issues more complex to deal with [16].
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5.3 Input setup and scale of calculations

In a drug discovery setting it is normal to consider dozens (or more) of ligands and it is 

necessary to align them in the binding site. There is no detailed study of how different 

alignment approaches may affect results, but the user should be aware of some practical 

considerations. Tools are available to compare the ligands and build the combined topologies 

that define the changes between one ligand and another [34, 91, 92]. In simple terms, 

providing poor alignment to these tools will make this job harder. Docking with restraints 

is often beneficial in this regard. Particularly, fixing the 3D spatial position of the scaffold 

using maximal common substructure (MCSS) restrained docking can help provide well 

aligned input for the topology generation. Nevertheless, in this case careful attention is still 

needed to ensure consistency of alignment for identical substituents. Another alternative is 

to manually edit the same core and add/modify the changing substituents. This provides 

assurances that coordinates for the non-perturbed portion of the structure remain identical 

and aromatic substituents, for instance, have consistent dihedral angles. However, it is not 

feasible for many compounds and therefore automation is desirable.

Finally, the role of water in ligand binding is not always well understood and it can 

be crucial to capture the changes in binding site solvation during ligand binding. Can 

crystallographic waters be retained? Do they clash with some of the larger ligands used 

in the alchemical perturbation? See Sec. 6.1 for different strategies that can be applied to 

dealing with waters. Generally, before launching large numbers of alchemical free energy 

calculations it is always recommended to test the system using classical MD simulations and 

limited numbers of alchemical perturbations. Metrics such as ligand and protein RMSD and 

RMSF can be inspected, along with visual inspection of simulations, to ensure the system is 

stable and likely to be suitable for alchemical calculations.

Running binding free energy calculations in a drug discovery application will typically 

require the use of software or tools to facilitate the large number of calculations. 

Commercial implementations such as FEP+, OpenEye Tools, or Flare allow for a fast setup 

and deployment to GPU hardware in minutes, but may have limited ability to customize 

calculations [15, 19]. Commercial tools can be expensive in some cases, but non-commercial 

tools are becoming more straight forward to use to run alchemical free energy calculations 

[17–19, 34, 91–93].

For relative free energy calculations, various graph topologies or maps of calculations are 

possible, and choices may depend on the target application. For instance, if the goal is to 

accurately assess the relative binding energy of a small number of compounds, possibly 

with challenging syntheses, the map of perturbations should contain as many connections 

between compounds as affordable. However, when running calculations on hundreds of 

compounds a so called star-map (see Fig. 5A) can be used that just contains one connection 

per compound: perturbing every compound to a central ligand, typically the crystal structure 

ligand [94]. In this way the top-ranking examples can be readily identified and submitted 

to additional calculations in a second round. Alternatively, if the goal is to achieve the 

smallest possible error with minimal computational expense, certain graph topologies 

provide benefits [95, 96]
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5.4 Making predictions, understanding errors

For prospective drug discovery applications there are several other considerations including 

understanding likely errors and taking selection bias into account.

It is crucial when proposing compounds for synthesis to have some idea of the underlying 

error or uncertainty in the predictions. A retrospective assessment can give an indication 

of prospective performance for similar molecules [97]. Beyond this, several parameters 

provide useful indicators of performance. For example error estimates provided by free 

energy estimators that are too large can highlight poorly converged simulations [90]. 

Hysteresis, either within cycles in the perturbation network or between forward and 

backward perturbations can be checked [98] to indicate problematic perturbations involved 

in cycles connecting many compounds (See also Secs. 7.1.1 and 8.5). Once synthesis and 

testing of compounds is complete a standard strategy is to look back at how the calculations 

performed. In this regard it is important to consider the issue of selection bias upfront. It 

is tempting to only synthesize the compounds predicted to be most active, thus a narrow 

range of calculated activity is tested that imposes limits on the statistical assessment of 

performance, ideally example molecules from across the range of predicted activity can be 

assessed or corrections can be applied based on previous recommendations [99]. For a more 

detailed discussion on checking the robustness of your alchemical free energy calculation 

see also Sec. 8.5.

In summary, the successful use of alchemical calculations, particularly for drug discovery, 

requires working in the domain of applicability, using a high quality X-ray structure of the 

target bound to compounds in the series, and testing the approach retrospectively to ensure 

the system setup is well-behaved. Always assess your confidence in the resulting predictions 

and communicate this when discussing with experimentalists. Consider performing repeat 

calculations for at least some of the perturbations in the study. There are many accounts of 

success of alchemical calculations, the methods show good performance towards the goal of 

binding free energy prediction. However, it is important to have realistic expectations.

Structure based drug design projects are often capable of improving potency relatively 

quickly, even with only limited application of computational approaches and the range 

of activity narrows to just two-to-three log units. It may seem hard to have impact with 

substantially different, more potent, stand-out compounds in this scenario, but binding free 

energy predictions can still be extremely useful for ensuring activity is maintained as other 

properties are optimized. An interesting cost benefit analysis has shown the value of activity 

prediction, see discussion above and articles such as [85]. From a drug discovery point 

of view, alchemical calculations are expanding their domain of applicability, and there 

are reports of success using homology models [100] and GPCRs [101, 102] for instance, 

as well as enabling charge change and scaffold hopping [103, 104], but these systems 

are undoubtedly more difficult. In the meantime, use cases are expanding to resistance 

prediction, selectivity prediction, solubility prediction – an exciting future for alchemical 

calculations [6, 105, 106].
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6 Simulation prerequisites

Alchemical free energy protocols as discussed below (Sec. 7) are defined for a specific type 

of free energy calculation, i.e. a free energy of binding or a free energy of hydration. 

Different types of simulations require different choices for ligands, solvent, and host 

molecules (in the case of the estimation of free energies of binding).

6.1 Free energies of binding

In principle, in the limit of sufficient configurational sampling, the free energy changes 

estimated from an alchemical free energy calculation should be independent of the system’s 

initial coordinates. However, in practice, because simulations are of finite duration (typically 

1–100 ns per state at present), this is only true for certain classes of alchemical free energy 

calculations such as relative or absolute free energies of hydration of small and relatively 

rigid organic molecules. Protein-ligand complexes typically exhibit slowly relaxing degrees 

of freedom that significantly exceed the duration of an alchemical free energy calculation, 

and host-guest calculations can be susceptible to these issues as well, depending on 

timescale and system. It is therefore generally important to carefully select input coordinates 

to obtain satisfactory results. The following questions may be relevant before diving into the 

simulation setup.

• Do I have one or multiple good receptor structures? (e.g. a good resolution X-ray 

crystal of the protein target)

• Do I have information on one or all of the ligand binding sites? (e.g. an X-ray 

structure)

• Should I include buried waters, or other small molecules that can be found in an 

X-ray structure?

• Are my ligands part of a congeneric series? (i.e. simple R group substitutions 

around the same scaffold)

Are there good X-ray structures available?—As with any simulation, care should be 

taken in selecting available X-ray structures in the Protein DataBank [107]. In some cases 

it may be wise to choose multiple starting structures to account for variability in receptor 

conformations as well as the accuracy of available X-ray structures. Typically, clustering 

of receptor structures can be used to identify different receptor conformations near the 

binding site, as well as assessing relevant side chain placements from the X-ray structure, 

see for example [16]. In terms of set up and other choices, following general best practice 

guidelines is advisable [41].

Many free energy calculations focus on a congeneric series of ligands, which can make these 

calculations suitable for relative free energy protocols (see Sec. 7). For relative calculations, 

some care has to be taken selecting binding poses for these ligands. Generally, a common 

assumption for a congeneric series is that the binding mode is conserved. Therefore, if 

an X-ray structure of one of the ligands is available, this should be used to position the 

ligands in the putative binding site in an energetically reasonable conformation without 

steric or electrostatic mismatch with the receptor. Checking the X-ray structure versus 
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the experimental electron densities is important, as the position of part of the ligand or 

important sidechains may be based on the interpretation of the crystallographer rather than 

the available electron density, especially in cases of missing density. For example, looking at 

a cyclohexane ring density, a chair configuration is vastly more likely than that of a boat and, 

if a boat configuration is present in the structure, it may be worth inspecting the density to 

ensure it adequately supports this choice.

Are you prepared to deal with any binding mode challenges?—Generally, 

binding modes within congeneric series are conserved [108], however, exceptions exist 

[109, 110], as discussed in more detail in Sec. 7.2.6. Certain functional groups may be 

particularly prone to this due to symmetries or near symmetries. One such issue involves a 

180 degree flip in the dihedral angle of an aromatic ring, or five-membered ring leading to a 

different spatial position of ortho- or meta- substituents that otherwise should overlap within 

a series. The 180 degree flip of the ring may not occur enough during simulations (due 

to steric obstructions) to overcome bias due to the starting configuration. Another scenario 

may be equatorial and axially substituted saturated rings (e.g. cyclohexane derivatives). This 

situation may be addressed by explicitly modelling different binding modes of the same 

ligand and combining later computed free energy differences for different binding modes 

into a relative free energies of binding [111].

Have you considered stereoisomers and enantiomers?—Congeneric series can 

contain stereoisomers or enantiomers which can bind very differently, resulting in large 

errors if treated incorrectly. For racemates, the relative abundance of each stereoisomer 

is normally not known. Therefore, the experimental activity associated with just one 

stereoisomer/enantiomer is more uncertain. However, the modeling typically uses just the 

bioactive conformation that best fits the active site. Clearly this introduces potential for 

larger errors compared to experiment. Nevertheless, if all compounds in the congeneric 

series are racemic, originating from similar synthetic procedures with an expected similar 

abundance of stereoisomers, then the differences may cancel and the trend in calculated and 

observed binding energies may be robust. Despite this, we can see that care and further 

testing is needed in this scenario, and the quality of the predictions may suffer. Additionally, 

unexpected changes in what stereoisomer binds experimentally, if they occur, could pose 

significant challenges for modelling efforts.

Conserved binding site waters can play an important role in binding free 
energies—Binding site water molecules may form water mediated protein-ligand 

interactions which can pose challenges whenever exchange with bulk water is slow 

compared to simulation timescales. This happens typically in buried binding sites. 

Overlaying multiple protein X-ray structures can identify conserved or additional water 

molecules that can be useful to include in calculations. In cases where water molecules are 

known to play an important role in the binding, software implementations that use water 

sampling facilitated by Grand Canonical Monte Carlo methods may be useful [112]. Other 

tools such as WaterMap or open source equivalents (SSTMap, GIST, and others) can be 

used to define water structure for systems with no experimental evidence of water sites 

[113]. Well-known protein systems with water mediated ligand interactions are for example: 
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HSP90 which formed part of the D3R grand challenge 2015 [16], A2A [114], MUP [115], 

[101], and others [116].

Protonation states depend on the pH of the experimental assay—Care should 

be taken when preparing ligands and proteins to match the pH of the experimental assay, 

if known. As mentioned above in Sec. 5.1, the pH of the assay can differ from neutral 

pH and will determine the protonation states of the proteins and ligands. Since the pKa of 

reference amino acid sidechain residues is known, but can vary in the protein environment, 

many different tools have emerged for predicting sidechain pKa in proteins, such as the 

H++ server, ProPKa, APBS, and Maestro [117–120]. Strongly acidic (Glu, Asp) or basic 

(Arg, Lys) sidechains can reliably be predicted to be ionized, but care is still needed as the 

local environment can modify expected ionization states, such as the catalytic Asp dyad in 

proteases. Histidine is notoriously more difficult to predict as its pKa suggests it ionizes 

closer to the experimental pH range. For ligands, often the pKa needs to be determined, if 

it is not known experimentally. There are many different available tools for this purpose, 

but common choices may be propKa [118, 121], Chemicalize (https://chemicalize.com/

welcome), or Maestro [120]. Still, accurate pKa prediction for small molecules remains a 

challenging problem, even with dedicated tools [122]. While often it can be assumed that the 

protonation state of a ligand and protein will remain the same as the ligand binds, some care 

needs to be taken with systems where the protonation state may change upon binding [123]. 

BACE [124], for example, famously undergoes a protonation state change on ligand binding.

Congeneric series often need alignment—Input coordinates for a congeneric series 

may be generated by docking calculations, or by ligand alignment using MCSS algorithms. 

The latter tends to produce alignments that are more conserved and more consistent free 

energy changes across a dataset, but will struggle to yield reasonable results for relative 

binding free energy calculations that involve a significant binding mode rearrangement. 

This may also lead to steric clashes with the receptor coordinates of the reference ligand if 

structural rearrangements are needed to accommodate different members of the congeneric 

series. Small steric clashes may be resolved during subsequent simulation equilibration prior 

to data collection, but there is a risk that the complex relaxes to an alternative metastable 

state.

An additional consideration arises for single topology relative free energy calculations. In 

this class of alchemical free energy calculations it is necessary to generate a molecular 

topology that may describe the initial and final states of the perturbation (see Fig. 3). In 

cases where the end states have high topological similarity and high structural overlap this is 

relatively straightforward and typically handled by use of MCSS calculations. In situations 

where the end state topologies differ significantly, or where there is relatively little spatial 

overlap between the two end states, some user intervention may be necessary to produce a 

satisfactory input topology.

If the binding site location is uncertain but the structure of the receptor is well defined 

and plausible binding sites are identified, it may be more useful to choose an absolute free 

energy protocol to compute the standard free energy of binding of the ligand to a set of 

binding sites. This requires the user to prepare input files describing the bound conformation 
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in different putative binding sites [125]. The apparent binding free energy of the ligand 

may be obtained by combining the individual binding site free energies, which also indicate 

where the ligand is more likely to bind. In this case a docking program can generate initial 

structures. Different commercial and non-commercial tools are available, such as rDock 

[126], Autodock Vina [127], Glide [128], or Flare, to name a few [19].

If the putative binding sites are not apparent, for instance due to significant induced-fit 

effects, it may be challenging to obtain meaningful free energies of binding. One may have 

to account for the free energy cost of forming a binding site in the target receptor which may 

not be feasible on alchemical simulation timescales.

6.2 Free energies of hydration or partition coefficients

Preliminary considerations necessary for using free energy methods to compute partition 

coefficients are generally more straight forward. For example, a 3D minimised structure of 

a solute can be generated with a simple tool such as openBabel and solvated to prepare 

the input to compute a free energy of hydration [129]. However, in these cases a careful 

choice of forcefield for the organic solvent model, as well as water model is essential. See 

for example [3, 4] for a good discussion of these choices. And, while sampling problems 

might seem to be a non-issue for small molecules, this is not always the case; e.g. even 

the hydroxyl orientation on neutral carboxylic acids can occasionally pose a challenge [130, 

131].

7 What simulation protocol should I choose?

Alchemical free energy calculations can be grouped into two main categories, “absolute” 

(see Fig. 6) and “relative”2 (see Fig. 2), which differ in whether they compute properties 

for a single molecule (absolute) or compare properties of different, usually closely related, 

molecules (relative). To use binding as a concrete example, in absolute binding free energy 

calculations, we compute the binding free energy of a ligand to an individual receptor 

relative to a standard reference concentration. In contrast, in relative binding free energy 

calculations, we compare the binding free energy of two related ligands to determine the 

potency difference.

7.1 Absolute and relative free energy calculations have important differences

Many of the issues around simulation setup and protocol choice for alchemical calculations 

are common, but there are some differences between absolute and relative calculations. We 

will consider protocol differences before treating the common elements.

7.1.1 Choices unique to relative free energy calculations

Topologies: A critical first step is to determine which approach to use for atom mapping 

between end state molecules. Often this is predetermined by the choice of simulation 

software. Typically it is possible to chose between a dual topology versus a single topology

2The distinction is a bit of a misnomer, since both compute ratios of partition functions relative to another state and in that sense are 
relative, while neither computes an absolute free energy.
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The distinction between single and dual topology can be illustrated by considering a 

hypothetical transformation from molecule A to molecule B, where both atoms share a 

common substructure but differ in their substituents; in particular, consider a transformation 

of benzene to benzyl alcohol shown in Fig. 3. In this case the common substructure between 

the two molecules is the benzene ring, though in practice substructure may be selected to be 

larger depending the mapping chosen, as we discuss below.

In single topology calculations, the overall transformation is set up to involve as few 

additional atoms as possible, so benzene would be typically changed into benzyl alcohol 

by first changing one of the hydrogens into a carbon. The site of this transformation will 

also be the future home of two additional hydrogen atoms bound to the new carbon, so these 

must initially be present as non-interacting atoms called “dummy atoms”, which retain their 

bonded interactions but do not interact with the rest of the system. Bond parameters as well 

as partial charges between the changing atoms are adjusted accordingly between the initial 

and final state. Thus, in a single topology calculation, atoms may change their type, ensuring 

minimal dummy atoms are created. This is illustrated in the left arm of Fig. 3.

In contrast, in a dual topology alchemical free energy calculation, no atoms are allowed 
to change type [44, 132]. This means that the benzene to benzyl alcohol transformation 

involves starting with benzene plus the non-interacting dummy atoms making up the 

hydroxymethyl group, then passing through an intermediate state where some atoms 

are partially interacting—particularly, those atoms which are becoming dummy atoms or 

ceasing to be dummy atoms [133]. The transformation finally culminates in a state where 

benzyl alcohol is present along with the additional dummy atom which was previously 

a corresponding hydrogen of the benzene. Fig. 3‘s right branch depicts how such a dual 

topology works.

As far as we are aware, the distinction between single and dual topology approaches is made 

primarily for two main reasons. First, this choice affects the alchemical pathway followed, 

and thus may affect convergence properties—though we are not yet aware of a study of 

the relative efficiency and merits of these two approaches. Additionally, historically, some 

simulation packages implemented only one approach and not the other, meaning that the 

distinction was functional.

Some additional terms have also been employed to talk about these different intermediate 

pathways. Particularly, some studies refer to a “hybrid” topology approach to free energy 

calculations [10, 18, 92], though this term may not yet have achieved widespread use. In this 

case, “hybrid” seems to indicate that the set up of these free energy calculations involves 

a hybrid of the two molecules, and much of what is done in these studies uses a single 

topology approach [18].

One final approach, so far in its infancy, has been called “separated topologies” and 

essentially consist of two absolute free energy calculations in opposite directions at the 

same time, turning one molecule’s interactions with the environment off, while turning the 

other molecule’s interaction on [134, 135].
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Software packages vary in their use of single or dual topology approaches; for example, 

AMBER TI uses a dual topology approach, while BioSimSpace uses a single topology 

approach. Please make sure to check what approach is used with your software package 

of choice, or whether it supports your choice of approach (GROMACS and GROMOS, for 

example, support both). To our knowledge, efficiency differences have not been thoroughly 

explored, though conventional wisdom suggests that fewer dummy atoms are better, as 

introducing or removing atomic sites is usually more difficult, requiring more intermediate 

steps [85, 136].

Atom mapping: Once a particular approach to the topology is selected, a crucial next step is 

to identify the common atoms which will not be perturbed. Rigorously, this process typically 

comprises a MCSS search of the molecules involved to identify the common substructure—

though the parameters of the MCSS search will differ depending on whether single or dual 

topology calculations are planned. Specifically, with a single topology approach in mind, 

atom types are allowed to change, so a permissive MCSS search can be done, whereas with 

dual topology a more strict search is required.

There are different tools that allow the generation of MCSS matches as well as single 

topology input. A large number of software tools can compute MCSS matches using 

different cheminformatics packages. Some rely on RDKit [137], such as pmx [92], LOMAP 

[136], FESetup [91] and partially BioSimSpace [34], while others such as fkckombu [138] 

are standalone tools. Schrödinger’s FEP+ planning tool was originally based on a version of 

LOMAP, and it also uses MCSS matching as well as 3D considerations to plan the network 

of single topology calculations between molecules [15].

MCSS searches can be relatively time consuming, so if the goal is to assess a library of 

ligands to identify promising pairs for relative calculations, it can be helpful to use faster 

approaches such as shape similarity to perform an initial similarity assessment and then 

use MCSS only to identify final mappings for relative calculations [139–141]. The MCSS 

approach, though relatively standard, takes into account only topological similarity. It is 

possible that changes in binding mode could actually require a different choice of mapping, 

so in some cases mappings may need to be planned differently depending on 3D positioning 

of atoms in space. Visual inspection prior to simulation is recommended to ensure that the 

mapping criteria correspond to the expected binding mode. If the mapping protocol returns 

simulations that correspond to different binding modes of a ligand within a perturbation 

map, this can cause large hysteresis.

Single topology relative calculations and calculations based on substructure searches only 

work if in fact the ligands share a common substructure, e.g. are part of a congeneric 

series, see Fig. 4. If no common substructure is shared, then alternative dual or separated 

topology free energy calculations are needed. One would co-localize a pair of compounds in 

a binding site, exclude their interactions with one another, and compute the relative binding 

free energy by turning one molecule on from being dummy atoms while turning the other 

off. To our knowledge no general pipeline for such calculations yet exists and this would 

likely remain a research problem. Using an absolute free energy approach instead seems 

more promising in such a case.
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Ring breaking and forming.: Relative free energy calculations for ring breaking and 

forming are particularly challenging/problematic (see Fig. 4B), in part because relative 

calculations rely on the free energy contributions of dummy atoms canceling between 

different legs of the thermodynamic cycle, which may not be true whenever dummy atoms 

are involved in rings [142]. Some approaches have attempted to address this [143] but a 

general solution is not yet in mainstream use. Still, FEP+ implements one solution.

Perturbation maps: Based on the input ligand series, a perturbation map or network can 

be planned. Recent heuristics have shown the more connected the perturbation network the 

better. However, there is a way to optimize network structure while minimizing the number 

of perturbations that need to be computed reducing the resulting computational cost [95, 

96]. Sometimes the introduction of intermediates that are not part of the original congeneric 

series are essential to avoid ring breaking, or to deal with perturbations that would otherwise 

result in large numbers of atoms being inserted or deleted. Some commercial tools have 

good underlying heuristics but may fail with complicated input, needing user validation in 

particular when dealing with chiral compounds.

In some cases, during the lead optimization stage, or for very large datasets that would 

benefit from rougher initial free energy ranking, or in cases where perturbations would be 

rather large, a star shaped network as seen in Fig. 5 A is used. However, adding redundancy 

into the network means that a better error analysis can be carried out by looking at cycle 

closure errors as discussed in sec. 8.5, with an example given in Fig. 5B.

Methods from experimental design have been applied to the construction of the perturbation 

maps. Yang et al. [95] showed how to optimize the perturbation map by selecting a 

fixed number of calculations from the pairwise perturbations so that the resulting set of 

calculations minimize the total variance. Xu [96] showed how to optimize the perturbation 

map by allocating different amounts of simulation time to different pairwise perturbations 

so as to minimize the total variance, given the total simulation time of all the perturbation 

calculations. Both approaches lead to substantial reduction in the statistical error of the 

estimated free energies.

Constraints and relative free energy calculations: One issue which requires particular 

care is the use of constraints. Commonly, bonds involving hydrogen are constrained to 

a fixed length using algorithms such as SHAKE or LINCS, allowing the use of longer 

timesteps [144]. However, in single topology relative free energy calculations, the atoms 

involved might be mutated to other atom types—for example, in a mutation of methane 

to methanol, one hydrogen might become an oxygen atom. The bonds with such atoms 

might not have any constraints, or if all bond are constrained, would have constraints 

of different lengths. Some molecular dynamics engines are not set up to recognize this 

change, or at least not to correctly include contributions to the free energy from changing 

constraints/-constraint length, so results for a transformation can be erroneous. At present 

the most general solution to this problem is simply to avoid the use of constraints (and 

thus use a smaller timestep if necessary, usually of around 1 fs) in any relative free 

energy calculation involving a transformation of a constrained bond. Individual software 

programs and settings can handle such issues. For example, bonds can be transformed 
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in both GROMACS and GROMOS, because contributions of LINCS (GROMACS) and 

SHAKE (GROMOS) constrained bonds are added to the dH
dλ  term [145–148]. However, 

the constraints are not taken into account when calculating energy differences to other 

intermediate states as the effect is entropic, not energetic. User manuals should carefully 

checked for how these effects are included if a constrained bond changes in length. We do 

note that if one performs calculations of the changing constraint in both solution and in the 

binding site, then the errors often cancel substantially, but the cancellation is not guaranteed.

7.1.2 Absolute free energy calculations must handle the standard state 
and use restraints—Absolute free energy calculations involve completely removing 

the interactions between the ligand or solute and its environment, taking it to a non-

interacting state that may or may not retain intramolecular non-bonded interactions. This 

non-interacting state can then be shifted between environments—from the protein to water, 

or from one solution to another—without changing its free energy other than that due to 

the changing volume of the simulations, and then interactions can be restored in the new 

environment.

Absolute free energies are by definition reported with respect to a specific reference or 

standard state, which effectively determines the arbitrary point at which the free energy is 0. 

The role of the standard state is particularly evident from the expression of the binding free 

energy between a receptor R and ligand L

ΔG = − kBT  ln  c∘Kb = − kBT  ln  c∘ [RL]
[L][R] . (17)

Here, the reference state concentration c∘ converts the binding constant Kb into a 

dimensionless quantity expressed in reference concentration units. It should be noted that 

ignoring the term c∘ is equivalent to assuming a reference concentration of 1 D−1, where 

D are the units used to express Kb and would thus cause the value of ΔG to vary with 

the choice of the units. It is convenient to define a standard state at a constant pressure of 

1 atm and where each chemical species (i.e., R, L, and RL) in the reaction solvent has a 

concentration of c∘ = 1 M = 1 molecule/1660 Å3 but do not interact with other molecules of 

R, L, or RL.

Handling the standard state in absolute free energy calculations.: For solvation free 

energy calculations, handling the standard state is typically straightforward, and treating it 

correctly simply means ensuring that the non-interacting solute still occupies essentially the 

same volume as the solute in the interacting system. So typically in such cases no special 

care is required to ensure the correct standard state, as long as the experimental data being 

analyzed uses the same standard state. If this is not the case, a simple entropic correction to 

the free energy of kBT ln(Vf/Vi) = kBT ln(Ci/Cf) to the experimental data is needed.

For binding, however, the situation is more complex and requires special care. Because the 

simulations are typically performed using restraints and at concentrations that are different 

from 1 M, the expression of the free energy requires the following correction [60] (see an 

example of such a thermodynamic cycle in Fig. 6)
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ΔGrestr
∘ = − kBT  ln  c∘V L − kBT  ln  ξL

8π2 , (18)

where VL and ξL are respectively the volume of the translational and rotational degrees of 

freedom of the non-interacting ligand in the simulation box. When no restraints are used, 

the non-interacting ligand is free to translate and rotate in the simulation box (i.e., VL = 

Vbox and ξL = 8π2), and the rotational term is zero. A sufficiently thorough exploration 

of the simulation box by the non-interacting ligand is, however, required for the formula 

to be valid. This is typically hard to achieve as the exploration process is governed by 

diffusion, and weak transient nonspecific binding will occur at other sites on the protein. 

The addition of a restraint limits the volume available to the non-interacting ligand, thus 

speeding the convergence of the sampling. In addition, when enhanced sampling methods 

such as Hamiltonian λ exchange are used (see Sec. 7.2.4), the use of a restraint is typically 

necessary as it keeps the ligand in the binding site in the interacting state (see also Sec. 

7.2.1) and generally reduce the round-trip time of replicas. When restraints are employed, 

the values of VL and ξL are restraint-dependent, but for commonly employed restraints, 

these can be usually easily computed analytically or numerically by solving the relevant 

integral.

Several choices of restraints are possible.: In practice, a variety of types of restraints are 

common, from simple harmonic distance restraints between the ligand and the protein [149], 

to flat-bottom restraints which work similarly but only exert a force if the ligand leaves a 

specific region [150]. Because these restraints do not limit the rotational degrees of freedom 

of the ligand, the rotational term entering the correction in Eq. 18 is zero.

Alternatively, a set of restraints proposed by Boresch have also commonly been employed, 

where all six rigid-body degrees of freedom governing the orientation of the ligand relative 

to the receptor are restrained [151, 152]. Further restraints, such as on the overall ligand 

RMSD have also been used [72].

In principle, all of these forms will yield correct binding free energies in the limit 

of adequate sampling if their effects and connection to the standard state are correctly 

handled, but they have different strengths and weaknesses. For example, with more involved 

restraints, sampling at intermediate λ  values will usually not need to be as extensive but 

more computational effort must go to computing the free energy to turn on the restraints. 

Additionally, such restraints would typically keep the ligand from exploring alternative 

binding modes. This restriction may be undesirable when using Hamiltonian λ exchange or 

expanded ensemble techniques where allowing the ligand to exchange binding modes when 

it is non-interacting could provide sampling benefits [153]. More specifically, flat-bottom 

restraints might allow a ligand to explore multiple binding sites, and harmonic restraints 

allow exploration of multiple binding modes within a site, while Boresch restraints only 

allow a single binding mode within a single site. See additional discussion of the possibility 

of multiple binding modes in Sec. 7.2.6 below.
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Many choices of restraints involve selecting reference atoms. Again, in principle this 

choice is unimportant given adequate simulation time but practical considerations may 

be important. The choice is likely especially important with Boresch-style restraints, 

where some relative placements of reference atoms are likely to be numerically unstable; 

additionally, ligand reference atoms should likely be in a part of the molecule which defines 

the binding orientation well, rather than in a floppy solvent-exposed tail, for example.

7.2 Absolute and relative calculations deal with some of the same issues

7.2.1 Handling weak binders and high dissociation rates—In binding free 

energy calculations, only the conformations in which the receptor and ligand form a bound 

complex should be sampled from the bound states (Sec. 3). Determining what the bound 

states actually are can be challenging for weakly bound ligands. For tightly bound ligands, 

virtually all reasonable definitions of the bound state will lead to be equivalent free energies, 

since the partition function will be dominated by a relatively small number of low-energy 

poses.

For weak binders, this simplification breaks down. In fact, the correct bound state may 

depend on the type of experiment performed. For example, isothermal titration calorimetry 

(ITC) or surface plasmon resonance (SPR) measurements effectively define a binding state 

that includes all ligand comformations that are complexed with the protein, regardless of 

where on the protein they bind. In contrast, fluorescence polarization competition assays 

measure binding to only a single location, where the ligand of interest displaces a competing 

binder. Therefore, care must be taken to ensure that a reasonable definition of the binding 

site is used [153].

In absolute calculations, this need to explicitly define a binding site applies to the fully 

interacting state in the complex leg of the thermodynamic cycle (top-right state in Fig. 6), 

while in relative calculations the binding site must be defined at both end states of the 

complex leg (top- and bottom-right states in Fig. 2). In principle, this requires defining 

which conformations are considered to be bound before running the calculation, but it is 

common practice to start the simulation with the ligand already placed in the binding site 

and rely on kinetic trapping to maintain the bound complex.

However, this strategy of using kinetic trapping to maintain the bound complex can fail 

when the dissociation rate of the ligand has the same or smaller order of magnitude than 

the length of the simulation. This is typical of weak binders such as fragments binding 

shallow pockets with μM-mM affinities [62, 154]. In the case of weak binders, using a 

flat-bottom or harmonic restraint between receptor and ligand in the bound state(s) can 

prevent dissociations [83, 154]. We stress that this type of restraint is normally avoided 

as it generally introduces bias in the free energy estimate, which is why the restraint is 

usually activated only in the intermediate states in absolute calculations. The bias can be 

corrected through reweighting schemes [83], but this post-processing step can be avoided 

if a flat-bottom restraint is used and the ligand is never sampled while hitting the potential 

wall during the simulation in the bound state as the numerical correction will be exactly 

zero. It is important to note that the spring constant and/or radius parameters of the restraint 

effectively determine which conformations are considered to be bound. As a consequence, 
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these parameters must be tuned to the system so that only the binding site is accessible to 

the ligand. Again, this step is particularly important for weak binders as their free energy of 

binding is known to be more sensitive to the definition of the binding site [60].

In absolute calculations, this restraint can substitute or be added to the restraint used to 

handle the standard state correction (Sec. 7.1.2). In the latter case, however, care must be 

taken when computing the standard state correction. When multiple restraining potentials 

are active in the non-interacting state, the correction can generally be computed only 

through numerical integration. Alternatively, one can adopt a protocol that removes the 

bound-state restraint in the non-interacting state. Finally, even for tight binders, dissociation 

events can be enhanced by methods such as Hamiltonian replica exchange [153, 155, 156] 

and expanded ensemble [157, 158], especially in absolute free energy calculations using 

harmonic or flat-bottom restraints. In the latter case, dissociations can be averted simply 

by increasing the spring constant and/or reducing the radius of the restraint potential to 

prevent the exploration of ligand conformations outside the binding site in the decoupled 

state (bottom-right state in Fig. 6) that could be propagated to the bound state.

7.2.2 Changes in net charge can be challenging/problematic.—If the net charge 

of the system changes as the alchemical variable changes during the calculation, this 

can pose major challenges. Specifically, finite-size effects can introduce significant charge-

dependent artifacts into computed binding free energies, in part because typical schemes 

for long-range electrostatics (including PME and reaction field) do not handle free energy 

contributions from such changes effectively or as they would be handled in a hypothetical 

macroscopic bulk solution [159–161].

There are two main potential solutions to avoid artifacts due to changes in net charge: 

avoiding changing the net charge, and correcting for the introduced artifacts.

Many relative free energy planning tools have been set up to avoid changing the net charge 

of the systems considered, including LOMAP [136] and Schrödinger’s FEP+ [15]. Absolute 

free energy calculations can also potentially avoid changing the charge of the system by 

making a charge perturbation of equal and opposite sign elsewhere in the system; for 

example, as a charged ligand is removed, a charged counterion of opposite sign could also 

be removed, or one of the same sign could be inserted. This is sometimes referred to as an 

“alchemical ion” approach for dealing with the needed charge change, and is also employed 

by the Yank free energy package [153]. Charge corrections have also been explored, and 

are potentially a viable solution to this problem [162] where artifacts introduced by finite-

size effects are corrected numerically [103, 160]. However, application of such corrections 

typically remains less common than the use of a coalchemical ion. A third approach has 

been proposed by Gapsys et al. [163] which uses a double-system/single box setup.

When free energy calculations do need to change the charge of a ligand or solute, the 

literature does not yet seem to indicate what approach should be preferable, so considerable 

care should be taken. We are not yet aware of a careful comparison of charge corrections 

versus other approaches such as decoupling an ion at the same time, so in our view the issue 

of proper handling of charge mutations in the context of alchemical calculations remains 
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a research problem, and several papers give good guides for exploring the problem further 

[159–161].

7.2.3 The importance of the alchemical pathway—Both absolute and relative 

calculations must choose an alchemical pathway connecting initial and final states. In 

principle, because of the path independence of the free energy, any arbitrary pathway 

will give the correct free energy change, but the choice of pathway will greatly affect 

the efficiency of the calculations. Some choices are particularly crucial—for example, 

transformations involving insertions or deletions of atoms should employ a soft-core 

potential path for Lennard-Jones or other interactions with repulsive interactions that go 

to infinite energy at small radius [164–166].

The key consideration for choosing alchemical pathways is that the intermediate states that 

a given pathway produces should sample configurational ensembles that change as slowly as 

possible as λ  changes, while still managing to go from the initial state to the final state as λ
goes from 0 to 1.

Another way of stating this is that intermediate states should sample molecular 

configurations that are as similar as possible to their neighboring states. The more similar 

the configurations are between intermediate states, the lower the statistical uncertainty is in 

the estimate of free energy between intervals. This can be proven directly from the BAR 

and MBAR formulas [25, 43], though the exact same principles apply for TI. For a ‘good’ 

path to work and give a sequence of states with maximally similar configurations, sufficient 

similarity in potential energies is required. Fig. 7A and B illustrate this. Fig. 7A shows in 

a pictorial way a soft-core potential can be applied across different λ s. Fig. 7B illustrates 

the potential energy distributions at the different λ  intermediates, with sufficient overlap 

between neighboring λ  states to ensure that reweighting estimators such as MBAR can be 

used for analysis (see Sec. 8.3). The actual transformation is best handled with soft-core 

potentials of the form shown in Fig. 7 C and B, with more details given below.

So what are the options to adjust the potentials between the two end states based on λ ? The 

simplest possible alchemical pathway is a linear pathway:

U( q , λ ) = (1 − λ )U0( q ) + λ U1( q ), (19)

so-called because the dependence on λ  is linear. This clearly satisfies the basic requirement 

that it gives the initial endpoint potential energy U0( q ) when λ = 0 and final endpoint 

energy U1( q ) when λ = 1.

For many energy terms this is a very good approach, as long as a repulsive core remains 
on. For example, it can be shown that if van der Waals repulsions are left on, then the 

linear approach is very nearly the optimal path possible for changing, removing, or inserting 

the electrostatic energy terms, with the alchemical path being within about 10–20% of the 

minimum possible uncertainty [167] for a fixed amount of simulation time, as well as being 

nearly optimally efficient for van der Waals attractive terms with repulsion terms turned on 
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[168]. Although we are not aware of any quantitative tests for dipolar or higher multipole 

terms, theoretically it should behave equally well for those systems.

However, this approach ends up being terrible for removing or adding repulsive potentials 

that go to infinity quickly at or near the origin. One way to look at this is to examine 

how low λ  values must go to reduce the energy at 0.5σ (the atomic size parameter) down 

to 1 kBT, where thermal fluctuations make it possible for other atomic sites to penetrate 

routinely that deep. Assume we are trying to go from a particle being present, and desire 

to make it disappear alchemically. If the repulsive terms are of the form ϵ σ
r

12
, and if ϵ is 

1 kBT at the temperature of interest, and we start with the particle present, we may solve 

for (1 − λ ) 1kBT σ
0.5σ

12
= 1kBT . This yields λ = 1 − 2−12 0.999976. At this point, we have 

gone virtually all the way to the end of the transformation, but there is still an impenetrable 

post in the middle of our simulation! This is not very much like the desired final state of 

no interactions between the particle and its environment. We can play around with a few 

ways of modifying this, like simulating many more intermediate states near λ = 1. However, 

various analyses have shown that this is not a very good strategy [164, 166, 169–171].

What we need instead is a function that smoothly gets rid of this infinity. A large number of 

schemes have been tried [164, 168–173], but the most common strategy that appears to be 

the best practice is to use a “soft-core” potential, of the form:

U r ij, λ = 4ϵijλ 1
α(1 − λ ) + rij/σij

6 2 − 1
α(1 − λ ) + rij/σij

6 , (20)

where rij is the distance between two particles i and j, ϵij and σij are the Lennard-Jones 

parameters corresponding to the interaction between particles i and j, and α is a constant. 

In particular, α = 0.5 is statistically optimal for the specific functional form shown above. 

This functional form has exactly the property we are looking for: it recovers the Lennard-

Jones potential when λ = 1, and the at other endpoint (λ = 0), it is exactly zero for all rij 

everywhere, and as λ  goes to zero, the α(1 − λ ) term lowers the infinite energy in the core. 

There are several different variants of the same functional form [164, 169, 170], but the 

one given in eq. 20 is easy to understand and implement and fairly numerically stable. This 

functional form is shown in C and D of Fig. 7.

It has been shown that more complicated forms are not significantly more efficient than eq. 

20 [172]. We therefore recommend using the soft-core potential given in eq. 20, unless there 

is a compelling reason otherwise. Using a similar equation to eq. 20 may be acceptable in 

most circumstances if that is what is supported in your chosen software. However, if you 

are inserting or removing entire atomic sites, we heavily recommend against using the linear 

approach; it will be very difficult to get correct or converged results.

So far in this section, we have discussed optimal ways of disappearing or appearing 

Lennard-Jones interaction sites and turning on and off electrostatics terms. What about 
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performing both transformations at the same time? We cannot turn off the electrostatics 

linearly at the same time we turn off the Lennard-Jones terms, as it would leave infinitely 

large attractive and repulsive electrostatic terms “bare” at small λ , resulting in the 

simulation crashing. It is possible to apply the same soft-core approach to the Coulomb 

interaction as to the van der Waals interaction, and this is indeed done in a number of 

implementations. In this case, it is important that the Coulomb interaction is softened as 

rapidly or more rapidly than the Lennard-Jones interaction to avoid charge penetration issues 

into the repulsive core, which can be tricky to ensure for multiple types of perturbations 

simultaneously [174].

A safe but potentially more computationally expensive approach is to perform the 

transformations in sequence; first, turning off all electrostatics for atoms that must be 

removed, inserting and removing Lennard-Jones sites (both the insertion and removal can be 

done simultaneously), and then turning electrostatics for the introduced particles on. Again, 

if there are no removals or additions to atomic sites, then it is reasonable to change the 

interactions in the first and third steps linearly.

Other issues, such as whether absolute calculations should retain or remove intramolecular 

non-bonded interactions through either annihilation [149, 151, 175–177] or decoupling [149, 

178], must be considered. Reasonable efficiency can be often obtained with either choice 

even if some are somewhat better or worse than others, and there is no consensus on 

which is better in most given situations. Our recommendation is to leave the intramolecular 

interactions on during the transformation for simplicity if there are no other known issues 

with this approach. The key feature of the simulation to watch out for is whether the 

total potential energy, and therefore the intermediate ensembles sampled, changes smoothly 

from beginning to end. Problems of discontinuous changes of the potential energy can be 

diagnosed by noticing lack of configuration space overlap between different simulations (see 

Sec. 8.5).

Relative calculations introduce additional choices, such as the order in which to modify 

nonbonded interactions. A common process in single topology relative calculations is, as 

noted above, to first remove electrostatic interactions of any atoms which will be deleted, 

then modify other non-bonded interactions, then restore electrostatic interactions of any 

atoms which are being inserted. Although this is a simpler path to understand cognitively 

and can take advantage of the soft-core potential from Eq. 20, this can lead to more 

intermediate steps and thus be more computationally expensive. Other schemes, such 

as simultaneously changing electrostatic and Lennard-Jones interactions with electrostatic 

soft-core potentials [179], as already discussed above, may be implemented with fewer 

intermediate states but could require fine-tuning of electrostatic and Lennard-Jones soft-core 

parameters to avoid numerical instabilities. At the time of writing, there has not been 

conclusive evidence to suggest the separate or simultaneous approach is in general better 

than the other, all factors considered, so discretion should be left up to the user as to what is 

viable from both hardware resources, and what the simulation software supports.

A key additional consideration in choosing the alchemical pathway is the choice of spacing 

of intermediate states. The spacing depends to some extent on the choice of analysis method, 
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though states should essentially be spaced equidistant in the relevant thermodynamic 

length [180, 181]. For BAR/MBAR techniques this means that states should be spaced so 

that the statistical uncertainties between neighboring states be approximately equal [172, 

182], where “approximately” is roughly within 30–50% in magnitude. Some schemes 

to adaptively optimize the spacing of intermediate states based on initial exploratory 

simulations have been proposed [183]. For molecules changing in dense solvent, then 

the best path is roughly independent of molecule size and shape, so what works for one 

molecular transformation is likely to be relatively efficient for another [184].

Some approaches have attempted to find alternative pathways to improve efficiency or 

find paths of low thermodynamic length [167, 168, 172]. For example, the enveloping 

distribution sampling (EDS) approach, and its multiple-replica and accelerated variant, 

works to improve efficiency by creating a single artificial intermediate state which 

simultaneously samples all end state phase spaces [185–187]. When this can be done, it 

provides an extremely efficient way to calculate the relative free energy difference between 

multiple ligands from a single simulation. However, it can often fail whenever the simulation 

of this intermediate state ends up trapped in configurations characteristic of only one end 

state. Thus, successful use of EDS can require system-dependent tuning, making it difficult 

to implement in an automated and reliable way. However, when successful, it can be very 

efficient.

In our view, there is still some room for further exploration of how to best choose 

transformation pathways, especially for relative binding calculations or more complex 

molecules, as most existing studies focus on smaller molecules. As we have stressed, 

in principle, any pathway that connects the desired end states is rigorously correct, but 

as discussed above, different paths may differ dramatically in thermodynamic length 

and therefore efficiency. Additionally, some paths simply may not converge due to 

issues noted above such as those encountered without soft core potentials. However, the 

recommendations above are reasonable, reliable, and are likely not that much less efficient 

than potentially more optimal choices [167, 168, 172], as the real problems with the 

efficiency of calculating free energies are lack of sampling of slow conformational modes, 

rather than the lack of efficiency of the transformations.

It is however important to note that different packages also differ in how they handle 

implementation of alchemical transformations, making it difficult to give rules of thumb 

concerning specific efficient transformations which work equally well across simulation 

packages. Thus, we are hesitant to recommend best practices within specific software 

packages at this point in time, although any good transformation pathway will conform 

to the guidelines we have outlined above.

7.2.4 Which sampling scheme will work best for my problem?—Though all 

alchemical simulations must sample from multiple λ  states, different approaches can be 

used to achieve this. Fig. 8 illustrates the four most common schemes. The simplest 

approach involves running an independent simulation at each of the predefined λ  values 

(see Fig. 8A). This type of scheme is currently used for AMBER TI calculations [17] 
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and for Sire as implemented in BioSimSpace [34]. However, if these simulations can be 

run simultaneously with communication between them, a simple extension allows mixing 

between these replicas. In this approach, the simulation at each λ  can undergo periodic 

exchanges with neighboring λ  values. This form of replica exchange, called Hamiltonian 

replica exchange, is based on ideas developed from Monte Carlo simulations of spin 

glasses by Swendsen and Wang [188]. With the Metropolis-Hastings acceptance criterion 

for exchanges, the generated ensemble of all replicas still samples from the Boltzmann 

distribution for each replica. This approach has been used in many different contexts for 

molecular simulations [155, 189–191]. The basic idea of the replica exchange scheme is 

shown in Fig. 8B. It is supported in various software packages that provide alchemical 

implementations, such as GROMACS [13], GROMOS [192, 193], FEP+ [15], and NAMD 

[134].

A third approach borrows ideas from simulated tempering [194]. In this scheme a single 

replica rapidly explores all of λ  space by working out optimal weights that allow switching 

between different intermediate λ  values, as seen in Fig. 8C. This approach is also referred to 

as self-adjusted mixture sampling [157, 158, 195] and while promising, has so far only been 

supported in OpenMM Tools [196] and GROMACS. Although this approach allows multiple 

states to be simulated in a single simulation, the weights do not always converge to the 

proper equilibrium distribution, and care must be taken that the final results are converged.

The last approach makes use of non-equilibrium simulations [7]. In this approach, only 

end state λ  replicas (λ = 0, λ = 1) are simulated at equilibrium; intermediate information 

is generated from non-equilibrium simulations that rapidly transition between end states. 

This approach is available in GROMACS and appears to be coming online in several other 

packages. A schematic of this approach is shown in Fig. 8D.

Currently, we recommend using Hamiltonian replica exchange type sampling schemes (Fig. 

8 B). If these are not available in the code of choice, running independent simulations 

at different λ  values can be acceptable, especially when configurational sampling is fast 

(Fig. 8 A). Single replica schemes and non-equilibrium schemes are not as established yet 

because of potential failure modes, but are very promising for use in the near future.

7.2.5 How long should I run my simulation for and what information should 
be saved?—Before launching alchemical free energy calculations it is wise to consider 

how convergence and completion will be assessed. Different conditions on when to stop 

alchemical free energy calculations should be determined, and this may require several 

iterative checks and therefore modifications to the calculation protocol. One useful metric to 

use for termination is the expected or desired uncertainty of a desired free energy estimate, 

though care must be exercised should the uncertainty estimate prove unreliable. In particular, 

if the rate of change in the free energy estimate is significant when this condition is met, the 

simulation may not be locally converged, and more sampling may be necessary to determine 

a stable free energy estimate which is no longer changing significantly over time.
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However, this is not the only metric which can or should be used, as the uncertainty only 

captures the information about the sampled phase space, not necessarily the entirety of the 

phase space. For example, convergence of relative free energy calculations in predictive 

simulations where the entire phase space is not known in advance, requires sampling the 

different kinetically stable states [85]. This highlights the importance of choosing the correct 

thermodynamic path to ensure you sample the required thermodynamic states as discussed 

in Sec. 7.2.3.

The condition of minimizing the statistical uncertainty of different free energy estimators 

below a sufficient threshold should be one metric monitored over the simulation. This can 

be done through the uncertainty estimator built into certain analysis tools such as MBAR, or 

through more general statistical tools like bootstrap sampling. It should be noted however, 

that uncertainty estimates have the same limitations as other metrics of convergence, as 

they are only an uncertainty based on the phase space sampled so far in a simulation, and 

cannot account for states not sampled, and it is worth considering that they will be an 

underestimation of the true uncertainty. A target statistical uncertainty should be chosen at 

the onset of the simulation to avoid excessively long simulations, or falling into the trap 

of running until the free energy estimate is “good enough,” which is subjective and has no 

defined criteria. This could be a fixed value such as 0.20 kcal/mol, or a functional quantity 

such as “below 0.5 kcal/mol and 10% of the free energy estimate.” The user does not need 

to monitor this information in real-time and can choose to run simulations for fixed duration 

(either time or number of samples) and run analysis on the data collected thus far. If more 

samples are needed, the simulations can be resumed, or, started again in different initial 

conditions.

Convergence in other alchemical observables should also be monitored to determine if the 

defined phase space has been sufficiently sampled and enough decorrelated samples have 

been drawn. These additional observables include, but are not limited to, the variance in 
dU
dλ

 across all λ  values, calculating the variance in free energy using bootstrap analysis, 

and comparing differences in free energies calculated using different percentages of the 

simulation in both the forward and reverse directions [43] (see Fig. 9).

Each of these metrics shows some promise for diagnosing when a simulation has a 

convergence issue beyond simple convergence of uncertainty estimates. Results obtained 

from calculations with convergence issues should be checked for errors or run for longer 

before any confidence should be placed in conclusions drawn from their analysis. For 

example, in relative calculations ligands that share similar binding modes and do not 

induce large conformational changes when in complex with protein, the need to sample 

exhaustively to converge estimates in free energy differences is often minimal due to the 

locality of sampling changes in the molecular topology and shared phase space of the core 

atoms. However, even subtle induced changes in protein binding configuration will require 

more sampling or cause local convergence to a free energy estimate that has high error. The 

confidence a user should have in a free energy estimate is significantly improved when both 

the uncertainty of the free energy estimate is low, and when other observables have reached 

a convergence.
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The uncertainty in the free energy, for example, can be estimated in multiple ways, e.g. 

through standard error propagation methods (including MBAR’s estimator, which is based 

on the same principles as standard error propagation), through bootstrap methods, and 

through multiple independent runs. Independent of how the property is estimated, it is 

important to remember that results of any free energy analysis are estimations of the given 
property, not the true underlying value of the property itself. These estimators are usually 

consistent estimators, meaning they will converge to the true answer in the limit of sufficient 

sampling, not necessarily unbiased ones though. As such, it is a good idea to subject 

different estimators to the same data to see if they yield either the same estimate (within 

error and bias), or if they fluctuate wildly. See, for example, the potential of mean force with 

respect to λ  estimated from a bound simulation of a Tyk2 ligand pair of Wang et al. [15] for 

both the MBAR and TI estimators, as seen in Fig. 10. This is not a perfect method as some 

estimators, such as exponential averaging, will converge significantly more slowly, relative 

to more accurate estimators like MBAR. Therefore, it is a good idea to apply the estimators 

to different fractions of the data to see if the main estimator of free energy you have chosen 

is stable.

Each method requires different data from the simulation be collected. If, for instance, 

the free energy estimator selected is thermodynamic integration, then values of dU
dλ

 at 

uncorrelated data points must be collected. Once you have made a choice of the combination 

of the type of simulation you will run, which alchemical topology you will simulate, what 

alchemical path you will simulate along, and what your stopping conditions are, then you 

are ready to enumerate the information you should capture. Below is a sample of the 

minimal information you need for a set of common estimators (discussed in more detail in 

Sec. 8.3):

• Thermodynamic Integration (TI) requires ∂u( q )
∂ λ

.

• Exponential Averaging (EXP) needs either Δuk, k + 1( q ) or Δuk, k − 1( q ), depending on 

the direction its being evaluated in.

• Bennett Acceptance Ratio (BAR) needs both Δuk, k + 1( q ) and Δuk, k − 1( q ).

• Weighted Histogram Analysis Method (WHAM) and Multistate Bennett 

Acceptance Ratio (MBAR) both need the complete set of Δuk,j ∀j = {1…K}. 

WHAM must have this same information binned with some choice of bin width 

small enough not to affect the results.

The potential derivative required for TI should generally be calculated during the simulation; 

only under very rare circumstances [167] can it post-processed by a code that does not 

evaluate the derivatives. Many codes already have options for doing this. If that option 

is unavailable, you can estimate it through finite difference (if sufficient information is 

collected), but this will introduce significant error, and is generally not a best practice. The 

BAR estimator may be a better, and simpler choice at that point as you will have at least the 

same level of information.
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The potential energy differences required for EXP, BAR, MBAR, and WHAM can be 

calculated either during the simulation or in post-processing. It is recommended to calculate 

the potential differences in code when possible to avoid extra overhead and possible errors 

produced by evaluating the energy of the configuration twice, and to reduce the amount of 

stored information. Although potential energy derivatives must usually be calculated in code 

there is one condition under which they can be easily computed in post-simulation analysis. 

If the alchemical path you have chosen is a linear alchemical path, then du
dλ

= u0( q ) − u1( q ), 

which is the difference between the initial and final states, which are already calculated 

by the simulation and can be recorded easily without additional computational expense. 

However, because of the problems with linear paths already discussed in this paper, this 

simplification is rarely that useful.

Free energy information should generally be saved more frequently than coordinate data, 

approximately at the rate that uncorrelated samples are produced. The on-disk size of the 

data for free energy estimation is often significantly smaller than full atomic coordinates, 

so the information can easily be collected frequently. However, the information should not 

be collected every time step, as most free energy techniques are operated at equilibrium, 

and need equilibrated and decorrelated samples for an unbiased estimate. Samples collected 

every time step will likely result in most samples being discarded due to the detection of 

correlation in the time series by decorrelation routines in the analysis. However, if it is 

computationally cheap and disk space is plentiful, do save often. One may safely assume 

that the correlation time is greater than 100–200 fs even for relatively simple systems such 

as small molecules in solvent, so saving no more frequently than every 50–100 steps is 

recommended. How decorrelation impacts calculations, and how to compute it is discussed 

in Sec. 8.2.

In general, uncertainties can be assumed to decrease as 1/ (N) where N is the number of 

uncorrelated samples, for all standard free energy calculation methods [197]. However, this 

carries the notable caveat that such estimates require accurate estimation of the correlation 

time which, if important motions are slow compared to simulation timescales, can be 

difficult. Still, this metric provides a good rule of thumb, and as long as conformational 

transitions are captured by the simulation, increasing the aggregate simulation time by a 

factor of T will reduce the uncertainty by a factor of approximately T .

7.2.6 Multiple or uncertain binding modes may require considerable care—In 

a discovery setting, new ligands can have unknown or at least uncertain binding modes [111, 

198–200], complicating binding free energy estimation.

To deal with prospective ligands with unknown binding modes, discovery projects 

commonly assume that modifications of functional groups on a common scaffold result 

in a consistent binding mode across all members of a series. This is not necessarily always 

the case [111], as reviewed elsewhere [199] and in some cases unexpected binding mode 

changes can be the origin of apparent non-additivity in structure-activity relationships [200]. 

Binding modes also tend to be particularly variable in the case of fragments, which often 

may have multiple relevant binding modes [201].
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Absolute free energy calculations for dissimilar ligands can have particular challenges 

because the (potentially incorrect) assumption of consistent binding modes across a series of 

similar ligands is likely to be even less robust than in the case of relative calculations. This 

means that researchers performing absolute binding free energy calculations will have to pay 

particular attention to generating reasonable putative binding modes.

In some cases, it is tempting to simply use docking techniques to generate initial bound 

structures for starting molecular dynamics simulations. However, timescales for binding 

mode interconversion are usually slow compared to MD/free energy timescales, meaning 

that simulations started from different potential binding modes are likely to yield disparate 

computed binding free energies [47, 85, 149, 202]. Moreover, docking techniques are good 

at identifying sterically reasonable potential binding modes, but still perform relatively 

poorly at identifying a single dominant binding mode a priori.

It is worth highlighting a recent SAMPL blind challenge on HIV integrase as an illustration 

of this. Many submissions, using state-of-the-art methods, had difficulty even predicting 

which binding site ligands would bind in—most submissions placed more than half of the 

ligands into the incorrect binding site—and even given correct binding sites, the binding 

mode within each site was also quite difficult to predict [133]. The best performing 

submission for predicting binding modes actually ended up being a human expert (aided 

by computational tools) with more than 10 years of experience on the particular target [203], 

rather than a fully automated approach. While free energy calculations on this set had some 

success, many of the failures actually ended up being cases where the binding mode selected 

as input for free energy calculations was later found to be incorrect [204], highlighting the 

importance of these issues.

One approach which has shown some success in identifying accurate binding modes de novo 
is to retain diverse potential binding modes from docking, perform short MD simulations of 

these to identify distinct stable binding modes, and then consider only these stable modes in 

subsequent calculations [12, 149, 204–206].

Routes to handle multiple potential binding modes are different depending on whether 

absolute or relative calculations are selected, unless a method is available to estimate the 

relative populations of different stable binding modes in advance (e.g. such as the BLUES 

approach currently in development [47]), in which case this approach could be applied to 

assist both types of calculations.

Handling multiple potential binding modes within absolute calculations.: Within 

absolute binding free energy calculations, multiple potential binding modes can be handled 

by two main strategies: Considering each binding mode separately (a separation of states 

strategy) or sampling all binding modes within a single simulation [85]. This couples to the 

choice of restraints selected, as some restraints will allow transitions between binding modes 

and even binding sites (Sec. 7.1.2), and others do not.

Sampling all potential ligand binding modes within a single free energy calculation is 

usually impractical without some form of enhanced sampling or at least Hamiltonian replica 

Mey et al. Page 37

Living J Comput Mol Sci. Author manuscript; available in PMC 2021 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exchange [153] because barriers for binding mode interconversion result in kinetics which 

are too slow compared to simulation timescales [47, 85, 149, 202]. Hamiltonian exchange, 

coupled with appropriate restraints, can allow the ligand to relatively rapidly exchange 

between potential binding modes when non-interacting, accelerating sampling of binding 

modes [153]. However, it is not always clear that this is desirable, since this also increases 

the size of the configuration space which must be sampled even if the binding mode is 

known.

Separation of states provides a simple though potentially expensive alternative, where 

each stable binding mode is considered separately with a binding free energy calculation 

restricted to that binding mode, and then (as long as the binding modes are non-overlapping) 

the resulting component binding free energies can be combined into a total [85, 149]. 

This approach necessitates a separate binding free energy calculation for each potential 

binding mode, however, so it can be computationally quite costly. If relative populations of 

different stable binding modes were available from some other technique, it could make this 

separation of states approach considerably more efficient [47, 85].

Handling multiple potential binding modes within relative calculations.: Multiple 

potential binding modes pose particular problems for relative free energy calculations, 

as having multiple starting structures for these calculations could yield substantially 

different calculated relative binding free energies for the same transformation due to kinetic 

trapping, and, without additional information (specifically, the free energy of binding mode 

interconversion or, equivalently, the relative populations of different binding modes) it 

becomes impossible to sort out which of the multiple answers is in fact the correct relative 

binding free energy.

To deal with this, some practitioners have actually computed relative binding free energies 

of different binding modes of the same ligand [202]. For example, a perturbation which adds 

a methyl to an aromatic ring of a larger ligand might yield one result if the methyl points in 

one direction, and a different value if it points in the other due to slow ring motions [207, 

208]. One could compute the free energy of turning off the methyl group in one orientation 

and turning it back on in the other orientation to obtain the free energy difference between 

the two potential binding modes. While this approach has precedent, it is relatively difficult 

to automate at present and requires considerable care.

Overall, this likely means that relative free energy calculations will be susceptible to 

problems resulting from uncertainty in ligand binding modes until more robust approaches 

are available to determine dominant binding modes, or the relative populations of different 

potential binding modes, in advance.

7.3 General simulation setting choices that could affect free energy calculations.

There are many parameter choices that are common to standard MD simulations. Optimal 

choices may depend on the simulation package and it is best to consult the manual of each 

package to make the right choices. One particular parameter we want to draw attention to 

which is often overlooked is the timestep. The choice of integrator can drastically affect the 

accuracy of a given calculation depending on the timestep [209]. Using a 1.0 fs timestep 
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near the limit of stability without any constraints can lead to non-negligible statistical 

mechanical errors. However, from various previous free energy studies using 1 fs integration 

timesteps it is not clear that a significant error would be introduced into a free energy 

estimate and may warrant some further investigation.

8 Data analysis

Once equilibrium data has been collected from alchemical intermediates, it must be analyzed 

to produce an estimate of the free energy change (and its associated statistical uncertainty) 

for each leg of the thermodynamic cycle. While a number of different estimators are 

available that will give consistent results under optimal circumstances, some approaches 

are recommended over others due to their robustness and ability to provide information on 

poor convergence.

8.1 Detecting the boundary between equilibrated and production regions

Much of the infrastructure for analyzing alchemical free energy calculations relies on the 

concept of asymptotically unbiased estimators, which produce unbiased estimates of the free 

energy when fed very long simulations [197]. In reality, free energy calculations are often 

initiated from highly atypical initial conditions (such as a protein-ligand geometry obtained 

from docking and subjected to a heuristic solvent placement scheme), and simulations are 

of a finite length dictated by available computational resources and computing demands. As 

a result, these estimators can produce significantly biased estimates if fed the entirety of 

simulation data generated without further processing [210].

To minimize this effect, an initial portion of the simulation is often discarded to equilibration 
[41], with the idea of removing the most heavily biased initial portion of simulation data but 

retaining the unbiased production region that represents a stationary Markov chain process 

sampling from the desired equilibrium target distribution. Because the simulation time 

required for the atypical initial sampler state to relax toward equilibrium is a property of the 

specific system being simulated and the specific initial conditions selected, it is simplest to 

collect data for the whole process and use an automated algorithm to select how much data 

should be discarded to equilibration in a post-processing step.

A simple approach to automatically partitioning simulation data into equilibration and 

production regions is described in [210] (illustrated in Fig. 11). Suppose we have a 

simulation of length T consisting of correlated data. Here, the goal of the post-processing 

step is to select the equilibration boundary t0 ∈ [0, T] so as to maximize the number of 

effectively uncorrelated samples remaining in the production region N t0, T , which is defined 

as

N t0, T = T − t0

g t0, T
(21)

where g t0, T  is the statistical inefficiency of a timeseries at, described in more detail below. 

Conveniently, this procedure also produces the information necessary to decorrelate the 

simulation data for estimating the free energy differences, a requisite next step in analysis. 
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This approach is implemented within the MBAR [211] and alchemlyb [212] packages, and 

is highly recommended for standard practice.

For additional discussion of working with correlated data and autocorrelation analysis, 

please refer to the work on Best Practices for Quantification of Uncertainty and Sampling 

Quality in Molecular Simulations [42].

Computing the timeseries for equilibration detection—Typically, the timeseries 

of note at analyzed in automated equilibration detection is the negative logarithm of the 

probability density π xt; λ  sampled by the MCMC algorithm (up to an irrelevant additive 

constant). For simple independent simulations that sample xt π(x; λ ), this is given by the 

reduced potential

at ≡ − ln π xt; λ + c = u xt; λ . (22)

Note that the use of the effective reduced potential is not guaranteed to pick up on all slow 

relaxation processes that may be coupled to the alchemical free energy, but the simplicity of 

its computation means it is generally appropriate for most cases.

Cautions in automating equilibration detection—For simulations that are simply not 

long enough to contain a large number of samples from true equilibrium either because they 

are very short or contain slow processes, this procedure cannot completely remove the bias. 

In such cases, this approach simply selects the final portion of the the simulation, which 

may be contained in a single substate of configurational space, and may itself lead to biased 

estimates. This situation can be detected if the equilibration boundary t0 is a significant 

fraction of the total simulation length T, with a good rule of thumb being that T ≳ 20t0. 

If this is not possible, advanced analysis techniques that assume only local equilibrium 

(rather than global equilibrium) such as the TRAM estimators [27, 28, 213] may be more 

appropriate, but are beyond the scope of this paper.

8.2 Decorrelating samples for analysis

Computing the statistical inefficiency—Most estimators require an uncorrelated set of 

samples from the equilibrium distribution to produce (relatively) unbiased estimates of the 

free energy difference and its statistical uncertainty. To do this, the production region of the 

simulation is generally subsampled with an interval approximately equal to or greater than 

the statistical inefficiency g ≥ 1 to produce a set of uncorrelated samples that can be fed to 

the estimator machinery [210],

g ≡ 1 + 2τeq (23)

where τeq is the integrated autocorrelation time, formally defined as
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τeq ≡ ∑
t = 1

T − 1
1 − t

T Ct, (24)

with the discrete-time normalized fluctuation autocorrelation function Ct defined as

ct ≡ anan + t − an
2

an
2 − an

2 . (25)

The basic concept is that τeq corresponds to the single-exponential decay time for the 

autocorrelation process that generates samples, so the statistical inefficiency g measures the 

approximate temporal separation between two effectively uncorrelated samples (where two 

exponential relaxation times are presumed to be sufficient).

Robust estimation of Ct for t ~ T is difficult due to growth in statistical error, so common 

estimators of g make use of several additional properties of Ct to provide useful estimates 

(see Practical Computation of Statistical Inefficiencies in [210] for a detailed discussion).

We recommend using the robust statistical inefficiency computation routines available 

within the MBAR [211] and alchemlyb [212] packages.

Subsampling data to generate uncorrelated samples—Once the statistical 

inefficiency g has been estimated, it is straightforward to subsample the correlated timeseries 

simulation data to produce effectively uncorrelated data that can be fed to the free energy 

estimators. Suppose the correlated timeseries is at t = 1
T ; we can form a new timeseries of Neff 

≈ T/g effectively uncorrelated samples by selecting a subset of indices {t = round((n – 1) g) | 

n ∈ range(1, …, N)} where round(x) denotes rounding to the nearest integer.

If independent simulations are used, the alchemical state λ  may have a significant impact 

on the correlation time, and these simulations should be subsampled independently using 

a separate estimate of the statistical inefficiency g for each alchemical state. If coupled 

simulations are used (such as a Hamiltonian replica exchange simulation), the replicas 

should undergo equivalent random walks in alchemical space, and the replicas can be 

subsampled with the same g to generate an equal number of uncorrelated samples at each 

alchemical state. Conveniently, the approach described above for automated equilibration 

detection produces an appropriate estimate of g over the production region for automating 

this process.

Cautions and considerations—Reliable estimation of the statistical inefficiency is 

difficult, and estimates will not generally be as precise (in a relative error sense) as averages. 

To ensure there is sufficient data available for reliable decorrelation and estimation of free 

energy differences, it is recommended that the effective number of uncorrelated samples Neff 

≥≈ 50 if the BAR or MBAR estimators (discussed below in sec 8.3) are used; the number 

may need to be much higher with alternate estimators.
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8.3 Estimators for free energy differences

Free energy differences between two different states differing in the energy function 

are directly related to the ratio of probabilities of those states. As can be noted, the 

partition functions in Eq. 5 are simply the total accumulated probabilities for all possible 

configurations of the system. Virtually all of the ways to estimate this free energy are based 

in converting this ratio of integrals to something that can be measured in one (or several) 

simulations.

The Zwanzig relationship (EXP)—The simplest method for calculating free energy 

differences from simulations is the so-called Zwanzig relationship [1], also called one-sided 

exponential re-weighting (EXP), or simply free energy perturbation, though this final term is 

sometimes used to encompass all ways of calculating free energy differences.

The (reduced) free energy difference Δf01 between an initial state 0 and a final state 1 

defined by two different potential energy functions u0( q ) and u1( q ) over coordinate space q
can be calculated as:

Δf01 = − ln  e− u1( q ) − u0( q )
0

= − ln  e−Δu( q )
0

(26)

and the average is over all samples from the simulation performed with u0. In the case of 

NVT (canonical) sampling and assuming the masses do not change, then u is simply U/kBT, 

and f is F/kBT, but it can be generalized to other ensembles with the proper definition 

of f and u. Described in words, we take the samples generated during our run with the 

potential energy function u0( q ) and calculate what the difference in energy would be if we 

switched instantaneously to the potential energy function u1( q ), and average the exponential 

of the negative energy difference to get the negative of the exponential of the free energy 

difference. The original distributions, P(u0) as generated at λ = 0 and P(u1) would look 

like those seen in Fig. 8A–C on the right hand side. Reevaluating requires almost no 

extra code functionality to perform; one need only to save a full precision trajectory, and 

run an un-modified molecular simulation code using the u1 in order to calculate the new 

energies of stored snapshots. The analysis can be written in a line of code. We note that this 

method is even more general, in that the instantaneous work to change the potential energy 

function from u0 to u1 can be replaced by the non-reversible work W to make the same 

change beginning from the same equilibrium conditions at either end state [78–80], allowing 

for non-equilibrium free energy calculations, an alternate approach. We do not detail non-

equilibrium transformations here, and refer the reader to more advanced treatments [18, 77, 

214–217], as our focus here is on equilibrium free energy techniques.

Although the Zwanzig equation is formally correct as long as the two states considered 

sample the same phase space volume, which is true for standard molecular models, it has 

some very important numerical issues that mean that it often performs badly for standard 

free energy calculations, even for small molecules [197, 218]. One can show that if the 

standard deviation of the difference Δu( q ) = u1( q ) − u2( q ) over all sampled q  is large, which 

in this case, means only several times kBT, then very few samples contribute to the average, 
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and the answer will be both biased and extremely noisy [219]. Essentially, the method is 

dominated by contributions of rare snapshots [75, 76, 220].

The Bennett Acceptance Ratio (BAR)—If we have the differences in the potential 

energy sampled from the distribution defined by u0 to the state defined by u1, and we also 

have the differences in potential energies from the distribution sampled by u1 to the state 

defined by u0, we can obtain a significantly improved estimate of the free energy difference 

compared to that obtained by EXP. This estimate was first derived by Bennett and is hence 

generally called the Bennett Acceptance Ratio (BAR). It is solved by finding the reduced 

free energy fij that satisfied the following implicit equation:

∑
i = 1

ni 1
1 + exp ln ni

nj
+ uij( q ) − fij

= ∑
i = 1

nj 1
1 + exp ln ni

nj
− uij( q ) + fij

,
(27)

where ni and nj are the number of samples from each state. More recent derivations show 

that this formula is the maximum likelihood estimate of the free energy difference given sets 

of samples from the two states [77].

Many studies have demonstrated both the theoretical and practical superiority of BAR over 

EXP in molecular simulations [197, 218], and BAR converges to EXP in the limit that all 

samples are from a single state [25, 25, 77]. BAR also requires significantly less overlap 

between the configurational space of each state to converge than EXP, though some overlap 

must still exist.

The Bennett acceptance ratio is only defined between two states. Usually, the endpoints of 

interest in a free energy calculation are sufficiently different that we will need a chain of 

states that gradually change the potential energy function from u0 to u1, as discussed in Sec. 

7.2.3. You can carry out a BAR estimate between each pair of states Δf1→N = Δf1→2 + 

Δf2→3 + … + ΔfN−1→N.

There is one important thing to note about the uncertainty estimates when summing multiple 

free energies together to calculate an overall free energy estimate. Although BAR itself 

gives a free energy estimate that is asymptotically correct and is much less biased than the 

uncertainty estimate for EXP, the uncertainties in Δfi−1→i and Δfi→i+1 are not uncorrelated, 

because they both involve the energies ui( q ). The variances of each of the free energies will 

not propagate as variances usually do (in quadrature) into the variance of the overall free 

energy. Instead, some other method for propagating the uncertainty, such as bootstrapping 

[42] must be used.

Thermodynamic integration (TI)—By taking the derivative of the free energy with 

respect to the variable λ , we find that:
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df
dλ

= d
dλ

−ln ∫ exp−u(λ , q )
Z(λ )

d q = du(λ , q )
dλ λ

. (28)

And then we can numerically integrate df /dλ  over an alchemical transformation, using a 

range of different well-established techniques, to obtain:

Δf = ∫
0

1 du(λ , q )
dλ λ

dλ . (29)

This approach to calculating the free energy is called thermodynamic integration (TI). 

Averaging over du
dλ

 requires fewer uncorrelated samples to reach a given level of relative 

error than averaging e−u( q ), as the distribution of values is usually narrower, with a more 

Gaussian shape to the distribution. Rather than being limited by overlap, as in the case of 

BAR and MBAR (see below), we are instead limited by the bias in the numerical quadrature, 

which must be minimized sufficiently to be beneath the level of statistical noise.

Various numerical integration schemes are possible, but the trapezoid rule provides a simple 

and robust scheme. All types of numerical integration can be written as:

Δf ≈ ∑
k = 1

K
wk

du(λ , q )
dλ k

,

where the weights wk correspond to a particular choice of numerical integration. 

Researchers have tried a large number of different integration schemes [221–223]. However, 

many integration choices require specific choices of λ  to minimize bias, which makes 

them unsuitable when the intermediates have widely-varying levels of uncertainty. For 

example, integrating a cubic spline interpolation provided negligible benefits over a simple 

trapezoid rule [224]. As fitting to higher order polynomials can have numerical instabilities 

for some energy functions, and because alternate functional forms might only be appropriate 

with some types of transformations, expertise and experience is required to perform such 

numerical integration modifications. For starting researchers, we therefore recommend the 

simple trapezoid rule scheme, as it allows for maximal flexibility in which values of λ  are 

simulated. In practice, adding 2–3 more intermediate states is typically sufficient to match 

the performance of these more complicated numerical quadrature schemes. It is also possible 

to calculate the λ-derivatives at non-simulated states from simulated states in a scheme 

named extended TI [225] which reduces the integration error.

One drawback of TI is that it requires derivatives with respect to λ  to be calculated directly 

in the code. Unfortunately, many problems of interest require using pathways (such as the 

soft-core pathways, for removing repulsive interactions) that are not linear, as we discuss, 
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making this more complex. Still, if the code of interest does compute du
dλ

, then TI is perhaps 

the simplest method to use, as it involves a very little post-processing effort.

The multistate Bennett acceptance ratio (MBAR)—One can generalize Bennett’s 

logic from two states to multiple states to obtain a free energy estimator that uses 

energy differences between configurations at all intermediate states to compute free energy 

differences between all states. MBAR gives a system of implicit equations for the free 

energies fi:

fi = − ln ∑
n = 1

N exp −ui q n

∑k = 1
K Nk exp fk − uk q n

, (30)

where there are Nk samples from each of K states, with ∑k Nk = N the total number of 

samples. Thus, we need to evaluate the energy function ui for all samples obtained at all 

states in the transformation. The equations can be solved by a number of different standard 

routines. We note that there are only K − 1 independent equations, so only K − 1 of the free 

energies are independent variables, and one of the fi must be specified (usually, without loss 

of generality, setting it to zero).

MBAR is probably the lowest variance asymptotically unbiased estimator of the free energy 

given the energies of the samples [226], which means that BAR is also the lowest variance 

estimator for the free energy difference between only 2 states, as it is mathematically exactly 

the same as MBAR in this case. MBAR also provides an uncertainty estimate, derived from 

standard error propagation methods for implicit functions, which has been shown to be 

highly accurate as long as there are sufficient samples at each state [224].

MBAR can also be thought of as the Zwanzig estimator of the free energy to state i 
where the sampled distribution is the mixture distribution of all the other samples thrown 

together in one “pot”, defined by pm( q ) = N−1∑k Nkexp fk − uk q , which is the weighted 

average of all the individual normalized probability distributions from the simulations that 

are performed [227].

Recommendations

• We recommend MBAR if all energy differences are available. It is the lowest 

variance unbiased free energy estimate given samples from multiple states.

• BAR is essentially just as good as MBAR for highly optimized λ  intermediates. 

Specifically, if the λ s are chosen such that intermediate states have moderate 

overlap with their neighbors (i.e. between i and i + 1 and between i and i − 1, 

they will not have significant overlap with their next nearest neighbors i + 2 and i 
− 2. Thus MBAR does not actually get significant information from these energy 

differences, so one might as well not even calculate them, and just perform BAR 

between nearest neighbors. [224]
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• TI usually gives similar values as MBAR implemented with sufficient numbers 

of intermediates, but quadrature errors that are hard to estimate beforehand can 

occur if one is not careful. [224]

• WHAM is an approximation to MBAR, and there are no compelling reasons 

it should be used. If careful, it is not necessarily much worse than the other 

methods, but it always introduces some degree if binning error.

• Other variants, especially ones that adaptively determine the free energies can be 

useful in certain circumstances but beyond the scope of a Best Practices article.

8.4 Uncertainty estimation

It is important to consider the variation in your computed free energies from your 

equilibrium simulations, in order to obtain an estimate of uncertainty of the obtained value 

for the free energies of interest. A recent Best Practices paper by Grossfield et al., [42] 

provides substantial detail on how to estimate uncertainties from molecular simulations and 

is a good starting point for this topic. The uncertainty of a free energy estimate is limited 

however, as it is only an estimate of the configurations sampled and cannot contain any 

information from the phase space not sampled during a simulation. As a consequence, the 

variance in free energy afforded by any estimator will always be an underestimate of the 

true uncertainty. In general, the quantification of different error metrics depends on both data 

generation and analysis methods used from the ones discussed above.

The computation of free energies using TI (Sec.n 8.3) is straightforward and the trapezoidal 

rule is often recommended since it allows unequal spacing of λ  states, which is required 

to minimize the variance in the free energy estimate, but in principle any good numerical 

integration method can be used. The determination of regions of high curvature when 

estimating the integral is helpful to determine regions of phase space where more sampling 

and/or more λ  states are necessary to obtain the best approximation of the integral. Plotting 

λ  with respect to the gradients at each of the λ  values can be be a helpful diagnostic. 

Additionally, computation of the overall variance of TI requires the calculation of the overall 

variance of integration, rather than each individual ΔGi,i+1 and assuming variances add 

independently. Therefore, var(Δf) = ∑i = 1
K wk

2var du
dλ k

.

For alchemical changes that result in smooth, low curvature sets of dU
dλ

, a relatively 

small number of λ  states is necessary for sufficient accuracy and low variance in the free 

energy estimate. Depending on the difficulty of the perturbation, the bias introduced by 

discretization of the integral can become large due to increased curvature, and more λ
intermediate states become necessary to reduce error. It is recommended that researchers 

verify that a sufficient number of states are included such that the free energy is essentially 

invariant to the number of lambda intermediate states chosen. Good heuristics or measures 

to assess the ‘difficulty’ of a given perturbation is still an ongoing research topic.
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Compared with TI, the MBAR method (Sec. 8.3) discussed above provides uncertainty 

estimation directly from solving a set of linear equations to compute the variances between 

all states. The number of states and amount of sampling should be optimized to minimize 

the uncertainty in the MBAR free energy estimate, while balancing other key considerations 

such as computational expense.

If possible, it is advisable to analyze the same set of simulations with different estimators, 

providing an opportunity for synergy. If different estimators agree the free energy estimate is 

more reliable than if there are differences between methods that are larger than 1 kcal/mol 

and would indicate poor convergence.

Uncertainty can also be assessed for a particular perturbation by repeating calculations with 

slight changes in initial configurations, forcefield parameters, and different random seeds in 

the MD engine. The assessment of variability in free energy calculations due to repeating 

simulations has been previously reported [11, 16, 162, 224], and large variance in free 

energies estimated from simulations with different random seeds should be flagged as issues 

with convergence.

For relative binding free energy calculations, additional sensitivity analysis can be 

performed by changing the initial configurations of non-core regions of the perturbation 

topology and determining if this change in configurations results in a large differences in 

the computed relative free energy, indicating poor sampling of ligand configuration. The 

proposed changes in configuration are increasingly relevant if no experimental evidence is 

available to reduce uncertainty in where the changing atoms should be positioned.

In addition to statistical uncertainty and sampling, a variety of other factors can impact 

results from binding free energy calculations. In addition to the choice of initial 

configuration, results can depend on the choice of force field for the protein/receptor, water, 

and small molecule(s), so rerunning calculations with different choices of force field can 

also be used to assess how sensitive results and conclusions are to these particular choices. 

Other factors, like system preparation (choice of protonation state, tautomer, counterion 

presence, salt concentration, etc.) can also substantially impact results [228, 229], so unless 

modelers are confident they have these factors correct, sensitivity to these choices may also 

need to be examined.

8.5 Are my simulations any good?

There are different easily measurable indicators that can test how well converged simulations 

are, and if all alchemical states have been sufficiently sampled for a rigorous analysis. 

Furthermore, once you have established that individual perturbations are well behaved, there 

are some tricks to ensure the overall perturbation network gives reliable results.

Convergence of simulations—Fig. 12 illustrates how looking at the convergence of 

your data may be important. The CB8 host with guest G3 has a longer correlation time 

than the G6 guest in the octa acid (OA) host. In some cases, slow correlation time may not 

be expected and therefore not a feature known in advance. To this end, you should always 

look at all simulation data available and check convergence behaviour for each free energy 
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estimate. Comparing the free energy trajectories as a function of the simulation time in the 

forward and reverse time direction is a useful convergence test [43]. As shown in Fig. 12, 

disagreements larger than 1 kBT in the final part of the forward and reverse trajectories 

can be useful to detect unconverged results (see also Fig. 9). In this case, one can extend 

the simulations or try an approach that requires simulations in two separate binding modes 

where they interconvert at very slow timescales.

Overlap matrix—One way of assessing reliability of the calculations is checking the 

phase space overlap between neighboring λ -windows [75, 76]. For this purpose, a so-called 

overlap matrix O can be used. O is a K × K matrix, with K being the number of simulated 

states, i.e. values of λ . Sufficient overlap is important for reweighting estimators such 

as BAR or MBAR, but cannot help assess reliability of estimates when using TI. These 

matrices are graphical representations of the phase space overlap, i.e. the average probability 

that a sample generated at state λ j can be observed at state λ i. As this probability is 

computed considering the samples from all states, and not just the adjacent states, the values 

in each row and column add up to 1. In this analysis, the goal is to ensure every state 

has overlap with its neighbors in both directions, indicated by off-diagonal elements that 

are sufficiently larger than zero. For accurate calculations, the matrix should be at least 

tridiagonal.

Details on the calculation and properties of these matrices can be found elsewhere [43]. 

In an overlap matrix O, the off-diagonal values (Oi,j,i≠j) are negatively correlated with the 

variance of the free energy difference. Accordingly, the uncertainty of the free energy 

difference between the states i and j will be smaller when Oi,j,i≠j is larger (and thus the 

values in the main diagonal (Oi,j,i=j) are smaller). In order to obtain a reliable estimate of the 

free energy all neighbouring states must be connected, i.e. there must be sufficient overlap 

between the samples of these states, such that Oi,j,i≠j ≥ threshold). However, due to the 

mathematical derivation it is difficult to explicitly describe the relation of the overlap matrix 

and the variance by formulae. Consequently, the threshold has to be derived empirically. It 

has been proposed that the values of the first off-diagonals (i.e. the diagonals above and 

below the main diagonal) should at least be 0.03 to obtain a reliable free energy estimate 

[43]. Smaller values should be considered as a warning sign (see Fig. 13C), as the variance 

tends to be underestimated in case of poor overlap.

Fig. 13A, B, and C shows examples of good, mediocre, and poor overlap respectively. For 

Fig. 13 A, the probability to find a sample from state i in its neighbouring state j is about 

0.2 for all states adjacent to the main diagonal, and hence the overall connectivity is good. 

In the case of Fig. 13 B, the overlap is strongly diminishing in the lower right corner, raising 

concerns regarding the reliability of the free energy estimate obtained. For Fig. 13 C, the 

state at λ  index = 6 is connected to neither of its neighbouring states. While this does not 

necessarily imply that the result for this perturbation is wrong, the energy estimate must at 

least be considered as highly unreliable. In order to overcome the issue of poor overlap in 

this example, additional sampling should be performed by introducing additional states, i.e. 

λ  values.
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Interestingly, as the variance is inversely correlated with the number of states [43], it can in 

principle be reduced below any arbitrary threshold with enough simulation time and a large 

enough number of λ  windows. However, decreasing the variance to a value close to 0 is not 

feasible, as this approach would significantly increase the calculation time. While variance 

can be decreased by increasing simulation length, if the overlap between states is known 

to be poor, increasing the number of λ  values, or adjusting the spacing of those values to 

better cover regions of poor overlap will likely provide a larger immediate impact. Different 

approaches are described in Sec. 7 and more details can be found in the literature [230, 231].

Cycle closure error—Relative free energy calculations, which compute the change in 

free energy on making a change to a molecule (e.g. adding a functional group to a ligand) 

may provide an additional opportunity for error/consistency checking. Particularly, such 

calculations are often done to span a graph or tree of free energy calculations [96, 98, 136]. 

In some cases the free energy change to go between molecules A and B can be obtained 

via multiple transformation pathways. This allows a type of consistency checking where 

we assess how much the free energy change for that transformation in practice differs from 

equivalence.

Significant deviations of agreement from the same transformation by different routes 

typically indicate insufficient configurational sampling along the lambda schedule of one or 

more of the transformations involved. This approach may be generalised to sets of connected 

transformations given the requirement that the sum of free energy changes along edges of 

a closed cycle should be zero. This analysis is called “cycle closure”. In practice, such 

thermodynamic cycles do not actually sum to zero, and deviations become increasingly 

large as the size of the cycle increases owing to propagation of error. Though no firm 

guidelines have emerged, it may be judicious to perform additional configurational sampling 

along edges of a network that are involved in cycles closing poorly. This may be done by 

extending the duration of simulations, or by averaging free energy changes over multiple 

repeats. The latter approach may yield more reproducible free energy changes, but at the 

expense of a stronger bias on the estimated free energies due to repeated use of the same 

input coordinates.

A scheme to reduce cycle closure errors is used in FEP+ whereby calculated free energy 

changes along the nodes of the network are re-sampled assuming estimates of the calculated 

free energy change along a node may be obtained from a Gaussian distribution centered 

on the estimated free energy change and with a standard deviation equal to the estimated 

standard deviation of the free energy change. The procedure then uses a maximum 

likelihood method to find new sets of free energy changes that minimize cycle closure 

errors [98]. An alternative approach computes the free energy change between a target 

and reference compound as a weighted average over all unique paths in the network, with 

the weights derived from the propagated uncertainties of each node [16]. Approaches as 

illustrated by Yang et al. for perturbation map design can also be used to compute relative 

free energies between target and reference compounds [95].
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Reversible binding simulations—An even more stringent test of the correctness of 

binding free energy calculations is to compare the results to the equilibrium binding 

constants derived from long timescale reversible binding simulations [62]. For small ligands 

with millimolar affinities, repeated binding to and unbinding from the protein can occur for 

a large number of times in a sufficiently long unbiased MD simulation (10–100 μs), and 

the equilibrium binding constants can be computed from the ratio of bound to unbound 

fractions of the simulation time. The agreement between the binding free energy calculations 

and the reversible binding simulations—given the same system preparation and the same 

force field parameters—will strongly support the correctness of both calculations, as the 

same results are arrived at by two independent methods, and any discrepancy will suggest 

some systematic error in one, or both, of the two methods. As part of validation testing of 

alchemical free energy codes a benchmark set to compare alchemical and direct computation 

of equilibrium binding constant should become standard in future.

8.6 Common issues to watch out for during analysis

It is important to carefully examine output data for common problems. Some of the most 

important things to check for are:

• Sampling of the binding site by the ligand: Make sure the ligand samples the 

binding site reasonably tightly for its expected potency and fit, and that it does 

not depart out of binding site in the coupled end state if it is a moderate to strong 

binder.

• Consistency of free energy estimates across different estimators Significant 

discrepancies, meaning results that further outside the mutual error estimates 

than would be plausible statistically, between free energies calculated with 

different free energy estimators such as TI, BAR, and MBAR. All of these 

estimators converge to the same results with sufficient sampling. Differences 

between them indicate poor overlap or errors in processing.

• Have replicas mixed well? Poor replica mixing (for replica-exchange) or λ-

space sampling for single-replica methods. If the system is not mixing between 

states, then the states are insufficiently close for mixing, or else there are 

bottlenecks in the configurational sampling that limit the accuracy.

• Behaviour of correlation times: Correlation time that does not vary relatively 

smoothly as a function of λ . Discontinuities in correlation time with λ  indicate 

that the system is sampling significantly different configurations with only small 

changes to the Hamiltonian changes. This usually indicates sampling problems.

• Dependence of the free energy on initial configuration of the system. 

Ensemble average properties should not depend on the starting point.

• Torsional sampling Torsions with multiple low-energy minima where some of 

these minima are visited rarely or not at all. Which torsions have low energy 

minima can best be found by comparing to the simulation in the solvent. There 

should be clear physical reasons that simulation in the complex has different 

torsional distributions that the ligand in the solvent.
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• Free energy dependence on λ  The free energy difference between states should 

vary relatively smoothly with λ . If it varies drastically, then either there need to 

be finer sampling in λ  in this region, or there are sampling problems there.

• Convergence of free energy The free energy should clearly converge as a 

function of simulation time (Fig. 9).

• If using non-equilibrium methods, is the result independent of the speed at 
which the non-equilibrium change is performed? Non-equilibrium methods 

are in theory independent of the switching time in the limit of good sampling 

unless the switching time is simply too short.

• Visualization of data In general, inspect output data such as energies and 

visualize the simulation trajectories and assess if they match your expectations. 

Many issues can be spotted by a straight forward visualization.

8.7 Best practices for reporting data

Following best practices for data generation and their analysis does not mean that data is 

reported in the optimal way. As a practitioner of alchemical free energy simulations you also 

should use best practices for reporting and plotting your results. We encourage the following 

standard set of analyses and ways to represent data.

Statistics to include in reporting data—As with any modelling technique, misuse 

of statistical analysis can skew the perception of how well models perform in free energy 

predictions. First, error estimates should always be included on your predictions in whatever 

form you present your data (scatterplots, barplots, etc; see next paragraph). We recommend 

performing triplicates of your predictions at minimum, with starting points that are expected 

to be uncorrelated, to ensure some measure of reliability in your data. This replication may 

seem excessive, but uncertainty estimates often underestimate the true statistical uncertainty. 

Where performing multiple replicas of the simulation is not possible, an error estimate from 

e.g. MBAR can be used, though bearing in mind this is likely an underestimated error.

As alchemical free energy methods are used in drug discovery to quantify and rationalise 

structure activity relationships (SAR), the models ability to (a) correlate well with 

experiment and (b) rank-order the molecules by affinity, should both be computed. 

Conventionally, this means including an R2 (or Pearson’s R), where R = +1 means high 

correlation, R = 0 means no correlation, and R = −1 means high anti-correlation) and a 

Kendall τ (with perfect ranking agreement when τ=1 and perfect disagreement when τ=−1) 

metric in your results. Additionally, practitioners may choose to include a Spearman ρ 
as well. Brown et al. [232] have provided a useful analysis in terms of upper bounds of 

expected possible correlations between experiment and computation with a given potency 

range for the compounds. For example, for potency ranges of 2 log units it would be 

impossible to get a higher correlation in R than 0.8 because of experimental uncertainties 

[232]. What often is neglected to include is an error analysis on correlation statistics that 

arise from the errors of both experimental and computed data. One way to include such error 

analysis for correlation metrics is using bootstrapping on the datasets. The D3R community 
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challenges follows best practices on their data evaluation with readily available python 

scripts online [233], based on work by Pat Walters [234]. Other analysis software also 

provide similar functionality for bootstrapping datasets [235].

Mean unsigned error (MUE, also called mean absolute error/MAE) is another key statistic 

to include in your results. Even though some models’ near-perfect correlation and ranking 

statistics might suggest excellent accuracy, MUE values can still have errors of multiple 

kcal/mol, providing important additional insight into performance. Furthermore, MUE 

allows for unbiased comparisons between predictive models as it is less sensitive to dataset 

size. Other metrics such as Gaussian Random Affinity Model (GRAM) [236], Predictive 

Interval (PI) and Relative Absolute Error (RAE), attempt to correct for the inherent potency 

range of a dataset, which can aid in comparing success between different targets. We 

recommend further reading on evaluation of computational models [232, 234, 237, 238].

Reporting the results of relative free energy calculations requires care. As shown in Fig. 5, 

relative free energies can be performed arbitrarily as a forward or a reverse process, and 

thus relative free energies may be reported as either positively or negatively valued. The 

consequence of the two possible signs for relative free energies is that correlation statistics 

(such as Pearson’s R and Kendall τ) can be skewed depending on which sign is analysed. 

The issue of this inconsistency can be circumvented by either plotting all datapoints within 

a consistent quadrant [90], or by avoiding the use of correlation statistics for assessment of 

relative free energy calculations and instead measuring accuracy using RMSE and MUE, 

which are unaffected by choice of sign.

Presenting your data—As essentially all alchemical free energy prediction schemes 

are regression problems, the preferred type of plot is a scatter plot (see Fig. 14). Most 

alchemical free energy projects will look at 10–50 ligands. Any study with <10 ligands 

is more suitable for bar plots (with inclusion of error bars), and is unlikely to provide 

meaningful statistics. Any study with >50 ligands typically contains multiple protein targets 

to which alchemical free energies may perform better on some targets than others. Because 

of this, it is bad practice to place multiple datasets on the same plot as this can suggest high 

model accuracy even though the individual models perform less well [238].

As we are interested mainly in the linear relationship between the alchemical free energy 

predictions and the experimentally-determined affinity values, plots should be depicted with 

the same range on both axes (i.e. x = y) with a 1:1 aspect ratio, with units for both 

experiment and simulation converted to be the same. If this skews the plot to a point 

where it is difficult to read of information, using the same dimensions, such that e.g. 1 

cm is 1 kcal/mol is acceptable. Furthermore, bounds should be depicted for the 1- and 

2-kcal/mol confidence regions. These regions can serve as tools to communicate your model 

performance: any predictions inside the 1 kcal/mol region can be seen as highly reliable, 

any predictions inside the 2 kcal/mol region should be seen as somewhat reliable, and any 

predictions outside the confidence regions should be expected to be unreliable and handled 

as outliers. In a drug discovery context, this type of data depiction may suggest the reliability 

of alchemical FE predictions in the project, and can give an idea of how trustworthy 
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predictions can be for synthesis ideas. It is also recommended to included experimental error 

bars in all plots.

An example of a best practice scatter comparison between computed and experimental 

values is shown in Fig. 14, highlighting outliers, error bars and confidence intervals. The 

data for this plot is artificially generated for illustration purposes.

9 Conclusions

Alchemical free energy calculations have seen a vast increase in popularity both in academic 

research as well as pharmaceutical industry applications in structure based drug discovery 

[37, 39, 239]. Commercial products such as FEP+ and Flare, which provide a convenient 

user interface make the setup and use of these methods much easier [15, 19], but this 

convenience comes with less flexibility in terms of choice of simulation protocols. It 

is also important to understand the current limitations of the methodology to recognise 

when automated workflow tools can be used effectively for a given protein target and 

when they are likely to fail still. Prospective prediction challenges such as the Drug 

Design Data resource grand challenges provide a community driven platform to evaluate 

different free energy protocols against each other on blinded targets [240, 241]. Such efforts 

have highlighted that selection of seemingly identical or similar potential energy function 

or simulation package does not guarantee production of similar free energies owing to 

differences in simulation protocols. We hope that the best practice guide provides a set of 

tools that allow a better understanding of how to setup, run, and reliably interpret alchemical 

free energy calculations.

10 Selection of available software packages

There are many different software solutions available for the setup, running, and analysis of 

alchemical free energy calculations. These will vary in customizability and ways in which 

they are ran, e.g. graphical user interface versus command line tool or python script. The 

following provides a non-exhaustive list of commercial and noncommercial tools available 

for conducting alchemical free energy calculations.

Simulation software: Commercial

• FEP+ is a tool offered by Schrödinger Inc. under a commercial license. It has an 

intuitive GUI which makes it easier for non-experts to run alchemical free energy 

calculations and analyze the results. It runs the DESMOND MD package under 

the hood and hence parallelizes well on GPUs [15].

• Flare is a commercial structure-based drug design software offered by Cresset. 

Similar to FEP+ it has an easily accessible graphical user interface and strives 

to facilitate free energy calculations for non-experts while offering advanced 

users full control via a Python API. It only runs on GPUs, using CUDA or 

OpenCL [19]. It is build on top of the open source software packages Sire and 

BioSimSpace (cf. below).
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• The molecular operating environment (MOE) offered by the Chemical 

Computing Group (CCG) has a tool for performing free energy calculations. 

It is built on AMBER-TI (cf. below).

All the above tools also provide a convenient setup and analysis suite and are really a one in 

all product.

Simulation software: Free/low cost academic and Commercial

• CHARMM has a variety of tools developed over the years. The PERT module 

can be used to define initial and final states and define the intermediate lambda 

points. FREN and BAR modules can be used to analyze the data after the MD 

run. Lambda-dynamics-based free energy calculation can be carried out using the 

BLOCK module.

• AMBER, including its new pmemd.cuda version supports free energy 

calculations [242].

• GROMOS offers an extensive and flexible molecular dynamics and 

simulations analysis suites with free energy calculation functionalities including 

customizable alchemical paths and various sampling protocols [243–245].

Simulation software: Open Source

• PLUMED is a tool which enables the usage of a variety of MD engines. It is 

designed as a plugin for MD packages such that it analyzes the trajectory on the 

fly. It also offers a VMD based plugin for the computation of collective variables 

[246].

• BioSimSpace is a multiscale molecular simulation framework, written to allow 

computational modellers to quickly prototype and develop new algorithms for 

molecular simulation and molecular design [34].

• Sire is a multiscale, molecular simulation framework that provides several 

applications, including SOMD, an MD/MC code for performing FEP 

calculations via an interface to OpenMM.

• YANK is a tool developed by John Chodera and group on the top of OpenMM 

MD package. It allows the users to write their inputs in easy-to-use YAML 

format.

• GROMACS is a molecular simulation package with a significant number of free 

energy methods implementations. The LiveCOMS GROMACS tutorial includes 

an example free energy calculation [247].

• PMX, an add-on to GROMACS, offers a mutation free energy calculation 

module [248].

• Q is MD code for performing FEP calculations using a variety of force fields 

[249].
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Setup tools:

• PMX: Setup of perturbation maps, perturbed topologies and input coordinates for 

GROMACS simulations at https://github.com/deGrootLab/pmx.

• Lomap/Lomap2: Relative alchemical transformation graph planning for setting 

up perturbation networks [136].

• CHARMM-GUI is a web-based tool for setting up a variety of MD simulations. 

It can be used to generate CHARMM scripts for solvation and ligand-binding 

free energy calculations [250].

• QligFEP offers robust and fast setup of FEP calculations for the software 

package Q [93].

• ProtoCaller, a setup tool for the automation of Gromacs free energy calculations 

[251].

• FESetup has been developed primarily to setup calculations in AMBER, 

GROMACS and SIRE [91].

Analysis tools:

• Alchemlyb: Multipackage free energy analysis https://github.com/alchemistry/

alchemlyb [252].

• pymbar: MBAR implementation, but have to roll your own analysis wrapper 

https://github.com/choderalab/pymbar [26].

• Arsenic: Standardising alchemical free energy analysis https://github.com/

openforcefield/Arsenic

• Free Energy Workflows: Sire-specific free energy map analysis using weighted 

path averages https://github.com/michellab/freenrgworkflows.

Generally, commercial software will offer more complete pipelines in which standalone 

analysis applications are not necessarily needed; free and open source packages often 

require manual analysis but allow more flexibility and modification.

11 Alchemical free energy datasets: an overview

The following contains a non-exhaustive summary of alchemical free energy datasets that 

can serve as a starting point to review approaches or test new implementations. The field is 

moving towards a more standardised way of generating protein-ligand benchmark datasets 

and the progress of these efforts can be tracked here: https://github.com/openforcefield/

FE-Benchmarks-Best-Practices. Currently lacking an exhaustive set of benchmark datasets, 

the review by Williams-Noonan et al. [253] contains an overview of recently published 

alchemical free energy studies. For comparison of FEP+ and Gromacs (using the 

AMBER99SB-ILDN and GAFF2 force field), cf. the recently published study by Pérez-

Benito et al. [90]. An overview of further suggested benchmark sets can be found in 

the review by Mobley and Gilson [228] or on alchemistry.org [254]. These include 

cyclodextrins, the Cytochrome C peroxidase (CCP) protein model binding site, thrombin 
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and bromodomains as well as solvation benchmark sets [224]. Please refer to table 1, for a 

small overview of datasets, what forcefields they used, and what the original study was it 

came from.

12 Checklist

KNOW WHAT YOU WANT TO SIMULATE

Initial questions you should ask before you set up an alchemical free energy 
calculation using molecular dynamics simulations

□ Do I understand the biology, chemistry and physics of my system?

□ Have I properly prepared my protein and ligand systems?

□ Does my system contain any structures that require custom parameters?

□ What simulation protocol will provide the most evidence to verify my 

hypothesis?

□ Are the projected computational expense and runtime realistic for my scientific 

goals?

□ Will my protocol be reproducible?

□ Will my statistics be reliable? If not, would more replicates solve the problem?

□ Can I open-source my data?

PREPARING YOUR SIMULATIONS

Steps to getting started setting up your alchemical free energy calculation

□ Make sure you know why you have picked your (combination of) force field(s)

□ Energy minimize your system

□ Equilibrate your system properly with your choice of thermodynamic ensemble

□ Check the stability of your system and whether it behaves the way you believe it 

should

RUNNING ABSOLUTE SIMULATIONS

Steps to running your absolute alchemical free energy calculations

□ Check your ligands have the same, biologically correct binding pose

□ Make sure your λ-scheduling is appropriate

□ Check if your ligands are discharging and decoupling correctly

□ Set up your restraints correctly

□ Make sure you subsample the data in your free energy estimation protocol

□ Apply the appropriate correction terms
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RUNNING RELATIVE SIMULATIONS

Steps to running your relative alchemical free energy calculations

□ Check your ligands have the same, biologically correct binding pose

□ Make sure your λ-scheduling is set correctly

□ Make sure your molecular transformations are realistic (1–5 heavy atoms for 

reliable computations)

□ Generate a perturbation network by your method of choice; check whether you 

have enough cycle closures to check consistency in the results

□ Check whether dummy atoms were assigned correctly

□ Consider subsampling the data in your free energy estimation protocol

□ Apply the appropriate correction terms

HOW DO I KNOW WHICH SIMULATIONS ARE UNRELIABLE?

Situations suggesting your relative alchemical free energy calculations have 
not run properly (assuming absence of experimental affinities)

□ Standard error (σ) should not be >1 kcal·mol−1

□ Simulated systems have not converged - trajectories should be manually checked 

for consistency; other methods such as generating RMSD plots are also 

recommended

Relative:

□ If you observe hysteresis in perturbations and incorrect cycle closures

□ Energy differences >~15 kcal·mol−1 are likely unreliable

Absolute:

□ Energies <~−15 kcal·mol−1 are likely unreliable

□ The ligand has not sampled most of the intended region after the decoupling step

□ The ligand is drifting out of the intended region after the decoupling step

WHY ARE THEY NOT RELIABLE?

Suggestions for finding out why your alchemical free energy calculations may 
not be reliable

□ Check again whether dummy atoms were assigned correctly

□ Inspect the trajectories across the λ-schedule (particularly the endpoints) for 

problems described in the text

□ Inspect the overlap matrices for lack of overlap
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DATA ANALYSIS

Steps to analyzing your output data correctly

□ Make sure you have run enough replicates to ensure statistical reliability (>3)

□ Compute both correlation and ranking coefficients and ranking statistics (e.g. r, 

ρ, MUE and τ)

□ Include error bars in all your visual analyses
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Acronyms

CPU Central Processing Unit

BAR Bennett Acceptance Ratio

FEP Free Energy Perturbation

GPCR G-Protein Coupled Receptor

GPU Graphics Processing Unit

MBAR Multistate Bennett Acceptance Ratio

MCSS Maximum Common Substructure

MD Molecular Dynamics

RMSE Root Mean Square Error

MUE Mean Unsigned Error

SAR Structure-Activity Relationships

TI Thermodynamic Integration

List of Symbols

L and R generic names for ligand and receptor

Kb
∘ binding constant

c∘ standard state concentration
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U potential energy

u reduced (dimensionless) potential describing a 

thermodynamic state

G Gibbs free energy (free energy in the isothermal isobaric 

ensemble), Gibbs function, or free enthalpy, though the 

most common term Gibbs free energy is used in the text

A Helmholtz free energy (free energy in the canonical 

ensemble) or Helmholtz function, with Helmholtz free 

energy used in the text.

f reduced (dimensionless) free energy

Δf estimate from an estimator for the reduced free energy 

difference between two states

Γ configurational space accessible by simulations

q vector of a single configuration, i.e. x, y, z coordinates of 

the simulation system

k B Boltzmann constant

Z partition function

p pressure

μ chemical potential (grand canonical ensemble)

T temperature

β ≡ (kBT)−1 inverse thermal energy

λ alchemical progress parameter, which may be 

multidimensional

g statistical inefficiency

O overlap matrix

C t discrete-time-normalized fluctuation auto-correlation 

function

τ eq integrated auto-correlation time

t 0 equilibration time
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Figure 1. Illustration of common types of free energies differences that can be calculated using 
alchemical free energy methods.
A: Change in free energy due to a conformational change of the molecule across a high 

barrier. B: Partition coefficient such as log P or log D depend on a change in free energy 

between different phases; here, as an example the partition coefficient between methanol and 

water is shown. C: Free energy difference associated with the insertion of a molecule into 

a membrane. D: Effect of mutations of protein or host residues on free energies of binding. 

E: Relative free energy of binding of one molecule with respect to another, here toluene 

and benzyl alcohol, F: absolute free energies of binding of a small molecule to a host (e.g. 

protein).
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Figure 2. Thermodynamic cycle for computing the relative free energy of binding (ΔΔG) between 
two related small molecules to a supramolecular host or a rigid receptor.
The relative binding free energy difference between two small molecules, ΔΔGbind,A→B ≡ 
ΔGbind,B − ΔGbind,A—here benzyl alcohol (top) to toluene (bottom)—can be computed as 

a difference between two alchemical transformations, ΔGbound − ΔGsolvated, where ΔGbound 

represents the free energy change of transforming A → B in complex, i.e. bound to a host 

molecule, and ΔGunbound the free energy change of transforming A → B in solvent, typically 

water.
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Figure 3. Two common topologies for alchemical calculations: single and dual topology.
Left: A single topology converts from one type of atom to an other. Dummy atoms 

(Du) are used when there is no corresponding maximum common substructure match 

between the two molecules for certain atoms, using a soft-core interaction to improve 

overlap between the dummy atoms and the “real” atoms. Right: The dual topology 

does not convert one species to another, but only converts between Du atoms and an 

interacting species, but usually uses soft-core potentials for this. The ‘mixed’ intermediate 

atoms (M) are used in both dual and single topology approaches. Only the way the 

transformation occurs and the end states differ. Following the arrow along the left 

and right illustrate the differences. Figure adapted from http://www.alchemistry.org/wiki/

Constructing_a_Pathway_of_Intermediate_States
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Figure 4. Illustration of maximum common substructure matches
MCSS is shown in green for when (A) a restrictive MCSS match is used and in (B) ring 

breaking is allowed, meaning there is no MCSS match between the two compounds.
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Figure 5. Examples of perturbation networks
(A) Star shaped network with the crystal structure in the center. (B) Network with cycle 

closures (see more on this in Sec. 8.5). Arrows indicate the direction of the perturbation. 

Fully converged binding free energy calculations yield binding free energy changes which 

sum to zero around any closed cycle. However, in practice errors may not sum to zero 

around closed cycles, providing a way to look for potential sampling problems. Here in (B), 

green cycles indicate cycles with hypothetically good cycle closure, red those with poor 

cycle closure. The red arrow indicates a poorly converged simulation that would give rise to 

bad cycle closures. The diamond indicates the use of a crystallographic binding mode.
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Figure 6. Thermodynamic cycle required for an absolute free energy calculation – absolute free 
energy of binding example
The fully interacting ligand in water (A), has its charges turned off to pass to (B) followed 

by turning of van der Waals terms, resulting in a non-interacting ligand in water in (C). 

Restraints are used on the fully interacting ligand in the binding site of a protein or host 

molecule (D). The next step is to turn off the charges again (E) followed by the van der 

Waals interactions resulting in a non-interacting complex state (F). Free energyes can be 

computed as ΔGbind = ΔGsolv
elec + ΔGsolv

VdW − ΔGbound
elec + ΔGbound

VdW .
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Figure 7. 
Alchemical intermediates are created by making the potential energy depend on an 

additional variable λ  that interpolates between the chemical endpoints. In (A), at λ = 0 the 

molecule is a fully interacting phenol and at λ = 1, a fully interacting benzene. (B) shows an 

illustration of the probability distribution of the potential energies as the switching function 

takes values of λ = 0 to λ = 1. Intermediates states are required for a sufficient overlap in 

potential energies to estimate a free energy difference between λ = 0 and λ = 1. Soft-core 

potentials provide one of the most efficient families of intermediate pathways, with a λ

dependence. In (C) the potential energy surface is coloured according to λ  with blue being 

λ = 0 and λ = 1 orange. In (D) the potential is coloured according to the potential energy. 

Note how as λ  approaches 0, the energy smoothly approaches zero at all r, a necessary 

requirement for efficient and stable calculations.
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Figure 8. Four most common sampling strategies.
(A): Multiple replicas in parallel at different lambda states. Each arrow symbolises 

an independent λ  simulation. (B): Hamiltonian replica exchange scheme. Each arrow 

represents a short simulation interval before an exchange through Metropolis Hastings 

acceptance (dice) is attempted. A tick means an accepted exchange, a cross a rejected 

exchange. (C): Single replica scheme sampling from all λ  states. After a short simulation 

time symbolised by the arrow, the lambdastate is attempted to change until all N lambda 

states will be sampled. (D): Non-equilibrium sampling scheme, where two equilibrium 

simulations at the end states are run as indicated by the blue and pink arrow. Non-

equilibrium simulations are attempted at intervals to switch between the two end states.
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Figure 9. Free energy (in kBT) for two different relative binding free energy perturbations.
Each plot shows the estimated free energy change using a varying fraction of total 

simulation time (up to 5 ns total). Subplots (A), (C), and (E) show a three step protocol 

for a perturbation involving 3 perturbed atoms, while (B), (D), and (F) shows the same 

protocol for a perturbation involving 10 perturbed atoms. The first step of the protocol is the 

decharging then removing van der Waals interactions and then recharging. The difference in 

energy between the forward (blue) and reverse (red) free energy calculations at the midpoint 

of the simulation time gives an indication of the overall convergence of the simulation, with 

differences over 1 kBT indicating poor convergence.
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Figure 10. Potential of mean force with respect to λ  for TI and MBAR

The estimated PMF for a bound calculation of a Tyk2 ligand pair of Wang et al. [15] with 

respect to λ  estimated from TI and MBAR and showing agreement within errorbars.
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Figure 11. Automatic partitioning into equilibration and production regions.
(A) The average (black line) standard deviation (shaded region) of the reduced potential u* 

over many independent replicate simulations started from the same initial conditions show a 

significant initial transient change before relaxing to the true average potential energy (B). 

A cumulative average (red) of the entire simulation data demonstrates simulation bias not 

seen when initial simulation data is omitted (blue). Using an automated approach to detect 

equilibration of the boundary t0 using statistical inefficiency g (C) for an effective simulation 

interval (D). (E) The optimal equilibration boundary t0 is selected to maximize the number 

of uncorrelated samples. Figure adapted from [210].
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Figure 12. 
Average binding free energy of 5 replicate Hamiltonian replica exchange calculations as a 

function of total simulation time (i.e. the sum of the simulation time of all replicas) for 

the two host-guest systems CB8-G3 and OA-G6. Shaded areas represent 95% confidence 

intervals around the mean computed from the 5 replicates data. The horizontal dash-dot lines 

show the final binding free energy prediction of the two calculations after a total of 5230 ns 

for OA-G6 and 6650 ns for CB8-G3. Dashed lines are the free energy trajectories computed 

in the forward (blue) and reverse (red) time direction for a single replicate calculation. 

Longer correlation times in CB8-G3 cause the calculation to converge more slowly. The 

original data used to generate the plot can be found at https://github.com/samplchallenges/

SAMPL6/blob/master/host_guest/Analysis/SAMPLing/Data/reference_free_energies.csv.
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Figure 13. Overlap matrices:
Visualising overlap matrices can help with assessing the quality of simulation data. (A) 

shows good overlap with all first off-diagonal entries well above 0.03, the suggested 

threshold, (B) is an example of mediocre overlap with good overlap at lower λ  values and 

poor overlap at high λ  values. (C) shows poor overlap resulting in disconnected simulations 

with unreliable MBAR estimates.
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Figure 14. An example of recommended practices for graphing alchemical free energy 
predictions.
This figure shows the relation between predicted and experimentally-determined Gibbs free 

energy in kcal/mol with standard errors as error bars. The dark and light-orange regions 

depict the 1- and 2-kcal/mol confidence bounds. Statistical metrics for the data are reported, 

with 95% confidence intervals determined by bootstrapping analysis. Extra care should be 

taken when investigating potential outliers further.
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Table 1.

Selection of example datasets

Publication Targets Ligands Force Field

D3R Grand Challenges [255]

GC3 [241] 6 266 various

GC2 [240] 1 102 various

GC2015 [256] 2 215 various

SAMPL Challenges [257]

SAMPL6 [258] 3 21 various

SAMPL5 [259] 3 22 various

SAMPL4 [260] 2 23 various

Schrödinger Datasets

FEP+ Dataset [15] 8 199 OPLS2.1

FEP+ Dataset [81] 8 199 OPLS3

FEP+ Dataset [261] 8 199 OPLS3e

FEP+ Dataset [17] 8 199 GAFF 1.8

FEP+ Dataset [18] 8 199 various

FEP+ Dataset [19] 8 199 GAFF2.1

Fragments [201] 8 96 OPLS2.1

Scaffold Hopping [104] 6 21 OPLS3

Scaffold Hopping [19] 6 21 GAFF2.1

Macrocycles [262] 7 33 OPLS3

Further Suggested Datasets

Cucurbit[7]uril (CB7) [228] 1 15 NA

Deep cavity cavitand [228] 2 19 NA

T4 Lysozyme [228] 2 20 NA

Merck set [263] 5 169 OPSL3
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