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Abstract: Using ultrasound (US) in proanthocyanidin (PA) extraction has become one of the important
emerging technologies. It could be the next generation for studying the US mechnophore impact
on the bioactive compound’s functionality. The objective of this study was to demonstrate the
potential of US treatment on PAs extracted from kiwifruit (Actinidia chinensis) leaves, and to provide
a comprehensive chemical composition and bioactivity relationship of the purified kiwifruit leaves
PAs (PKLPs). Several methods like single-factor experiments and response surface methodology
(RSM) for the four affected factors on US extraction efficiency were constructed. HPLC-QTOF-
MS/MS, cytotoxicity analysis, and antioxidant activity were also demonstrated. In the results,
the modeling of PA affected factors showed that 40% US-amplitude, 30 mL/g dry weight (DW)
solvent to solid ration (S/S), and 70 ◦C for 15 min were the optimum conditions for the extraction of
PAs. Furthermore, PKLPs exhibited significant radical scavenging and cellular antioxidant activity
(p < 0.05). In conclusion, this study’s novelty comes from the broad prospects of using US in PKLP
green extraction that could play an important role in maximizing this phytochemical functionality in
drug discovery and food science fields.

Keywords: proanthocyanidins; ultrasound-assisted extraction; kiwifruit leaves; extraction optimiza-
tion; HPLC-QTOF-MS/MS; antioxidant potential

1. Introduction

Kiwi (Actinidia chinensis) leaves are natural sources that are considered as a byproduct
of kiwi fruit production and that contain a very high amount of natural bioactive phyto-
chemicals that are generally considered as natural, safe extracts [1,2]. For instance, it has a
high amount of polyphenols 189.39–440.71 mg GAE/g DW [3] that have a high bioactivity
for human health (e.g., antioxidant and anti-tumor), due to their functional groups like
hydroxyl groups on its phenolic rings [4]. In particular, proanthocyanidins (PAs) are a class
of polyphenols that are divided into different types based on the hydroxylation patterns
of their monomeric flavan-3-ols units [5], in which PAs oligo- or polymers are produced
as an end product of the flavonoid biosynthetic pathway [6]. These phytochemicals are
considered as offense and defense molecules because of their antioxidant [7], anticancer [8],
antidiabetic [9], and antimicrobial activities [8]. Zheng et al. [10] reported that PAs are con-
sidered as a key ingredient that helps in the novel functional foods industry. For instance,
they can inhibit the α-amylase enzyme activity in the phenolic-starch complexes. As a
result, this reduces the starch digestibility, which has significant benefits for the delivery of
functional molecules in humans [11].

Newly developed technologies are currently used for the extraction and structural
analysis of PAs [12]. Regarding the emerging technologies for PA extraction, US has a
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significant impact on increasing the efficiency of plant phytochemicals, especially polyphe-
nolic PAs [13]. For example, using US for extraction of PAs from different plant origins
like grape seeds and knotweed rhizome bark at 40 ◦C for 15–20 min enhanced their ex-
tracted yields [14,15]. Boulatov [16] reported that the mechanochemical effects of the US
results in overstretching of macromolecule polymers (like carbohydrate and protein chains)
that lead to their fragmentation and release of phytochemicals. A comparison study of
US-assisted and conventional extraction methods on tea leaves’ bioactive compounds
showed that the breakdown of cells cytoarchitecture by US increased 20% of extracted
bioactive phenolics [17]. In addition, Rashed et al. [18] reported that higher total phenolic
content was extracted from Lavandula pubescent leaves using US compared to maceration
extraction (ME).

For most plant leaves, the US acoustic cavitation can facilitate the flow of solvents
into the plant cells and enhance the desorption of the bioactives from the matrix of solid
samples. In addition, the formation of radicals during the optimum conditions of US
process can increase the antioxidant activity of the extracted PAs through extension in
the hydroxylation process [19]. This led to the fact that the optimum US conditions for
various plant materials are maximizing the extracted yields and their bioactivities. In
addition, US inhibits the hydrolyzing enzymes (e.g., α-glucosidase) that have a negative
effect on flavonoids like PAs and their antioxidant functionality [20]. Collectively, the
above information suggests a scope for optimization where maximum bioactivities could
be obtained before the negative effects by heating or free radicals from the high US-
amplitude. For instance, as a statistical technique, response surface methodology (RSM)
has been proved as an effective tool for optimizing the process parameters that enable
the reduction of the number of experimental trials and quantify the interactions between
the multiple parameters [21]. Furthermore, several technologies, like high-performance
liquid chromatography-Quadrupole Time of Flight Mass Spectrometry (HPLC-QTOF-
MS/MS), and matrix-assisted laser desorption/ionization (MALDI), are recently validated
as novel applicable methods for qualitative and quantitative analysis of PA structure
conformation [12].

The use of bioactive PAs, as natural safe phytochemicals, in the prevention and
treatment of different kinds of cancers has become one of the world’s hottest scientific
areas [22,23]. Nutraceuticals derived from fruits, vegetables, and herbal leaves (kiwi,
pomegranate, orange) generally have multi-targeted anticancer potential with negligible
side-effects, thus making them ideal candidates for non-pharmacologic anticancer therapies,
especially for colorectal cancer (CRC), which remains the fourth most common cause of
cancer-related deaths worldwide [24,25]. HepG-2 and Caco-2 cell lines that related to CRC
are wildly used to investigate the anticancer efficiency of the bioactive phytochemicals,
especially PAs [26].

Therefore, this study aimed to evaluate the US impact on the extraction yield and
chemical compositions of PAs extracted from kiwi leaves. Different US extraction conditions
were evaluated to optimize the US conditions for PA extraction. Then, the optimum PA
extract by using US was compared with its extract by ME for its anticancer and antioxidant
functionality, thus providing evidence of the mechanochemical applicability of US as a
green technology in the design of PA extraction while caring for their bioactive functionality.
In addition, to evaluate the potential of using PAs as antioxidant and anticancer agents
based on their unique chemical structures.

2. Materials and Methods
2.1. Chemicals and Materials

Acetone and ethanol that used in the part of extraction were purchased from Aladdin
Reagent Co. Ltd. (Shanghai, China). AB-8 Macroporous resin was obtained from Solarbio
Science and Technology Company (Beijing, China). Folin–Ciocalteu reagent was purchased
from Aladdin Reagent Co., Ltd., Shanghai, China. Acetonitrile and formic acid of HPLC
grade were purchased from Merck Chemicals (St. Louis, MO, USA). Deionized water was
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used. Foetal bovine serum (FBS), Dulbecc’s modified Eagle medium (DMEM), phosphate-
buffered solution (PBS), penicillin/streptomycin (P/S), and methyl thiazolyl tetrazolium
(MTT) were purchased from Life Technologies (Carlsbad, CA, USA).

Fresh Kiwi (Actinidia chinensis) leaves were collected during October from Zhuji local
farm, Shaoxing, China. The cleaned leaves, as presented in Figure 1, were freeze-dried
before being ground into powder and then pass through a 0.25 mm mesh screen. Kiwi
leaves’ powders were stored at −20 ◦C until further extraction.
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Figure 1. Flowchart of proanthocyanidins (PAs) extraction by ultrasound-assisted extraction (UAE)
and Maceration extractrion (ME) methods.

2.2. Extraction of PAs
2.2.1. Ultrasound-Assisted Extraction (UAE)

The ultrasound-assisted extraction technique was performed according to Martin-
Garcia et al. [27]. In brief, 1 g of kiwi leaves’ freeze-dried powders were mixed with
an appropriate volume of acetone solvent (10–70 mL/g (S/S)) in 3.5 cm inner diameter
cylindrical glass. UAE protocol was conducted by using different sonication power (0–70%
US-amplitude), temperature (0–30 ◦C), and time of ultrasonic bath system (JY92-IIDN,
Ningbo Scientz Biotechnology Co., Ningbo, China). In addition, acetone was used as an
ideal solvent for PA extraction from plants [27]. The supernatant was filtered by syringe
filters (nylon membrane, pore size 0.45 µm) and then freeze-dried to obtain the PA crude
extracts. The crude extracts were stored at 4 ◦C for further analysis.

2.2.2. Maceration Extraction (ME)

In order to compare the PAs extraction efficiency of UAE with the conventional
methods, ME was carried out as described by Xu et al. [28] with slight modifications. An
aliquot of 10 g of freeze-dried powder was mixed with 300 mL acetone solution (70%, v/v)
at 30 ◦C and stirring at 200 rpm for 1 h. The extracted solution was filtered, freeze-dried,
and stored at 4 ◦C in the same way as UAE.

2.3. Purification of the Extracted PAs

Crude extracts obtained in both UAE and ME were purified following Luo et al. [29].
In brief, the crude extracts (1 g) were loaded onto AB-8 Macroporous resin column and
washed with distilled water (4 times column volume) to remove impurities, such as
sugar, proteins, and pigments. Subsequently, 4 times column volume of ethanol solution
(70%, v/v) was used to elute the PAs and the fraction filtered. Then, the extracts were
lyophilized to remove the solvent and to obtain the PKLPs. Figure 1 presents the flowchart
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of proanthocyanidin extraction by ultrasound-assisted extraction (UAE) and Maceration
extractrion (ME) methods. PA yield (%) was calculated by the following equation:

PAs yield (%) =
dry weight o f puri f ied proanthocyanidins powders

dry weight o f kiwi f ruit leaves powders
(1)

2.4. Experimental Design
2.4.1. Single-Factor Experiments

Single-factor experiments were employed to determine the factors resulting in re-
sponse values that were very close to the optimum region [30]. The response variable (Y) of
extracted PAs was influenced by each independent parameter. In this part, the initial range
of four designed factors were investigated including US amplitude (0–60%), sonication
time (0–25 min), temperature (10–70 ◦C), and solvent to solid (S/S) ratio (10:1–70:1 mL/g).

2.4.2. Response Surface Methodology (RSM) Experiments

Based on the single-factor experimental results, the RSM was used to optimize the
extraction of PAs, and its purpose was to explore the optimum condition to maximize
the extraction efficiency of PAs. A central composite design (CCD) with four-factor and
five-level was conducted for the best model due to its accurate prediction and economic
approach [30,31]. In that model, US amplitude (X1, %), sonication time (X2, min), tempera-
ture (X3, ◦C), and solvent to solid ratio (X4, mL/g) were the independent variables, and
their coded and uncoded levels were displayed in Table 1. Additionally, 30 experimental
runs and 6 replicates of the center point were used to optimum the extraction model. In
addition, the relationship between the four independent variables and the extraction yield
of PAs was expressed as a second-order polynomial equation:

Y = α0+∑n
i=1 αiXi+∑n

i=1 αiiX2
i +∑n

i=1 ∑n
j=1 αijXiXj (2)

where Y is the predicted value of extraction yield of PAs, α0 is a constant; αi, αii, and αij
are the linear, quadratic, and interactive regression coefficients of the model, respectively;
Xi and Xj are the independent variables.

Table 1. Response surface design with experimental and predicted results.

Run
Factor X1

Amplitude
% (Code)

Factor X2
Time Min

(Code)

Factor X3
Solvent/Solid
mL/g (Code)

Factor X4
Temp. ◦C

(Code)

PAs (mg PC/g DW) TPC (mg CAT/g DW)

Experimental Predicted Experimental Predicted

1 30 (−1) 10 (−1) 40 (+1) 60 (+1) 109.36 ± 7.23 105.81 162.11 ± 6.01 161.50
2 40 (0) 15 (0) 30 (0) 50 (0) 87.32 ± 5.15 85.01 135.69 ± 5.67 132.36
3 30 (−1) 10 (−1) 20 (−1) 60 (+1) 87.54 ± 4.87 84.45 131.92 ± 4.17 132.14
4 40 (0) 5 (−2) 30 (0) 50 (0) 80.65 ± 5.1 77.69 125.18 ± 3.69 123.71
5 40 (0) 15 (0) 30 (0) 70 (+2) 122.19 ± 5.71 119.55 177.15 ± 7.79 176.86
6 40 (0) 15 (0) 30 (0) 50 (0) 89.54 ± 3.57 85.01 127.91 ± 3.89 132.36
7 40 (0) 25 (+2) 30 (0) 50 (0) 94.18 ± 3.48 92.13 141.44 ± 7.70 144.40
8 40 (0) 15 (0) 50 (+2) 50 (0) 103.89 ± 4.18 99.67 141.37 ± 4.07 140.83
9 50 (+1) 10 (−1) 20 (−1) 60 (+1) 90.19 ± 5.08 86.29 133.61 ± 3.79 132.22

10 30 (−1) 20 (+1) 20 (−1) 40 (−1) 75.96 ± 3.52 71.63 120.24 ± 3.34 117.37
11 50 (+1) 20 (+1) 20 (−1) 40 (−1) 82.87 ± 4.11 81.07 138.44 ± 4.74 137.29
12 20 (−2) 15 (0) 30 (0) 50 (0) 81.73 ± 4.57 82.57 129.46 ± 4.77 132.58
13 50 (+1) 10 (−1) 40 (+1) 60 (+1) 105.18 ± 5.67 102.85 159.67 ± 3.93 158.42
14 40 (0) 15 (0) 30 (0) 50 (0) 86.99 ± 4.25 85.01 137.67 ± 5.15 132.36
15 50 (+1) 10 (−1) 20 (−1) 40 (−1) 74.68 ± 3.81 74.95 117.81 ± 2.95 115.55
16 50 (+1) 20 (+1) 40 (+1) 60 (+1) 116.42 ± 6.23 113.57 169.71 ± 5.41 168.57
17 50 (+1) 10 (−1) 40 (+1) 40 (−1) 83.67 ± 4.52 80.31 124.36 ± 3.72 128.91
18 30 (−1) 20 (+1) 40 (+1) 40 (−1) 84.08 ± 4.61 82.79 125.28 ± 3.35 124.91
19 30 (−1) 20 (+1) 40 (+1) 60 (+1) 121.11 ± 3.08 114.13 162.37 ± 5.73 160.45
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Table 1. Cont.

Run
Factor X1

Amplitude
% (Code)

Factor X2
Time Min

(Code)

Factor X3
Solvent/Solid
mL/g (Code)

Factor X4
Temp. ◦C

(Code)

PAs (mg PC/g DW) TPC (mg CAT/g DW)

Experimental Predicted Experimental Predicted

20 40 (0) 15 (0) 10 (−2) 50 (0) 72.82 ± 4.06 71.95 105.06 ± 4.13 107.09
21 30 (−1) 20 (+1) 20 (−1) 60 (+1) 93.75 ± 4.35 91.77 145.66 ± 3.94 139.71
22 40 (0) 15 (0) 30 (0) 50 (0) 86.12 ± 3.56 85.01 137.27 ± 2.52 132.36
23 30 (−1) 10 (−1) 20 (−1) 40 (−1) 70.59 ± 4.11 67.91 107.45 ± 4.58 106.83
24 30 (−1) 10 (−1) 40 (+1) 40 (−1) 80.45 ± 4.19 78.07 127.30 ± 4.18 122.99
25 40 (0) 15 (0) 30 (0) 50 (0) 88.23 ± 5.07 85.01 127.13 ± 4.32 132.36
26 60 (+2) 15 (0) 30 (0) 50 (0) 95.19 ± 4.23 89.05 150.96 ± 4.48 149.42
27 40 (0) 15 (0) 30 (0) 50 (0) 88.37 ± 5.15 85.01 132.66 ± 3.95 132.36
28 40 (0) 15 (0) 30 (0) 30 (−2) 79.37 ± 4.51 76.87 122.94 ± 4.17 124.65
29 50 (+1) 20 (+1) 40 (+1) 40 (−1) 90.87 ± 4.81 87.43 146.06 ± 2.99 141.67
30 50 (+1) 20 (+1) 20 (−1) 60 (+1) 100.07 ± 6.28 96.01 150.82 ± 3.16 150.99

3D surface plots were constructed to exhibit the interactive effects between indepen-
dent factors, which enabled the visualization of the relationships between the variables in
the plot and the response.

2.5. Experimental Methods
2.5.1. Determination of Total Phenolics Content (TPC) and PAs Content and In Vitro
Antioxidant Activity

Total phenolics were determined spectrophotometrically by using the Folin–Ciocalteu
method following Gouda et al. [32] with minor modifications. The TPC of the extracts was
expressed as mg of catechin (CAT) equivalents per g of sample.

The PA content was measured using the vanillin method described by Cao et al. [13].
Briefly, 0.5 mL of sample was mixed with 2.5 mL vanillin (1% in methanol, v/v) followed by
2.5 mL of H2SO4 (20% in methanol, v/v). The absorbance was measured at 500 nm after
incubation at 30 ◦C for 20 min. Results were expressed on a dry weight basis (DW) as mg
procyanidin (PC) equivalent per g of sample.

Diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and antioxidant power
(ABTS) assays were employed to evaluate the antioxidant activity [1]. In brief, freeze-dried
PKLPs were dissolved in phosphate buffer solution (PBS), and then 20 µL of the PKLPs
(0–0.05 mg/mL) was mixed with 200 µL of methanolic solution of DPPH (0.04 mg/mL) and
left for 30 min in the dark. The absorbance (Abs) was measured at the 517 nm wavelength
using the EPOCH2 microplate reader (BioTek, Inc., Winooski, VT, USA).

The IC50 values were calculated by using a regression equation between the concen-
tration and the antioxidant percentage of each sample.

The antiradical power was measured using the 2.2′-azino-bis-3-ethylbenzothiazoline-
6-sulphonic acid (ABTS) radical scavenging modified method of Gouda et al. [32]. Briefly,
the ABTS stock solution (7 mM) was mixed with an equal volume of potassium persulfate
(2.45 mM), then incubated at 4 ◦C for 16 h to produce ABTS radical cation (ABTS•+). The
ABTS•+ solution was diluted with distilled water to maintain an absorbance of 0.70 ± 0.01
at 734 nm. Then, 20 µL of 0–0.05 mg/mL PKLPs in PBS was mixed with 3 mL of ABTS•+

solution and kept in a dark place for 6 min at 25 ◦C before the measurement. The Abs
was measured at 734 nm wavelength using an EPOCH2 microplate reader (BioTek, Inc.,
Winooski, VT, USA). IC50 was measured using the same formula of the DPPH method. All
of the measurements were performed in three replicates.

2.5.2. HPLC-QTOF-MS/MS Analysis

Separation and structure identification of PKLPs was conducted using a reversed-
phase HPLC system (Waters e2695, Waters Corp., Milford, MA, USA) following the method
of Huang et al. [33] with minor modifications. The system included a quaternary pump
coupled UV-Vis detector (Waters 2489, Waters Corp., Milford, MA, USA) and equipped
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with Agilent Zorbax Extend-C18 column (4.6 × 250 mm, 5 µm, (Agilent Tech Co., City,
CA, USA). In brief, the injected volume was 10 µL, 35 ◦C with the flow rate of the mobile
phase fixed at 0.7 mL/min, and the detection wavelength was set at 280 nm to monitor
all phenolic compounds. Two elution solvents, A (water: formic acid; 99.7: 0.3, v/v) and B
(acetonitrile), were used with the following gradient elution program: 3% B (0 min); 3–25%
B (0–56 min); 24–67% B (56–79 min); 100% B (79–80 min).

MS spectra were recorded on a Triple-TOF 5600+ ion trap mass spectrometer (AB
scientific, Framingham, MA, USA). The mass spectrometer was operated in negative ion
mode using the following conditions: 50–1500 m/z mass range, 10 V capillary voltage,
550 ◦C capillary temperature, 4.5 kV ion spray voltage, 35 arb sheath gas (N2), 6 arb
auxiliary gas (N2), and 80 V tube lens offset voltage.

2.5.3. Cell Culture and Treatment

Caco-2 (human colorectal adenocarcinoma) cell lines were provided by Zhejiang Key
Laboratory for Agro-Food Processing (Zhejiang University, Hangzhou, China). The cells
were cultured at 37 ◦C, in Dulbecco’s modified eagle medium (DMEM) medium with 20%
Fetal Bovine Serum (FBS) and 1% penicillin-streptomycin (P/S) under 5% CO2. Cells were
subcultured 3–4 times per week by replacing fresh medium to keep the cells in a good
growth state.

2.5.4. Cytotoxicity Analysis

The cytotoxicity effect of extracted PAs on Caco-2 cells were tested following Gao et al. [34]
with some modification. In addition, 100 µL of Caco-2 cells was seeded into 96-well plates
at a density of 2 × 105 cells/well and incubated for 48 h in standard cell culture condition
before being replaced by fresh medium. Then, 10 µL of samples with various concentrations
(0–125 µg/mL) were added to each well, and the control was treated without a sample
solution; the blank wells only contain growth medium. After incubating for 24 h, 20 µL
of MTT (0.5 mg/mL) was added, and the plates were incubated 4 h at 37 ◦C under 5%
CO2. Afterwards, the medium was removed, and 100 µL of DMSO was added to dissolve
the MTT-formazan complex. The absorbance of the cells was measured at 570 nm and
compared to the control. The IC50 values were calculated after plotting cell viability versus
reagent concentration.

2.5.5. Antioxidant Activity on H2O2-Induced Cell Death in Caco-2 Cells
Injured Cell Model Induced by H2O2

The antioxidant activity on H2O2-induced cell death on Caco-2 cells was determined
according to Cilla et al. [26]. Briefly, 5 mL medium contains 2 × 106 cells/well was pipetted
into 6-well plate (Costar Corning, Rochester, NY, USA), and incubated at 37 ◦C under 5%
CO2 for 24 h. Then, serial dilutions (0–250 µg/mL) of H2O2 multiple times (0–5 h) were
added to each well to determine the IC50 concentration of H2O2 in the injured Caco-2
cells, which aim to establish the H2O2-induced oxidative injury model. The results were
expressed as cell viability measured by the MTT assay.

Intracellular Antioxidant Activity Assay

The effect of extracted PAs’ antioxidant activity on the Caco-2 cells was measured
according to Liang et al. [35]. Briefly, 5 mL medium containing 2× 105 cells/well was pipet-
ted into 96-well plates. The medium was replaced with a fresh medium after cultivation for
24 h at 37 ◦C. The experimental group was treated with various concentrations of samples
(0–125 µg/mL, 10 µL) for 24 h before H2O2 treatment, the control group was normally
cultivated, and the model group was treated with H2O2. The result was expressed as the
cell viability determined by the MTT assay.
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2.6. Statistical Analysis

Experiments were conducted in triplicate and the average values± standard deviation
(SD) are tabled. Data were further analyzed via one-way analysis of variance (ANOVA),
using SPSS 19.0 (Chicago, IL, USA). Analysis of variance (ANOVA) and correlation efficient
(r2) were applied among all the measurements, p ≤ 0.05 was considered statistically
significant or correlated, and p ≤ 0.01 was considered as highly significant. Tukey’s HSD
test and Least significant differences (LSD) have been calculated to measure the signification
among the tested groups and properties. In addition, IC50 was calculated based on the
regression equation.

3. Results

The optimization of the UAE method on the functionality of the extracted PAs from
kiwi leaves is important for further studying their exact potential bioactivity. This is because
US shows high potential in the field of herbal science due to its high ability to generate
better yield and low scale-up finance compared to the other emerging techniques like a
microwave (MW) and pulsed electric fields (PEF) [36]. On the other hand, special attention
should be focused on the chemical composition and bioactivity of extracted PAs [4]. Thus,
this study conducted a single-factor experimental design to show the optimum of four
significant US factors represented in power, duration, temperature, and solvent to solid
ratio that have significant influences on PA extraction.

3.1. Single-Factor Experimental Analysis

Single-factor experiments were designed to evaluate the influences of the four US-
related factors (amplitude, sonication time, extraction temperature, and S/S ratio) on PA
extraction yields (Figure 2). These experiments presented four different factors that could
affect the extraction efficiency of PAs from kiwi leaves.
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3.2. Effect of US Amplitude on PA Extraction

In order to improve the US-assisted efficiency of extracted PAs from kiwifruit leaves,
ultrasonic amplitude (0, 20, 30, 40, 50, 60, 70%) was carried out. Other parameters were
at fixed conditions (15 min, 30 ◦C, and 30 mL/g S/S ratio). A significant (p < 0.05) in-
crease in PA yield (79.90 ± 3.91 mg PC/g DW) after 15 min, and the highest extracted
yield was obtained at 50% (103.12 ± 3.93 mg PC/g DW) compared to the control with
59.58 ± 2.67 mg PC/g DW (Figure 2a). Then, reverse effects have happened from 60%
(98.69 ± 4.09 mg PC/g DW), but the differences did not attend the significant level (p > 0.1).
This phenomenon could be explained by the potential increase in the cavitation bubbles by
an increase in ultrasonic power, which increases the solvent intracellular transfer. A US
mechanophore breakage (mechanochemical breakage of the polymer reactive units like
cyclic rings) can occur in extracts’ solutions via the shear stress caused by the collapse of US-
induced cavitation bubbles [37,38]. These modifications in the structure of extracted com-
pounds caused by US can facilitate the bioavailability of the bioactive molecules extracted
from plants [16]. However, the US higher than 50% had a negative effect on the PAs due to
the formed radicals and H2O2 by the cavitation’s bubbles [4]. Therefore, 50% amplitude
was selected as the optimum used power for the extraction of PAs. Zhao et al. [39] reported
that high US-amplitude (600 W) significantly degraded the extracted phytochemicals.

3.3. Effect of Sonication Time on PAs

To optimize the extraction capacity of UAE for the recovery of PAs, various ranges
of sonication time (0, 5, 10, 15, 20, 25, 30 min) were evaluated. Other parameters were
fixed at 30% US amplitude, 30 ◦C temp., and 30 mL/g S/S ratio. It has been observed
that the yield of PAs was increased significantly (p < 0.05) with sonication time of up
to 20 min (107.51 ± 4.28 mg PC/g DW) compared to the control with 55.82 ± 4.32 mg
PC/g DW. Then, a slight decrease happened in a longer duration (25, 30 min). Patil and
Akamanchi [40] used US (20 kHz, 150 W, 30 ◦C) for extraction of camptothecin from
Nothapodyhtes nimmoniana leaves. They mentioned that the application of US increased the
camptothecin yield (1.7-fold) and decreased the extraction time from 6 h to 18 min. This
could be due to the potential impact of US to transform the disulfide bonds to thiol bonds
of the molecules, which results in changing the covalently attached linear polymer chains
in the β-position to a disulfide moiety [41]. However, long-time ultrasonic cavitation could
result in the degradation of polyphenolics that declined the extraction yield [4]. Therefore,
20 min was selected as a suitable US time range for PAs.

3.4. Effect of Sonication Temperature on PAs

The effect of extraction temperature on PAs was performed from 10–70 ◦C with
other fixed parameters (30% ultrasonic amplitude, 15 min sonication time, and 30 mL/g
S/S ratio). The experimental results showed that, by raising the temperature of extrac-
tion from 10 to 60 ◦C, the yield of PAs was significantly increased from 66.48 ± 3.06 to
118.03 ± 5.20 mg PC/g DW. Then, the PA yield decreased upon further increasing of the
temperature (Figure 2d). Additionally, the effect was similar to the increase in US-amplitude
and time. These results might be related to the decrease of surface tension and viscosity of
the solvent, which induced an increase in vapor pressure. With the increment of tempera-
ture, the sonochemical influents caused by the collapse of cavitation bubbles decreased, and
polyphenols might be degraded at a higher temperature situation [4]. Therefore, controlling
the temperature at an appropriate range is very necessary during the extraction process of
bioactive compounds from plant materials, for which the extracted PAs by US can show a
higher antioxidant capacity against DPPH, and hydroxyl radicals compared to heat reflux
extraction based on the significant differences in the extracted chemical structure [42]. In
addition, Huo et al. [41] reported that US mechanochemistry could decrease the exposure
temperature at the molecular level by rearranging or cleaving bonds at predetermined
breaking sites that could assist in facilitating the release of PAs in the lower temperature
compared to the maceration method [43].
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3.5. Effect of Solvent to Solid Ratio during the Sonication Process on PAs

To maximize the extraction efficiencies, various S/S ratios (10, 20, 30, 40, 50, 60, 70 mL/g)
were selected with other fixed parameters (30% US amplitude, 15 min, and 30 ◦C). As
presented in Figure 2c, the yield of PAs increased significantly (p < 0.05) at 50 mL/g
(113.03 ± 3.10 mg PC/g DW) compared to 10 mL/g with 64.88 ± 4.83 mg PC/g DW. After
reaching a peak, the yield of PAs slightly decreased when the S/S ratio further increased
above 50 mL/g. A possible explanation is that the US cavitation effect could decrease the
concentration of the high S/S ratio level by improving the rates of heat and mass transfer,
cell disruption, and the penetration of solvents to the herbal tissues [13,44]. Xu et al. [21]
reported that 40 mL/g of S/S was the most efficient solvent concentration, which improved
the solubility of PAs in the plant cells. Boulatov [16] reported that the US mechanochemistry
affected overstretching carbohydrates’ polymers that lead to their fragmentation, which
helps in releasing small molecules that are bound in their polymer chain.

3.6. Analysis of Response Surface Methodology
3.6.1. Model Fitting

The experimental data of extracted PAs from kiwi leaves ranged from 70.59 to
122.19 mg PC/g DW, and TPC ranged from 105 to 177.15 mg CAT/g DW (Table 1). They
were optimized based on the CCD and evaluated by the linear regression and ANOVA
(Table 2). In addition, the applicability of the model is typically dependent on the realiza-
tion of the significant regression coefficient (R2) and insignificant lack of fit [45,46]. The
importance of measuring TPC with PAs was due to their strong correlations, as PAs belong
to TPC [14], with the possibility of selecting the conditions with the highest concentration of
TPC (177.15 mg CAT/g DW), and, as a consequence, stronger validation of PA extracts with
122.19 mg PC/g DW at the same condition of 40% (US-amplitude), 15 min, 30 mL/g (S/S
ratio), and 70 ◦C (Table 1). Leontowicz et al. [47] mentioned the strong correlation between
TPC and flavanols in kiwi fruit. This can indicate the suitability of the used extraction
conditions of PAs, as flavan-3-ols, through its verification by total phenolic contents.

Table 2. Analysis of Variance (ANOVA), factors, and their interaction effects.

Source Sum of Squares df Mean Square F-Value p-Value

Model 5213.5733 14 372.3981 89.90 <0.0001
X1-Amplitude 96.1200 1 96.1200 23.20 0.0002
X2-Extraction Time 341.4867 1 341.4867 82.44 <0.0001
X3-Solvent: solid 1314.6840 1 1314.6840 317.38 <0.0001
X4-Temperature 2950.1620 1 2950.1620 712.20 <0.0001
X1X2 5.7002 1 5.7002 1.38 0.2591
X1X3 22.1606 1 22.1606 5.35 0.0353
X1X4 27.3268 1 27.3268 6.60 0.0214
X2X3 1.0868 1 1.0868 0.26 0.6160
X2X4 13.4873 1 13.4873 3.26 0.0913
X3X4 129.6752 1 129.6752 31.30 <0.0001
X2

1 1.6450 1 1.6450 0.40 0.5381
X2

2 0.0073 1 0.0073 0.00 0.9670
X2

3 1.3113 1 1.3113 0.32 0.5820
X2

4 303.2210 1 303.2210 73.20 <0.0001
Residual 62.1349 15 4.1423
Lack of Fit 54.8974 10 5.4897 3.79 0.0771
Pure Error 7.2375 5 1.4475
Cor Total 5275.7082 29
R2 0.9882
Adjusted R2 0.9772
Predicted R2 0.9381
Adeq. Precision 37.40
Mean 90.7793
C.V. % 2.2420
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In this study, R2 was highly significant (R2 = 0.9882) and the lack of fit was insignificant
(p-value = 0.0771), which indicates that the prediction model was valid for PA extraction.
Meanwhile, there are adjusted and predicted coefficients (R2

adj = 0.9772 and R2
pre = 0.9381)

and the high-value Adeq. precision (37.40) with a low value of the coefficient of variation
(C.V. = 2.24%), which indicated a high reliability of experimental data with a very high de-
gree of precision (Figure 3). Esua et al. [48] mentioned that C.V. values < 10% for responses
suggesting the reliability, precision, and reproducibility of the established experiments.
Therefore, the current analysis showed that both mathematical models for calribration
and prediction were acceptable in describing the results of US-assisted extraction for kiwi
leaves. In addition, this study experimental model agreed with Ismail et al. [49], who
reported that the coefficient of variation (C.V. < 0.2445) indicates a low variation in the
mean values and a higher degree of precision and reliability.
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3.6.2. Interaction of Independent Variables on Extraction PAs in the RSM Model

As presented in Table 2, the linear regression coefficients of US-amplitude (X1); extrac-
tion time (X2); S/S ratio (X3); and extraction temperature (X4) were significant (p < 0.05).
However, X1X2, X2X3, X2X4, X2

1, X2
2, and X2

3 were insignificant (p > 0.05), which indicates a
highly significant effect on the surface response [50]. According to experimental results,
the final predictive second-order polynomial equation describes the effectiveness of ex-
tracted PAs by UAE, taking into consideration only the significant parameters, which was
presented in the following equation:

Y = 105.39 + 0.83X1 − 0.78X2 − 0.42X3 − 2.82X4 − 0.01X1X3 − 0.01X1X4 + 0.03X3X4 + 0.03X2
4 (3)

where Y represents the yield of PAs; X1, X2, X3, and X4 are the coded variables for the
ultrasonic amplitude, ultrasonic time, S/S ratio, and extraction temperature, respectively.

3.6.3. Response Surface Methodology of the Four US Affected Factors’ Variables

Three-dimensional response surface and contour plots (Figure 4) were used to illus-
trate the interactive effects between four independent variables and the extraction yield of
PAs [51]. The PAs (z-axis) were plotted against two independent variables while keeping
the rest of the variables at a fixed level. Figure 4a displayed the interactive effect between
US-amplitude and time on the yield of PAs with the S/S ratio and extraction temperature
at a fixed value. The yield of PAs was significantly increased with the exposure time,
and it was slightly increased with increasing US-amplitude. The best explanation for this
phenomenon is that temperature from the higher US-amplitude is increasing the mass
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transfer, facilitating the release of molecules from the leaves’ tissues [4]. An increase of S/S
from 10 to 50 mL/g increased the extraction yield of PAs significantly, while the extraction
yield of PAs increased slightly with the enhancement of ultrasonic amplitude from 20%
to 60% (Figure 4b). On the other hand, the values of PAs increased dramatically with
increasing the extraction temperature, reaching the optimum level at 50–70 ◦C (Figure 4c).
The temperature had a significant effect on extraction while the influence of US-amplitude
on the response did not attend a significant level (p > 0.1) since temperature had a dual
effect on both solvent and solute. Guo et al. [52] mentioned that the adsorption ratio of the
flavonoids was negatively correlated with the temperature. PAs as flavons are facilitating
their release from leaves by increasing temperature. The PAs were shown in Figure 4d
as the interactive influence on ultrasonic time and S/S ratio. PAs increased rapidly as
the function of S/S ratio, while the ultrasonic time had a slight effect on the extraction of
PAs. The highest values of PAs were observed at a longer extractive time and higher S/S
ratio. Meanwhile, the maximum extraction of PAs could be obtained at a longer extractive
time and higher temperature with other extraction parameters being fixed (Figure 4e).
Ismail et al. [49] reported that US for 20 min and 30% US-amplitude was the optimum
condition for PA yield. In that study, the higher amplitude during ultrasonic irradiation
resulted in the oxidization of PAs, which caused the decline of extraction yield. Moreover,
the interactive effect of S/S ratio and temperature demonstrated a significant interrelation
between both influencing factors (Figure 4f). According to the response model, the PA
yield increased with an increase in S/S ratio and temperature until 50 mL/g and 70 ◦C as
the highest condition.
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cyanidins (PAs) from kiwi leaves with respect to ultrasonic amplitude (X1); extraction time (X2); solvent to solid ratio (X3);
and extraction temperature (X4). (a) RSM between amplitude and time; (b) RSM between amplitude and solvent to solid
ratio; (c) RSM between amplitude and temperature; (d) RSM between time and solvent to solid ratio; (e) RSM between time
and temperature; (f) RSM between solvent to solid ratio and temperature.

The final optimum UAE conditions were concluded as follows: 40% (US-amplitude),
15 min, 30 mL/g (S/S ratio), and 70 ◦C. Meanwhile, the experimental yield of PAs was



Antioxidants 2021, 10, 1317 12 of 18

close to the predicted yield (confidence level > 98%)—in which, under the optimal UAE
conditions, PA experimental values were 122.19 mg PC/g DW, which was matched well
with the predicted value (119.55 mg PC/g DW).

3.7. Comparison between Ultrasound-Assisted Extraction (UAE) and Traditional Maceration
Extraction (ME) Efficiency and Identification of PA Fractions

In order to validate the effectiveness of ultrasound on the extraction of PAs from kiwi
leaves, a comparison was carried out between UAE and ME. ME is considered a common
technique that has been employed numerous times by different researchers for the extrac-
tion of polyphenol and PAs [27,53,54]. It was observed that UAE significantly increased
the extracted PA yield (11.3 ± 1.41%) compared to the maceration method (8.65 ± 1.2%)
for which ABTS and DPPH showed that the antioxidant activity of ultrasound-assisted
extracts was significantly (p < 0.05) higher than ME (Table 3).

Table 3. Comparative yield, PAs, and chemical-based antioxidant activity of kiwifruit leaves by
different extractions.

Response Yield
(%)

PAs
(mg PC/g DW)

ABTS
IC50 (µg/mL)

DPPH
IC50 (µg/mL)

UAE 11.3 ± 1.41 b 122.19 ± 5.71 b 10.88 ± 0.31 a 13.67 ± 0.39 a

ME 8.65 ± 1.20 a 93.7 ± 5.69 a 13.67 ± 0.39 b 17.59 ± 0.44 b

Mean ± SD with different alphabet superscript within the same column and analytical parameter indicate that
values differ significantly (p < 0.05).

Additionally, the fraction of phenolics by HPLC-QTOF-MS/MS showed a higher
relative percentage of several sensitive compounds like benzoyl glucuronide, catechin, and
isoquercitin in UAE compared to ME (Table 4; Table S1; Figure 5). Meanwhile, quercetin
3-O-xyloside was found in UAE, which means that the validation of the optimum condition
in extracting PA compounds can enhance the efficiency of the separated phytochemicals.

Table 4. Extracted compositions identified by HPLC-QTOF-MS/MS.

Time (min) Formula Mass (m/z) Compound
Identification

MS/MS Fragment
(m/z)

UAE ME

Relative Percent (%)

18.36 C20H22O5 341 caffeyl glucopyranose 326; 319; 253; 225 0.862 0.844
21.47 C13H14O8 297 benzoyl glucuronide 179; 135; 297 1.749 0.903
22.33 C30H26O13 593 dimer propelargonidins 441; 467; 425 0.822 0.597
23.31 C21H22O12 465 taxifolin hexoside 285; 179; 301 0.461 0.343
24.72 C15H14O6 289 catechin 289; 181; 137; 125; 151 2.137 1.048
27.91 C30H26O12 577 dimer procyanidin 577; 449; 425; 289; 287 3.399 3.135

28.95 C30H26O12 577 dimer procyanidin
isomer 577; 449; 425; 289; 287 9.022 8.308

30.39 C20H18O11 433 quercetin 3-O-xyloside 325; 300; 285; 151 0.485 -
31.54 C15H14O6 289 epicatechin 289; 181; 137; 125; 151 6.77 5.68
35.01 C45H38O18 865 trimer procyanidin 577; 451; 407; 289 7.483 7.62
37.24 C60H50O24 1153 tetramer procyanidin 865; 577; 451; 289 5.949 6.044

39.24 C60H50O24 1153 tetramer procyanidin
isomer 865; 577; 451; 289 8.423 6.475

41.33 C27H30O16 610 rutin 301 2.953 2.857
45.56 C21H20O12 463 isoquercitin 301; 287; 151 6.112 4.001
51.51 C21H20O11 447 quercetin 301; 271; 243; 179 18.617 17.782
54.74 C15H14O5 273 afzelechin 273; 147; 138; 126 0.305 0.212
58.05 C20H18O11 433 quercetin-3-arabinoside 300; 179 1.262 1.064
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In addition, a scanning electron microscope showed high differences between using
UAE and ME through an obvious degradation of leaves’ fibers microstructure by US after
30 min and 60 min compared to maceration (Figure 6).
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These differences in intramacromolecules’ connective tissues facilitated the release
of PAs in US-treated samples. Similar observations have been reported for US treatment
by Esua, Cheng, and Sun [48]. In addition, Pudziuvelyte et al. [55] reported that US
significantly increased the extracted phenolic yield (855.54 µg/g) of lsholtzia ciliata leaves
compared to the maceration method (141.06 µg/g) through microstructure degradation.
They mentioned that US for 11 min increased the mass fraction of total phenols by 20%
compared to water bath shakers for 30 min with the same solvent.
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3.8. Evaluation of Bioactive Functionality of the Extracted PAs by Cytotoxicity and Cellular
Antioxidant Assays

Due to the global concern of cancer treatment by natural safe bioactive molecules [22],
in this study, the extracted Pas’ functionality has been evaluated. The cytotoxicity anticancer
activity through seven concentrations (5, 10, 25, 50, 75, 100, 125 µg/mL) of PAs against
HepG-2 and Caco-2 cell line revealed the high efficiency of the extracted PAs by optimized
conditions of UAE. A marked reduction in the probable cancer risk was observed for
the exposure against the two species (Figure 7), and there was a significant reduction
(p < 0.01) in Caco-2 cell viability after 25 µg/mL (Figure 7a). Meanwhile, the significant
reduction (p < 0.05) in HepG-2 cell viability was after 50 µg/mL. Moreover, Caco-2 was
more sensitive to PAs compared to HepG-2. Kumari and Gupta [51] reported a marked
reduction in probable cancer under RSM optimized conditions. In addition, the mechanistic
and preclinical studies demonstrated that the capacity of PAs to modulate the several factors
related to colorectal cancer is based on its polymerization degree [56]. Leontowicz et al. [47]
mentioned that high polyphenolic and flavonoids, flavanols, and tannins’ contents of kiwi
have a very significant inhibition impact on the growth of cancer cells.
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In addition, H2O2 is a typical member of the ROS family, which were wildly used
to construct the oxidative injury model to evaluate the natural extracted PA effect on
anticancer cells [57]. As showed in Figure 7c, the cell viability decreased dramatically
(p < 0.05) when exposed to the highest concentration of H2O2 (250 µg/mL) compared to the
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low concentration of H2O2 (0–100 µg/mL). In particular, 53.69 ± 7.29% treated cells were
viable after being treated with 100 µM of H2O2 for 4 h at 37 ◦C. As this value was close to
the IC50, this indicated that the H2O2-injured-Caco-2 model was established. Additionally,
for the antioxidant assay, a moderate increase was found when Caco-2 cells were treated
with appropriate concentrations of PAs (10–25 µg/mL) for 24 h before H2O2 treatment.
Furthermore, a significant increase (p < 0.05) was happened when PKLP concentration
increased to 100 µg/mL compared to 10 µg/mL (Figure 7d). The potential cellular redox
activity might come from the increase in the reactivity of PAs with the oxidizing radicals
that prevent the dissociation of both intramolecular and intermolecular disulfide bonds.
This process is necessary for protein activity regulation that affects several cellular signal
pathways and enzymatic reactions [58]. Additionally, the differences in PKLP cytotoxicity
and cytoprotection were due to their dose dependent impact on the cellular pathways of
the same cells [59], in which only at the lowest concentrations was a slight cytoprotection
assayed. Meng et al. [60] reported that the cellular antioxidant activity is one of the best
methods to explain the real redox homeostasis impact of natural phytochemicals that
benefit human health.

4. Conclusions

In this study, the optimum US conditions on the extraction of bioactive and functional
PAs were demonstrated. The four most important factors which affect the extraction of PAs
and their potential interactions were evaluated to optimize their conditions. In conclusion,
the characterization of PKLPs could be used as a functional food ingredient considering its
potent antioxidant potential activity, which would have broad prospects and substantial
economic benefits. The relationship between structure and bioactivity of PKLPs warrants
further studies. This investigation is providing important information on the correlation
between the potential impact of the extraction method on the formation and modifications
of extracted PAs.
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Abbreviations

US Using ultrasound
PAs Proanthocyanidins
PKLPs Purified kiwi leaves Pas
S/S Solvent to solid ration
UAE Ultrasound-assisted extraction
ME Maceration extraction
RSM Response surface methodology
CCD Central composite design
TPC Total phenolics content
DW Dry weight
PC Procyanidin
DMEM Dulbecc’s modified Eagle medium
FBS Foetal bovine serum
PBS Phosphate-buffered solution
P/S Penicillin/streptomycin
MTT Methyl thiazolyl tetrazolium
WD Weight basis
IC50. The half-inhibitory concentration
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