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Abstract

Inherited genetic variation contributes to individual risk for many complex diseases and is

increasingly being used for predictive patient stratification. Previous work has shown that

genetic factors are not equally relevant to human traits across age and other contexts,

though the reasons for such variation are not clear. Here, we introduce methods to infer the

form of the longitudinal relationship between genetic relative risk for disease and age and to

test whether all genetic risk factors behave similarly. We use a proportional hazards model

within an interval-based censoring methodology to estimate age-varying individual variant

contributions to genetic relative risk for 24 common diseases within the British ancestry sub-

set of UK Biobank, applying a Bayesian clustering approach to group variants by their rela-

tive risk profile over age and permutation tests for age dependency and multiplicity of

profiles. We find evidence for age-varying relative risk profiles in nine diseases, including

hypertension, skin cancer, atherosclerotic heart disease, hypothyroidism and calculus of

gallbladder, several of which show evidence, albeit weak, for multiple distinct profiles of

genetic relative risk. The predominant pattern shows genetic risk factors having the greatest

relative impact on risk of early disease, with a monotonic decrease over time, at least for the

majority of variants, although the magnitude and form of the decrease varies among dis-

eases. As a consequence, for diseases where genetic relative risk decreases over age,

genetic risk factors have stronger explanatory power among younger populations, com-

pared to older ones. We show that these patterns cannot be explained by a simple model

involving the presence of unobserved covariates such as environmental factors. We discuss

possible models that can explain our observations and the implications for genetic risk

prediction.

Author summary

The genes we inherit from our parents influence our risk for almost all diseases, from can-

cer to severe infections. With the explosion of genomic technologies, we are now able to

use an individual’s genome to make useful predictions about future disease risk. However,
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recent work has shown that the predictive value of genetic information varies by context,

including age, sex and ethnicity. In this paper we introduce, validate and apply new statis-

tical methods for investigating the relationship between age and the contributions of

genetic risk. These methods allow us to ask questions such as whether relative risk is con-

stant over time, precisely how relative risk changes over time and whether all genetic risk

factors have similar age profiles. By applying the methods to data from the UK Biobank, a

prospective study of 500,000 people, we show that there is a tendency for genetic relative

risk to decline with increasing age. We consider a series of possible explanations for the

observation and conclude that there must be processes acting that we are currently

unaware of, such as distinct phases of life in which genetic risk manifests itself, or interac-

tions between genes and the environment.

Introduction

Many studies have demonstrated the potential utility of using genetic risk factors for predict-

ing individual risk of common diseases, ranging from heart disease [1,2] to breast cancer [3]

and auto-immune conditions [4]. Genetic risk coefficients can be estimated from cross-sec-

tional genome-wide association studies, which estimate enrichment of common genetic vari-

ants among clinically-ascertained (or sometimes self-reported) cases. Genome-wide scores,

typically referred to as polygenic risk scores (PRS), are usually constructed as linear combina-

tions of individual variant effects, though there is considerable variation in how variants are

selected for inclusion and how coefficients are estimated [5]. Nevertheless, validation on inde-

pendent data sets has demonstrated odds-ratios for PRSs that are comparable to established

risk factors, both lifestyle-related [6] and monogenic [7], thus providing an impetus for their

adoption within health management, both at individual and population levels; though one

study has suggested that PRS does not provide additional prediction power over clinical risk

factors for coronary heart disease [6].

One aspect of genetic risk estimation that has not been fully explored is the role of age in

modulating the effects of genetic risk. Several studies have shown that the prediction power of

PRS varies across age groups in diseases including breast cancer [8], ischaemic heart disease

[9] and prostate cancer [10]. Similarly, the standardised incidence ratio of breast cancer for

BRCA1/2 mutation carriers also varies with age [11]. Moreover, genetic analyses of quantita-

tive traits including blood pressure, lipid levels and BMI have identified genetic variants whose

effect size changes with age [12–16]. These results raise the possibility that genetic risk factors

may play larger or smaller roles in influencing risk of disease during different age intervals.

However, the longitudinal analysis of disease risk has to account appropriately for the impact

of selection that arises in age-stratified analyses; even under a time-invariant proportional haz-

ards model, those entering the disease state earliest will tend to be those with the highest bur-

den of risk factors. This can be particularly problematic when not all risk factors are measured,

as hidden risk factors can act to apparently dilute relative risk over time [17–19].

Here, we address two open questions in the analysis of longitudinal genetic risk for com-

mon disease. First, we introduce a method to infer the nature of the relationship between age

and genetic relative risk for individual variants that is appropriate for censored data such as

that available from biobanks. Because the information available for single variants is relatively

weak, we use a Bayesian clustering approach to identify sets of variants that show similar pro-

files of risk with age. On applying the method to data from the UK Biobank on 24 common

diseases, our primary finding is that, in agreement with previous observations, for age-varying
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genetic risk profiles, genetic factors most strongly influence risk of early disease. However the

quantitative nature of the relationship between genetic relative risk and age varies among dis-

eases and, for some, we find evidence for multiple, distinct profiles of age-varying risk. Second,

we consider whether observed patterns can potentially be explained by the presence of unmea-

sured risk factors. To achieve this, we fit parametric models that accommodate unmeasured

variation in risk to age-varying incidence and use these models to predict the drop-off in

apparent genetic relative risk that could be attributed to such a phenomenon, known as frailty.

We find that the observed drop-off in risk has a qualitatively different profile from that

expected from simple models of frailty. Rather, our observations indicate that genetic relative

risks (conditional on all other risk factors) vary with age.

Results

Data description

We used the genotype data, individual information and Hospital Episode Statistics (HES) data

from the UK Biobank dataset [20]. We identified 24 disease-specific ICD-10 codes (Tables 1 and

S1) with a prevalence> 0.5% in the entire cohort and for which at least 20 independent associ-

ated variants were identified using the TreeWAS model [21]. To reduce the impact of confound-

ing, we focused analyses on the 409,694 individuals of British Isles ancestry (188,268 men and

221,426 women with an average age at recruitment of 66.5 years), though additional analyses

were carried out on the entire cohort and other ethnic groups. We performed additional analy-

ses to evaluate the robustness of our observation when generalised to other self-identified ethnic-

ities, sets of associated traits, and disease definitions. To compare our analysis within different

ethnic groups, we analysed individuals from all ethnic backgrounds (N = 501,756), those identi-

fying as Black or Black British (N = 8,039) and those identifying as South Asian (N = 8,024). To

compare our analysis using different disease ontology systems, we used phecodes [22] to map

the selected ICD10 codes to phenotypes and inferred genetic risk profiles using collapsed traits

and variant sets. To compare our results using different set of variants, we used variants reported

in the GWAS Catalog [23] for two traits, “hypertension” and “coronary heart disease”, and

inferred genetic risk profiles on the respective ICD-10 codes, I10 and I25.1.

Age-profiles for genetic risk scores

To first demonstrate that age-varying genetic risk is a common feature of complex disease we

estimated genetic risk coefficients through logistic modelling of a training case-control study

(across all ages) and then assessed the efficacy of a combined genetic risk score to differentiate

between cases and controls within each age group in an independent testing set (see S1 Supple-

mental Methods and Fig 1). For many diseases, and notably those identified later as having sta-

tistically significant evidence for non-uniform genetic relative risk profiles, we found a

typically decreasing risk profile. (Figs 2 and S1) For example, the odds-ratio for the 90th per-

centile of GRS for I25.1 “atherosclerotic heart disease of native coronary artery” drops from

3.63 [3.47, 3.792] in the youngest age group to 1.77 [1.668, 1.88] in the oldest. We also note

while some disorders, such as E78.0 “pure hypercholesterolemia”, show a very dramatic

decrease in risk between the two youngest age groups (Odds Ratio of top GRS decile: 2.209

[2.121, 2.297] to 1.633 [1.576, 1.69]), others, such as a I10 “essential (primary) hypertension”,

show a much more gradual decline (Odds Ratio of top GRS decile: 1.513 [1.474, 1.552] to

1.512 [1.483, 1.541]). These results suggest that the relationship between genetic risk and age

varies among diseases and may indeed vary among variants, and motivates a more principled

approach to the analysis of such data. Estimates of odds ratios for the 90th and 80th percentile

of the GRS distribution are provided in S2 Table.
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Statistical inference of age-varying genetic risk with multiple variant

categories

To estimate age-specific effects of variants we divided age into eight intervals and used an

interval-censoring approach in which we applied a Cox Proportional Hazard model to subjects

at risk within each age interval. Specifically, the hazard rate for the risk factor is estimated by

comparing those whose first disease event occurs during the interval in question to those who

Table 1. Summary of evidence for age-varying genetic risk by disease.

ICD-10

code

Description Prevalence in

UK Biobank

Number of

associated

variants

Mean

reported age

of onset

P1 Q1 P2 Q2 P3 Q3

C44.3 Other and unspecified malignant

neoplasm of skin of other and

unspecified parts of face

1.41% 34 62.64 0.0159� 0.0633� 0.0739 0.2531 0.0092� 0.1093

C44.5 Other and unspecified malignant

neoplasm of skin of trunk

0.48% 25 61.45 0.0016�� 0.0091�� 0.0143� 0.0853� 0.5644 0.7964

C78.7 Secondary malignant neoplasm of liver

and intrahepatic bile duct

0.64% 30 64.20 0.3753 0.5124 0.6920 0.8368 0.5973 0.7964

C79.5 Secondary malignant neoplasm of bone

and bone marrow

0.52% 29 64.56 0.4649 0.5579 0.8287 0.8647 0.3122 0.6242

E03.9 Hypothyroidism, unspecified 3.46% 32 60.61 0.0329� 0.0876� 0.0592 0.2501 0.8010 0.8738

E10.9 Type 1 diabetes mellitus without

complications

0.63% 28 57.32 0.4975 0.5686 0.7828 0.8539 0.0566 0.2353

E11.9 Type 2 diabetes mellitus without

complications

4.38% 75 61.95 0.4103 0.5182 0.5358 0.7610 0.2710 0.6242

E66.9 Obesity, unspecified 2.46% 21 60.71 0.0981 0.2067 0.2609 0.5350 0.5420 0.7964

E78.0 Pure hypercholesterolemia 8.12% 43 62.59 0.0001�� 0.0001�� 0.0001�� 0.0001�� 0.0449� 0.2353

I10 Essential (primary) hypertension 18.98% 80 61.87 0.0001�� 0.0001�� 0.0001�� 0.0001�� 0.3764 0.6604

I20.0 Unstable angina 1.26% 46 59.92 0.9021 0.9021 0.7323 0.8368 0.0356� 0.2353

I20.9 Angina pectoris, unspecified 3.84% 78 61.84 0.0244� 0.073� 0.1269 0.3382 0.1902 0.6242

I21.9 Acute myocardial infarction,

unspecified

0.92% 24 62.08 0.7556 0.7884 0.3121 0.5350 0.6356 0.8028

I25.1 Atherosclerotic heart disease of native

coronary artery

4.46% 116 61.57 0.0001�� 0.0001�� 0.0001�� 0.0001�� 0.0001�� 0.0001��

I25.2 Old myocardial infarction 1.72% 83 64.32 0.0096� 0.0456� 0.1053 0.3156 0.2198 0.6242

I25.9 Chronic ischaemic heart disease,

unspecified

2.66% 86 63.69 0.1285 0.2202 0.4428 0.7084 0.2452 0.6242

I50.1 Left ventricular failure, unspecified 0.83% 22 63.22 0.0696 0.1669 0.2971 0.5350 0.9950 0.9950

J44.9 Chronic obstructive pulmonary

disease, unspecified

1.78% 24 64.40 0.3329 0.5124 0.5391 0.7610 0.8452 0.8819

J45.9 Other and unspecified asthma 6.34% 35 57.54 0.1056 0.2067 0.2027 0.4863 0.5087 0.7964

K29 Gastritis and duodenitis 7.02% 33 58.87 0.3843 0.5124 0.7056 0.8368 0.0589 0.2353

K80.2 Calculus of gallbladder without

cholecystitis

2.11% 26 57.99 0.0236� 0.073� 0.0626 0.2501 0.7942 0.8738

M06.9 Rheumatoid arthritis, unspecified 0.99% 54 60.16 0.3548 0.5124 0.6271 0.8361 0.3853 0.6604

M19.9 Osteoarthritis, unspecified site 3.70% 22 62.80 0.1120 0.2067 0.2981 0.5350 0.2989 0.6242

M54.5 Low back pain 1.90% 29 56.75 0.6320 0.6894 0.8935 0.8935 0.7793 0.8738

P1: permutation test for fitting a linear profile over age; P2: permutation test for fitting a quadratic polynomial profile over age;

P3: permutation test for multiple profiles over age. �� P < 0.005, � P < 0.05

Q1: FDR adjusted P1 value; Q2: FDR adjusted P2 value; Q3: FDR adjusted P3 value. �� Q < 0.01, � Q < 0.1

Summary of ICD-10 disease codes analysed and evidence for age-varying effect sizes and number of age-profile classes. “Prevalence in UK Biobank” is the proportion of

the British Isles ancestry subgroup that has at least one record of the ICD-10 code.

https://doi.org/10.1371/journal.pgen.1009723.t001
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have a non-disease censoring event during the interval (such as death from a different disease,

or drop-out from the study for reasons unrelated to disease) along with those who have neither

a disease nor a censoring event during the interval (Fig 1). For a given variant, we estimated

the effect size and its standard error for each interval using a proportional-hazards approach,

using case-control matching to control for additional covariates such as date of birth, sex, BMI

and 40 genetic principal components (see S1 Supplemental Methods). Effect sizes for individ-

ual SNPs were estimated in both univariable and multivariable settings (see below). Because

estimated variant-interval coefficients have high uncertainty, we used a Bayesian clustering

approach to estimate latent profiles of age-specific genetic risk, encouraging smoothness of

profiles through spline functions. Finally, to test for deviations from homogeneity of risk over

age, and to test for the presence of multiple age-specific risk profiles, we used a permutation

strategy. Multiple risk profiles for a particular disease can occur when subsets of genetic factors

associate with distinct age-varying patterns, for example, some factors may exhibit no variation

with age while others show decreasing risk with age. Full details of the methods are given in

the S1 Supplemental Methods and S1 Analytical Note.

To evaluate the methodology under the assumptions of the fitted model, we used stochastic

simulation, varying the number of distinct profiles and their departure from uniformity. We

first considered a likelihood ratio test (LRT) approach, fitting a linear model for risk profiles

over age. Under realistic assumptions about the magnitude of effect sizes and number of asso-

ciated variants we found that the multivariable approach is well-calibrated in its rejection of

the null model of uniformity (i.e. when effect sizes are constant over time the LRT test has a

Fig 1. Schematic representation of methodology. (A) Independent variants associated with a trait of interest are identified by analysis of the entire UK

Biobank cohort using the TreeWAS methodology [40]. (B) Logistic regression is applied to estimate coefficients for variants on each trait using the training set.

(C) Coefficients are used to compute individual genetic risk scores; the odds ratio associated with high GRS within each age group are estimated in the testing

set. (D) An interval-censored proportional hazards model [44] is used to estimate the effect (and associated standard error) of each variant on the trait of

interest within each of eight age intervals. (E) Bayesian clustering is used to estimate population age-profiles of risk, using either linear models or quadratic

polynomials to encourage smoothness. (F-H) Permutation is used to test for age-homogeneity of effect size as well as to assess the evidence for multiple age

profiles.

https://doi.org/10.1371/journal.pgen.1009723.g001
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false positive rate of 0.048 at P� 0.05). When effect sizes are the same for all variants but these

change by at least 0.6% per year (either increasing or decreasing), our approach has over 90%

power to reject uniformity (Fig 3A). When quadratic polynomials were used to capture a

wider range of possible risk profiles, we found that the LRT was less well calibrated under the

null (false positive rate of 0.0725 at P� 0.05; Fig 3A), hence we adopted a permutation strategy

for analysing empirical data. When applying the quadratic model to data simulated under a

linear profile, we find a good match between true and inferred profiles (Fig 3B).

To simulate multiple cluster profiles, we modelled 10% of the variants as having a shared lin-

ear slope (the remainder being constant over age) and used a LRT to assess the evidence for

multiple risk profiles. Here, we found that a 4% per year change in risk was required to achieve

90% power (at P� 0.05) to detect multiple clusters (Fig 3C). Under the null (all variants have a

constant profile) the test has a false positive rate of 0.063 for the linear and 0.088 for the qua-

dratic polynomial fitting at P� 0.05. When using the quadratic model to fit risk profiles we find

a good match between true and inferred profiles (Fig 3D). We therefore conclude that the

approach has sufficient power to detect deviations from constant profiles and provide unbiased

Fig 2. Age-stratified odds-ratios for combined genetic risk scores. (A-F) Age-stratified odds ratios in held-out testing data for genetic risk scores for six disorders where

there is evidence for a single non-constant genetic risk profile, “Primary (essential) hypertension” (ICD-10 code I10), “pure hypercholesterolaemia” (E78.0); “Calculus of

gallbladder without cholecystitis” (K80.2) and “Hypothyroidism, unspecified” (E03.9); “atherosclerotic heart disease of native coronary artery” (I25.1) and “other and

unspecified malignant neoplasm of skin and unspecified parts of face” (C44.3). Results for all diseases are shown in S1 Fig. Odds ratios for the 80th (blue) and 90th

percentiles of a combined genetic risk score within matched case-control samples (four controls for each case) are shown for each age interval; points indicate the average

odds ratio of twenty five-fold cross-validation analyses with lines indicating the 95% confidence interval.

https://doi.org/10.1371/journal.pgen.1009723.g002
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estimates of risk profiles in data sets of comparable size and complexity to the UK Biobank.

When analysing multiple diseases we used a FDR approach to correct for multiple testing.

Application to common diseases in the UK Biobank

To formally consider evidence for a non-linear relationship between genetic risk and age for

the 24 diseases in Table 1, we applied the novel methods outlined above. When effects for

Fig 3. Overview of simulation results. (A) Power at P� 0.05 to detect deviation from age-homogeneity as a function of slope in a model where effect sizes change

linearly with age. The blue line indicates the point estimate when using a linear model to fit, the red line indicates the point estimate with a quadratic polynomial

model and the grey shading indicates the 95% confidence interval. (B) Example showing the age-profile under which data are simulated (dashed blue line) and the

inferred age profile (dashed red line) and 95% credible interval (red shading). (C) Power at P� 0.05 to detect multiple age profiles in a simulation where 90% of

variants have a time-invariant profile and 10% have an effect size that increases with age. The solid blue line indicates power when fitting a linear model and the solid

red line indicates power when fitting a quadratic model. The dashed red line indicates the nominal significance threshold. Note the change in x-axis scale compared to

Fig 2A. (D) Example showing inferred age-profiles for the two components (mean posterior and 95% credible interval). Additional simulation details are provided in

the S1 Supplemental Methods and S2 Fig.

https://doi.org/10.1371/journal.pgen.1009723.g003
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variants are estimated jointly and fitted to a linear latent profile, we identified, through permu-

tation, nine diseases with evidence (P< 0.05) of a departure from constant genetic risk over

age (Table 1). These are: C44.3 “other and unspecified malignant neoplasm of skin of other

and unspecified parts of face”; C44.5 “unspecified malignant neoplasm of skin of trunk”; E03.9

“hypothyroidism, unspecified”; E78.0 “pure hypercholesterolemia”; I10 “essential (primary)

hypertension”; I20.9 “angina pectoris, unspecified”; I25.1 “atherosclerotic heart disease of

native coronary artery”; I25.2 “Old myocardial infarction” and; K80.2 “calculus of gallbladder

without cholecystitis”. All diseases have Q< 0.1 after FDR analysis. To model non-linearity we

compared polynomial and cubic spline models with different degrees of freedom (S3 Fig) and

selected the quadratic polynomial model using likelihood ratio tests. No additional diseases

were identified as having non-constant risk profiles when fitting a quadratic polynomial and

only four of the original nine (E78.0, I10, I25.1 and C44.5) remain significant (Table 1). How-

ever, we find one additional disease (I20.0 “unstable angina”) and three of the above diseases

(C44.3, E78.0 and I25.1) show evidence for more than one age-related risk profile (P< 0.05;

Table 1, though only I25.1 has Q < 0.1).

As in the genetic risk score analysis, a common feature of the estimated risk profiles over

age is a trend towards smaller effect sizes with increasing age (Fig 4A, 4B, 4C and 4D). For

example, for I25.1, we find posterior of effect size drops by 50% from 45 years old to 75 years

old and for C44.5 we find the posterior drops by 58% over the same interval. (S3 Table).

Where diseases may have multiple risk profiles (Fig 4E and 4F), at least one of these is also typ-

ically decreasing with age. Profiles for all 24 diseases are shown in S4 and S5 Figs. We find no

compelling examples of increasing risk over age. These results are consistent with the effects of

genetic risk factors to have a larger impact on the risk of early disease [16,24], rather than late

disease, though it is important to note that the absolute rate of disease typically increases with

age for all diseases studied here. Estimates of genetic risk profiles (under a model of one variant

class) are provided in S4 Table. We found that the decreasing pattern is largely consistent

when estimating genetic risk profiles using the entire UK Biobank regardless of ethnic back-

ground, individuals who self-identify as Black or Black British, and those who self-identify as

South Asians (S6 and S7 Figs). However, we found an increasing risk profile in one disease

(P = 0.006), J45.9 “other and unspecified asthma”, for individuals identifying as Black or Black

British.

To examine robustness to the design of our analysis, we considered two extensions. First,

when inferring the risk profiles for I10 “essential (primary) hypertension” and I25.1 “athero-

sclerotic heart disease of native coronary artery” we analysed variants reported in the GWAS

Catalog for “hypertension” and “coronary artery disease” respectively. This showed similar

decreasing patterns (but of different magnitude) compared to those inferred from the variants

identified by TreeWas (S8 Fig). Second, we used phecodes to combine ICD-10 codes that,

where appropriate, represent similar phenotypes. In line with the single-code results, we found

decreasing risk profiles for 172.20” (other non-epithelial cancer of skin, ICD-10 codes: C44.3

and C44.5) and “411.20” (myocardial infarction, ICD-10 codes: I21.9 & I25.2).

One corollary of the decreasing genetic risk is that the GRS estimated within younger popu-

lations should have more power to discriminate between cases and controls within populations

of similar ages. To demonstrate this, we evenly divided the cases into a younger group and an

older group by age-at-onset and estimated GRS within each age group (See S1 Supplemental

Methods). Using five-fold cross-validation, we computed and compared the average areas

under curve (AUC) for both age groups using their age-stratified GRS (S9 Fig and S5 Table).

We found the AUC differences between younger and older groups agree with the decreasing

slopes for the diseases considered (S3 Table). For example, C44.5 “Other and unspecified

malignant neoplasm of skin of trunk” has the steepest slope among the 24 codes and the AUC
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difference (0.058) is also the largest. The only disease which has a larger AUC in the older

group is M54.5 “low back pain”, which also records the only increasing genetic risk over age,

though the increasing pattern is not significant. Additionally, we applied the GRS estimated

from the younger or older age group to compute the ROC in the other age group. In 18 out of

24 ICD-10 codes, the GRS estimated in the younger group has a bigger AUC than the GRS

estimated in the older group, when applied to the testing set from the older population. We

found no compelling differences in the discriminating power of GRS estimated from younger

and older groups when applied to the testing set from the younger populations.

The impact of unobserved risk factors

One possible explanation for the decreasing impact of genetic risk is the presence of unobserved

risk factors. For any causal covariate of interest, the presence of unmeasured and causally-asso-

ciated uncorrelated covariates has the effect of generating (at the population level) additional

variability in hazard rates. Such heterogeneity, historically referred to as frailty in epidemiology

Fig 4. Age-varying disease risk profiles. (A-D) Inferred cluster profiles for four disorders where there is evidence for single non-constant profile; “Primary (essential)

hypertension” (ICD-10 code I10; P = 0.0001), “pure hypercholesterolaemia” (E78.0; P = 0.0001), “Calculus of gallbladder without cholecystitis” (K80.2; P = 0.0236) and

“Hypothyroidism, unspecified” (E03.9, P = 0.0329); (E-F) Inferred cluster profiles for two disorders where there is evidence for multiple non-constant profiles;

“atherosclerotic heart disease of native coronary artery” (I25.1; P = 0.0001) and “other and unspecified malignant neoplasm of skin and unspecified parts of face” (C44.3;

P = 0.0092). Curves for all diseases are shown in S4 Fig; Curves for all UK Biobank subjects regardless of ethnic background and for subjects from Black or South Asian

ethnic background are shown in S6 Fig. The solid line indicates the posterior mean and the shaded area the 95% credible interval; Numbers in boxes indicate the number

of variants in each cluster; All estimates are made with quadratic models for age-varying risk profiles.

https://doi.org/10.1371/journal.pgen.1009723.g004
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[19], has the potential to induce bias in effect sizes over time, somewhat remarkably even if

independent of the covariate of interest, due to the increased rate at which individuals with high

unmeasured risk enter into a disease state. Over time, those individuals with a risk-increasing

covariate, but who do not have the disease, will become enriched for a protective background.

Frailty will thus tend to lead to an underestimate of true effect sizes in older populations and,

consequently, can even lead to biased effect size estimates (typically underestimates) in regres-

sion analysis of the entire cohort [18]. To demonstrate the impact of such covariates we repeated

the simulations under a constant risk profile, but multiplied individual risk by an unobserved

factor that is generated from a gamma distribution (Fig A in S2 Fig). We find that our test for

age-dependence has a false positive rate of above 0.05 if the variance in risk is greater than 0.1 of

the mean (Fig B in S2 Fig; specifically FPR> 0.09 when variance> 0.1 x mean).

To investigate the extent to which unmeasured genetic factors might be responsible for the

diminishing of risk over time we first compared the results of univariable and multivariable anal-

yses of the variants analysed here (Fig 5A). We found that results were essentially identical under

the two approaches, suggesting the frailty arising from variants included here cannot explain the

pattern. We next attempted to estimate general parameters of frailty using incidence data from

the UK Biobank by fitting a parametric model in which the underlying disease incidence (base-

line hazard rate) increases in proportion to age as a power function of age, but where there is a

distribution of rates within the population, parameterised as a gamma distribution with a mean

of one and an unknown variance [17,25]; see S1 supplemental Methods and S1 Analytical Note.

Estimates of parameters are provided in S6 Table, along with the significance value for a good-

ness-of-fit test for the inferred model. We find substantial variation across diseases in the inferred

Fig 5. The impact of frailty on genetic risk profiles. (A) Estimated age-profiles for genetic risk for I10 “essential (primary) hypertension” (left) and I25.1 “atherosclerotic

heart disease of native coronary artery” (right) fitted under the univariable (purple) and multivariable (green) approaches. For I10, the solid line indicates the posterior

mean and the shaded area the 95% credible interval; For I25.1, the solid and dashed lines indicate the means for the two clusters of variants. Comparisons for all diseases

are shown in S10 Fig. (B) Estimated incidence by age for K80.2 “Calculus of gallbladder without cholecystitis” (left) and C44.3 “Other and unspecified malignant neoplasm

of skin and unspecified parts of face” (right). The red solid line indicates the rate estimated from the UK Biobank (see S1 Supplemental Methods) and the dotted blue line

indicates the fitted incidence curve from the parametric model. The P value indicates the Goodness-of-Fit test. Curves for all diseases are shown in S11 Fig. (C)

Comparison of inferred genetic effect sizes (red curve) and those implied by the frailty parameters estimated from incidence rate within the UK Biobank (blue dashed

curve).

https://doi.org/10.1371/journal.pgen.1009723.g005
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parameters. For example, the baseline hazard rate of K80.2 “calculus of gallbladder without cho-

lecystitis” is estimated to increase proportional to age to the power of 1.9, but with substantial

frailty (scale parameter = 1.87, goodness-of-fit P = 0.93; Fig 5B). In contrast, the baseline hazard

rate of C44.3 “other and unspecified malignant neoplasm of skin of other and unspecified parts

of face” is estimated to increase more rapidly with age (power of 3.58), but with lower frailty

(scale parameter = 0.94; P = 0.76). It should be noted that the simple parametric model can be

rejected at P< 0.01 for only one (J45.9, “other and unspecified asthma”) of the 24 disorders,

with the main discrepancy being a reduction in incidence among the eldest UK Biobank partici-

pants compared to the fitted model, which may potentially be explained by selection bias in

recruitment and competing risks of multi-morbidity. We note that the estimated magnitude of

frailty is typically sufficient to lead to an elevated false positive rate of the test.

Previous work has demonstrated that the magnitude of the diluting impact of frailty on

effect sizes in longitudinal models can be predicted using the incidence and frailty distribution

parameters [17]; notably the implied effect size at a given age is reduced by a factor propor-

tional to the prevalence at that age multiplied by the variance of frailty distribution; see Materi-

als and Methods. We therefore compared inferred (univariable) curves for genetic variants

against that implied by the fitted frailty model (Fig 5C). In 17 of the 24 diseases we find that

while the estimated frailty predicts a decreasing genetic effect size with age, the observed

decrease both starts earlier and is of a larger magnitude than expected (S12 and S13 Figs).

Importantly, the estimated effect size tends to decrease substantially even when the prevalence

of the disease is very low. We therefore conclude that, even after accounting for independent

unmeasured factors that influence disease risk, genetic relative risk decreases with age.

Discussion

Genetic factors influence lifetime risk for common and complex diseases through modulating

a large number of molecular, cellular and tissue phenotypes, many of which are also likely to

be affected by acute exposure and persistent environment [26–28]. Despite such complexity,

remarkable progress has been made in identifying factors, both genetic and non-genetic, that

influence risk, each of which may only have a small effect, but which, in aggregate, have sub-

stantial and clinically relevant predictive value [29–31]. To date, while multiple studies have

shown genetic interactions with contexts such as age, sex and environment when modulating

disease risk [32,33], the extent to which polygenic risk prediction can be improved by allowing

genetic risk to be modulated has not been fully explored. Here, we set out to measure how one

specific aspect of individual context, namely age, can modulate genetic relative risk. For exam-

ple, whether there are windows during which genetic risks are particularly relevant to disease

and, conversely, other windows in which genetics plays a lesser role. The methods introduced

here provide a flexible framework in which to address this question, as well as considering het-

erogeneity among diseases and classes of variants.

By applying the methods to data from the UK Biobank, we have identified four aspects of

the relationship between age and genetic relative risk. First, we have shown that for many dis-

eases, but certainly not all, there is statistical support for a non-constant relationship between

age and the influence of genetic risk. Second, in such cases, genetic risk has the greatest effect

at earlier ages, though the magnitude and form of the drop-off varies among diseases. This

result agrees with and generalises earlier reports [8,16]. Third, there is relatively little evidence

for different groups of variants having substantially different relationships between age and

risk; where we identify weak evidence for multiple classes, the differences are in terms of the

magnitude of the downward slope. Fourth, the drop-off in relative risk with age cannot be

ascribed to hidden variation in unmeasured risk factors. We note that the drop-off in impact
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of genetic risk factors does not mean that they are not relevant in predicting later disease,

which is typically when most diseases occur. Rather, our results imply that the factor by which

genetic factors increase risk above baseline for someone in their 40s may be several fold higher

than for an equivalent person in their late 70s (S7 Table). For example, the factor by which

being in the highest decile of genetic risk for I25.1 “atherosclerotic heart disease of native coro-

nary artery” increases incidence over baseline between 45 to 50 years old is 6.62, compared to

only 2.4 between 70 to 75 years old. Put another way, by assuming a constant effect over age,

we may both underestimate the absolute risk for young individuals with a high polygenic bur-

den and overestimate the absolute risk for older individuals with a high polygenic burden.

What biological processes could lead to a diminished influence of genetic risk over time; in

effect a decrease in heritability of a trait with age? Genetic risk factors, unlike environmental

ones, are present from birth, while non-genetic risk factors tend to accumulate and evolve over

time. Such a difference could lead to a reduced impact of genetics over time if genetic risk pri-

marily influences developmental pathways, while non-genetic risk affects separate and later-

impacting pathways, such as those involved in adult homeostasis (Fig 6A). However, there are

several contexts where genetic and non-genetic risk are, at least in part, mediated by the same

factor, such as the impact of LDL cholesterol on cardiovascular disease. In such cases, statistical

interactions between genetic factors and the environment (or potentially among genetic risk

factors) could have a diluting effect on genetic risk in a manner similar to frailty (Fig 6B).

Here, an interaction means that the combined effects of the genetic and non-genetic risk fac-

tors is worse than expected from their independent contributions. Biologically, such an inter-

action could arise from threshold models of homeostasis (meaning the system can buffer only

up to a certain level of challenge), though many other biological processes could potentially

lead to statistical interactions at the population level. Risk process models such as threshold

models [34,35] provide a potentially rich framework for modelling such effects, though which

models are distinguishable from cohort-level data such as biobanks remains an open question.

We note that our work has multiple limitations, including the focus on a single cohort that

is dominated by the single ethnic group, the lack of power for genetic discovery for many dis-

eases of interest and the focus on the single context of age, rather than a much wider set of

potential modulating contexts. Moreover, our work, while revealing an underlying pattern,

has not advanced our understanding of the biological causes for it (or why some diseases show

this but others do not). We hope, however, that the findings motivate future research into the

biological causes and clinical consequences of such age-varying genetic relative risk. For exam-

ple, identifying environmental exposures or comorbidities that are compatible with the

decreasing risk framework could provide information on the biological mechanisms (for

example, how genetic contributions to LDL at different ages impact risk for cardiovascular dis-

ease at different ages). Additionally, targeting additional recruitment for GWAS on both early

and young age groups could inform more accurate estimation of age dependency in genetic

relative risk, as could the collection of cross-generational longitudinal data.

Whatever the cause of age-varying genetic relative risk, our results have several implications

for the use of genetic risk factors in the genetic analysis and prediction of disease risk. Most

obviously, genetic risk prediction for disease must take age into account both in terms of its

impact on disease incidence, but also in terms of its impact on genetic relative risk. We note,

however, that even with diminished genetic relative risk, the clinical utility of polygenic risk

prediction may still be higher among older individuals (for example, in terms of reclassifying

individuals as above or below a threshold in absolute risk). For most of the diseases studied

here, the inference of a single age-profile does mean that the rank order of genetic risk for an

individual is stable over time. However, it implies that integrated prediction from genetic and

non-genetic risk factors [36–38] will have to consider the evolving contribution of genetics
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over age. For diseases with multiple age profiles, even the rank order of genetic risk among

individuals could change over time. Finally, because contexts beyond age, such as sex and envi-

ronment, modulate genetic risk [16,36,39], each of these will induce its own age-specific pro-

files. As a consequence, effective genetic prediction will most likely be driven by empirical

models that can benefit from access to large and well-measured populations, such as popula-

tion-scale biobanks.

Materials and methods

Full technical details are given in the S1 Supplemental Methods and S1 Analytical Note.

Data preparation

We use the genotype data, basic demographic data and Hospital Episode Statistics (HES) data

from 409,694 individuals of British Isles ancestry in the UK Biobank dataset [20]. 31 ICD-10

Fig 6. Models for a decreasing influence of genetic risk with age. (A) A threshold model, in which each individual has a disease “liability” which evolves over

age. Disease onset occurs when liability crosses a threshold. The upper panel shows example trajectories, where genetic risk alters only the liability baseline. The

middle panel is a schematic representation of a simulation in which genetic risk affects developmental pathways at birth, while non-genetic risk accumulates

over time. The lower panel shows an estimation of the effect size from a simulated dataset of UK Biobank sample size (see S1 Supplemental Methods). (B)

Interactions between genetic and environmental risk factors can create a distribution of effect sizes for a specific genotype. The upper panel shows example

trajectories, where the environment influences the slope of the trajectory. The middle panel shows illustrative examples of the liability distributions among

individuals at different ages. Those individuals at highest risk (with both the risk allele and risk environment) enter disease earlier, diluting the apparent effect

size at a later age. The lower panel shows simulation results under such a model using realistic parameters from UK Biobank (see S1 Supplemental Methods).

https://doi.org/10.1371/journal.pgen.1009723.g006
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codes were identified with a prevalence above 5% and for which at least 20 independent associ-

ated variants were previously identified using the TreeWAS model [21]. Of these, we analysed

24 that correspond to specific disease conditions (as opposed to procedures). These are listed

in Table 1. For each ICD-10 code, we combined the primary and secondary diagnoses from

the HES data. We used the starting date of the first episode that records the disease diagnosis

to define the age of disease onset, which is calculated as the difference between onset date to

the month of birth (due to data privacy, we only have access to birth information specified to

year and month). The onset age is rounded to whole years. For each ICD-10 code, only the

first recorded diagnosis of each individual was used. For the population under observation, we

also computed the age at observation endpoints, which is either the age of individuals at the

last update of the data set (here 2018-02-14) or the age of death if a death event is recorded.

We categorised the disease onset age into 8 age intervals, the first and last of which are “before

45 years old” and “after 75 years old”, with 5-year intervals in between.

We then constructed interval censored data sets for the selected disease. Each age interval is

an observation window of all healthy (alive and without onset of target disease) individuals

who survived past the starting point of the interval. Onset of disease and exiting the study

(death or no further records available) are recorded as “case" and “censored" events respec-

tively. Events happening after this interval are considered right-censored at the end of the

interval. We then performed case-control matching over the sub-population observed within

each interval in two steps. First, we divided the sub-population into a disease group and a con-

trol group. The disease group are those who have disease onset within the interval, and the

control set are those who do not, including individuals who have disease onset after the age

interval, so long as they remain healthy before the endpoint of the interval. This is what the

term “interval-censored" means. In survival analysis, the control groups are called “censored",

and the age at the “censoring" event is also needed for unbiased estimation. If a censoring

event is observed within the age interval (i.e. the age of a death record or the last update in the

UK Biobank is before the age interval end point), we used the age at the censoring event. If an

individual does not have an event record within the age interval, we take their age at the end of

the interval, regardless of their future events. Second, for each case in the disease group, we

pick four nearest neighbors (without replacement) from the control group, matching sex,

BMI, year of birth and 40 genetic principal components. The covariates are available within

the UK Biobank data set, over which we computed the principal components across the British

Isles ancestry population. We then compute the Euclidean distance of the principal compo-

nents to find the nearest neighbors in the population.

Estimating age-dependency of genetic risk score in prediction

The SNPs of interest are obtained through prior TreeWas analysis, where we select variants

that have Bayes factors (BF)� 5 (BF is computed for a single variant’s effect over the TreeWas

model) and posterior probability (PP)� 0.99 for target diseases [40]. We further filtered the

set of SNPs to ensure LD-independence (loci kept with absolute Pearson correlation coefficient

smaller than 0.2).

To assess whether the collective effect of risk variants, as captured by a combined genetic

risk score (or polygenic risk score—PRS), showed profiles of age-varying risk, we used the

case-control matching procedure described above with five-fold cross-validation, keeping 20%

of case-control pairs for each age interval as test sets, and estimating effect sizes for the selected

variants in the remaining 80% of case-control pairs using multivariable logistic regression

(including age, sex and 40 genetic PCs). The effect of the PRS on risk within each age interval

in the test set was then estimated (again with logistic regression and covariates). We estimated
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the odds-ratio for the top decile of risk and the top 20% of risk versus the whole population,

using 20 repeats of the procedure to obtain the bootstrap sampling distribution.

Estimating age-specific effects of genetic risk factors

We used a standard GWAS approach to identify the risk and protective alleles at each locus

[41], over the case-control matched dataset described above. The first 40 genetic principal

components are taken as covariates. For all loci that have protective minor alleles (odds

ratio < 1), we switched allele labels to assign consistency of risk direction.

To obtain an unbiased estimate of genetic risk effect size over age, we used a proportional

hazard (PH) model to estimate the genetic hazard ratio for different age groups, using the

case-control matched data set. Within each of the 8 age intervals, we applied the PH model to

the disease group and control group, accounting the censoring effect. We used a univariable

model to estimate the effect size of each variant separately and a multivariable model to esti-

mate effect sizes for all variants jointly. Covariates include the first 40 genetics PCs of the UK

Biobank and are regressed out for each interval. Both the point estimate and standard error of

effect sizes are obtained for each variant within each age interval. These summary statistics are

used subsequently for curve-cluster fitting.

Bayesian clustering of genetic risk profiles

To group variants that have similar age-dependency, we applied a Bayesian clustering of curves

model described (see S1 Analytical Note). The model assumes each variant has an age-depen-

dent effect profile which is generated from a mixture of curves model. The mean and standard

error of the age-specific effects for individual variants described above are the inputs of the

model, from which we infer the underlying generative latent curve. The model allows vertical

translation in the generative process (i.e. the likelihood won’t change much if the profile of the

variant is far from the latent profile, as long as the shape of the variant curve is similar). The

latent curve is a spline whose smoothness is controlled by changing the degrees of freedom.

For detailed specification of model and hyper-parameters, see the S1 Analytical Note. Infer-

ence is performed by an EM algorithm and was repeated 20 times with random initialization

of variables (see S1 Analytical Note). The highest likelihood sequence was retained. Since EM

only provides a point estimate, we estimate the curve’s credible interval using a variational

approach. The inferred profiles with 95% credible intervals are shown in S4 Fig. The derivation

and proof of the approach are provided in S1 Analytical Note.

Permutation testing for genetic effect heterogeneity over age

To provide robustness in testing for age heterogeneity, we carried out a permutation test,

using the likelihood ratio test statistic (for fitting a non-uniform genetic risk over age) for both

the original data set and permutation samples to obtain the permutation p-value. The likeli-

hood ratio test compares an alternative model with linear and quadratic genetic risk over age

and a null model assuming a constant effect over age (see S1 Supplemental Methods and S1

Analytical Note).

To perform permutation tests, we kept the matched case-control structure and then sam-

pled case-control pairs for each age interval, while fixing the onset age distribution for permu-

tation samples. We repeated the procedure 10,000 times to obtain permutation samples, and

computed the likelihood ratio for each sample. We note that the likelihood ratio does not

include the prior term for spline coefficients, while EM finds the Maximum a Posteriori

(MAP) estimate (see S1 Analytical Note), which will give a likelihood slightly lower than the

MLE estimate. Under the permutation test framework, the p-values will be consistent as long
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as the same test statistics are used for both the original data set and permutation samples [42].

We further checked that the difference between MAP estimation and MLE estimation is

negligible.

The EM procedure (see S1 Analytical Note) is initialised randomly 20 times for the

observed data and each permutation sample to compute the likelihood ratios. The permutation

p-value for each disease is obtained from the likelihood ratios. We correct for multiple testing

using FDR, with the corrected q-values shown in Table 1 (when a multivariable approach is

used to estimate effect size) and S1 Table (when a univariable approach is used).

In order to determine the optimal number of clusters for each disease, we performed per-

mutation tests using the same procedure, considering the addition of each new cluster. For

adding the k+1 cluster, the alternative model has k+1 clusters and the null model has k clusters.

All models are fitted with quadratic polynomials (see S1 Analytical Note). Again, we computed

the likelihood ratio statistics for both the observed data set and permutation samples to obtain

p-values. This analysis is performed over all diseases and adjusted for multiple testing with

FDR. We note that we found no compelling evidence supporting a model of more than two

clusters for any disease. The p-values and q-values for the test of two clusters are shown in

Table 1 (when effects for individual variants are estimated jointly) and S1 Table (when effects

for individual variants are estimated using a univariable model).

Estimating effects of unobserved risk background

To estimate the effect of unobserved risk factors, we assumed an individual hazard model that

has a frailty coefficient and baseline hazard. The frailty coefficient has mean 1 and a scale

parameter that controls the variance of population hazard rate. We chose the baseline hazard

to be a power function of age. We fitted the model to the empirical incidence rates in the UK

Biobank. The empirical incidence rate at a specific age is computed as the number of individu-

als who have first onset of the target disease within this age year, divided by the number of

healthy individuals at risk at the beginning of this age year. We then fitted the parametric haz-

ard to the empirical incidence rate until age 70, and finally subtracted the intercept from the

empirical incidence rate to match the parametric form of the hazard rate. We fitted the model

by minimizing square error using the Nelder-Mead method. The fitted incidence curves are

compared with empirical curves for all diseases (S11 Fig). We also computed a Goodness-of-fit

p-value for each disease, comparing the match between fitted and empirical three-year inci-

dence rates using a Chi-square test statistic. The Goodness-of-fit p-values are shown in S6

Table. We used the inferred parameters to predict how genetic effects are expected to be

diluted by the presence of frailty (S13 Fig; for technical details, see S1 Supplemental Methods

and S1 Analytical Note).

Simulation

In our simulation, we generate a risk profile over age for each variant from underlying curves

with different slopes. The individual risk is then computed at different ages, which are then

used to generate disease incidence events over the simulated population. We choose the popu-

lation size to be 50,000, which is comparable to our empirical case-matching population size

(the set of common diseases analysed each have ~10,000 cases in the UK Biobank and we

match each case with four controls). We simulated 50 SNPs (MAF of each SNPs are sampled

from uniform distribution 0–0.5). The risk effect for each SNP is sampled from a profile which

changes linearly with age. The individual hazard within a specific age interval is computed as

the exponential of genetic risk multiplied by a linearly increasing baseline hazard ratio.
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For each interval, we simulated the time to the next event using a homogeneous Poisson

process with the defined individual hazard rate. An individual with no event in this interval is

considered as observed (censored). We record only the first event as the onset of the disease.

The simulation is performed over a 40 year duration divided into eight 5-year intervals, as

most of the disease onset occurs between ages 40–80 years old in the UK Biobank. In order to

represent the end of observation (study drop-out) or death events in the cohort, a competing

censoring process is sampled using a Poisson process of constant rate. The dropout/death and

disease onset events are combined and we keep the first event, labelling it as either disease or

censoring. For parameters setting in the simulation, see S1 Supplemental Methods.

To test our statistical model for inferring age-varying genetic effects, we simulated a popula-

tion using the scheme described above and analysed it using the methods described above to

infer the genetic risk profiles over age and the underlying curves that generated them. We sim-

ulated the cohort with different values of the slope, which represent different age dependen-

cies, and tested whether our method could recover the simulated values. We then assessed the

power of the statistical test to detect age-varying genetic effects. We simulated the genetic risk

profile with the slope ranging from -0.01 (linearly decreasing with age) to 0.01 (linearly

increasing with age), with a step size of 0.0001. The simulated population is analysed using the

null model of a constant effect with age, and an alternative model of either a linear model, or a

quadratic polynomial curve. A likelihood ratio test is performed to calculate the p-value, and

we calculate the power of rejecting the null at a threshold of p = 0.05. For each slope, the simu-

lation was repeated for 400 times to estimate the power and its standard error.

To test our statistical model for detecting multiple clusters of genetic risk profiles, we simu-

lated disease cohorts with five (10%) of the variants that had effect sizes generated from a non-

constant latent profile, while the effect sizes for the remaining 45 variants had a constant (age-

invariant) effect. We assessed our model as to whether it can detect the presence of multiple

clusters. The simulated cohorts are analysed with both a null model of a single quadratic poly-

nomial curve, as well as the alternative model of two quadratic polynomial curves. For each

simulation, we compute the p-value for the likelihood ratio test comparing two clusters against

one cluster, measuring power at p = 0.05. We varied the slope of the non-constant profile to

test how different the curve needs to be from a constant effect to be distinguishable by our

model. Power is computed for slopes ranging between -0.0375 and 0.0375, with a step size of

0.00025. For each slope, the simulation was repeated for 400 times to estimate the power and

its standard error.

To model possible mechanisms for the observed decline in genetic risk with age we simu-

lated a threshold model in which each individual has an unknown “liability", which evolved

over time [43]. For a specific disease, onset occurs when an individual’s “liability" passes a cer-

tain threshold. We simulated a liability model for 50,000 individuals with a single genetic effect

that alters the starting point of liability. Genotypes were simulated with a risk allele frequency

0.3. The liability is simulated as a stochastic process with starting points altered by genotypes.

We then simulated increments of liability from a Gaussian distribution which controls the

drift and variance of the stochastic process. The stochastic process models the disease risk

increase over age through the drift, and the correlation of increments induced by the variance

of Gaussian distribution creates a “momentum" such that an individual’s health status tends to

improve or deteriorate over years at a similar rate. We simulated for 60 years and considered

an individual to have an onset of a disease when the liability (arbitrarily) reaches 0. We then

estimated the effect size of the risk allele over the age interval 21–60. For parameters setting in

simulating the stochastic processes, see S1 Supplemental Methods.

To consider whether the decreasing pattern could be explained by interactions (either gene-

by-environment or gene-by-gene) we performed additional simulations. We modelled the
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interaction of a focal genetic effect with other unobserved risk factors. Assuming the effect size

interacts with environmental or other genetic factors, the effect size for each individual is gener-

ated from a positively defined distribution. We can show that the estimated marginal effect size

will be increasingly underestimated as age increases for all positive defined probability distribu-

tions (see S1 Analytical Note). We then performed a simulation using the parameter settings

described at the beginning of this section, but sampled an effect size for each individual from a

gamma distribution. The effect size for each individual remains constant over age intervals. We

then inferred the posterior of effect size, presented in Fig 6B. We note that this model is a gener-

alisation of the concept of frailty in which one allele has greater frailty than the other.

Supporting information

S1 Supplemental Methods. Technical details.

(PDF)

S1 Analytical Note. Analytical details for models.

(PDF)

S1 Fig. The prediction power for combined genetic risk scores for additional diseases. In

each plot the odds ratios for the 80th (blue) and 90th percentiles of a combined genetic risk

score within matched case-control samples (four controls for each case) are shown for each

age interval; points indicate the average odds ratio of twenty five-fold cross-validation analyses

with lines indicating the 95% confidence interval.

(PNG)

S2 Fig. Simulation studies. (A) A simulation with frailty showing that the inferred effect (red)

deviates from the underlying effect size (blue dashed line). The variance of frailty in this case is

0.82. (B) Effect of frailty on the false positive rate. The x-axis shows the variance of the frailty

distribution, with a larger variance indicating stronger frailty, while the y-axis is the false posi-

tive rate of rejecting the true model of constant effect over age. The inferred curve does not

deviate from uniformity when the frailty variance is smaller than 0.1. (C) Coverage analysis.

The blue curve shows the probability that 95% posterior credible interval covers the true

genetic profile and the shaded area is the 95% confidence interval of the coverage estimate. (D)

Simulation to test the impact of selecting healthier individuals of older age. Selection bias

towards healthier older people is simulated by changing the baseline hazard over age, such that

a negative slope indicates a population in which older people are biased away from having dis-

ease. The blue solid line shows the false positive rate of rejecting the null hypothesis of unifor-

mity for a baseline hazard with different slopes; the shaded area shows the 95% confidence

interval. Genetic profile estimation uses a quadratic polynomial throughout.

(PNG)

S3 Fig. Analysis of empirical data with curves of increasing complexity. A likelihood ratio

test is performed against a constant effect model (DF = 1) over age, for models with different

smoothness. Smoothness is controlled by the degree of freedom of the spline basis, where we

tested linear (DF = 2, blue), quadratic polynomial (DF = 3, red), cubic polynomial (DF = 4,

orange), spline with one knot (DF = 5, green) and spline with two knots (DF = 6, grey). The

red dotted line indicates P = 0.05.

(PNG)

S4 Fig. Posterior estimation of genetic risk over age for all diseases. The solid red curve

indicates the posterior mean, and the shaded region is the 95% credible interval.

(PNG)
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S5 Fig. Posterior curve estimates when two latent profiles are fitted for six diseases with

moderate evidence of multiple profiles (P < 0.1). The red and blue curves with correspond-

ing shades show the profile means and 95% credible intervals for each profile.

(PNG)

S6 Fig. Age-varying disease risk profiles for different self-identified races or ethnicities.

(A) Inferred cluster profiles for the six disorders presented in Fig 4 using all subjects in UK

Biobank regardless of ethnicity. The blue and red curves in the last two figures indicate the

means for the two clusters of variants, where there is evidence for multiple profiles within the

British Isle ancestry group. Curves for all diseases are shown in S7 Fig. (B) Inferred cluster pro-

files for individuals self-identified as Black ethnicity in the UK Biobank. “Gastritis and duode-

nitis” (ICD-10 code K29), “low back pain” (M54.5), “Arthrosis” (M19.9) and “Asthma” (J45.9,

P = 0.006). We also include the permutation P-value for asthma as its age profile has a uniquely

increasing risk profile. (C) Inferred cluster profiles for individuals self-identified as South

Asian ethnicity; “primary (essential) hypertension” (I10) and “Gastritis and duodenitis” (K29).

The solid line indicates the posterior mean and the shaded area the 95% credible interval;

Numbers in boxes indicate the number of variants in each cluster; All estimates are made with

quadratic models for age-varying risk profiles.

(PNG)

S7 Fig. Posterior estimation of genetic risk over age using all ancestries in UK Biobank for

all diseases. The solid red curve indicates the posterior mean, and the shaded region is the

95% credible interval.

(PNG)

S8 Fig. Risk profiles using external variant sets and disease phenotype definitions. (A)

Inferred cluster profiles using associations collected from GWAS Catalog for two disorders:

“primary (essential) hypertension” (I10) and “antherosclerotic hearth disease” (I25.1). (B)

Inferred cluster profiles for two phecodes: “172.20” (other non-epithelial cancer of skin, ICD-

10 codes: C44.3 and C44.5) and “411.20” (myocardial infarction, ICD-10 codes: I21.9 & I25.2).

The solid line indicates the posterior mean and the shaded area the 95% credible interval;

Numbers in boxes indicate the number of variants in each cluster; All estimates are made with

quadratic models for age-varying risk profiles.

(PNG)

S9 Fig. Comparison of receiver-operator curves (ROC) under different age assignments

for training and testing sets. The population is divided into a younger group and an older

group, where GRS and ROC are estimated from one of the groups. Each plot shows the ROC

for four combinations: GRS and ROC are both computed from younger (Young-young; blue)

or older group (Old-old; red); GRS is computed from the younger group and ROC is com-

puted from the older group (Young-old; green) and the other way around (Old-young;

orange). The area under the curve (AUC) metrics are shown in the top left. C44.5 “other and

unspecified malignant neoplasm of skin of trunk”, M06.9 “rheumatoid arthritis, unspecified”,

E10.9 “type 1 diabetes mellitus without complications”, K80.2 “calculus of gallbladder without

cholecystitis”, and I25.1 “atherosclerotic heart disease of native coronary artery” are ICD-10

codes that have the biggest AUC differences between the blue and red ROCs. M54.5 “low back

pain” is the only disease that has a larger AUC in red ROC than blue ROC. Regardless of

whether the GRS and ROCs are computed from the same age group, we use 80% of the sample

to compute the GRS and 20% for the ROC to match the sample sizes under each condition.

(PNG)
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S10 Fig. Comparison of effect size estimation using multivariable and univariable methods

for all diseases studied. A quadratic polynomial model is fitted to the estimated effect size in

both cases, which is shown as two curves: green (multivariable) and purple (univariable).

(PNG)

S11 Fig. Estimated incidence by age in the UK Biobank for all diseases studied here. The

red solid line indicates the rate estimated from the UK Biobank (see S1 Supplemental Meth-

ods) and the dotted blue line indicates the fitted incidence curve from the parametric model.

(PNG)

S12 Fig. Comparison of inferred genetic risk profiles and those predicted from fitted

frailty models. A) A likelihood ratio test of deviation from the fitted frailty model (red), com-

pared with the likelihood ratio test of deviation from a constant effect model. Four diseases

have Q < 0.05 after correcting for multiple testing. All inferences are performed on the uni-

variable estimation of variant effect size because the fitted frailty should include both genetic

and non-genetic factors. B) Paired t-test of the gradient of frailty and our inferred curve, iden-

tifying 17 out of the 24 diseases analysed where the inferred genetic risk profile slope is steeper

than that implied by the inferred frailty parameters.

(PNG)

S13 Fig. Comparison of genetic risk estimated using quadratic polynomials and that pre-

dicted by a frailty model. Comparison of fitted latent curves (red curve for the mean and

shaded region for the 95% credible interval, estimated using the univariable approach) and

latent profiles implied by the fitted frailty effect (blue dashed line), for all 24 diseases analysed

here.

(PNG)

S1 Table. Summary of evidence for age-varying genetic risk when fitted with univariate

model. Summary of ICD-10 disease codes analysed and evidence for age-varying effect sizes

and number of age-profile classes, fitted with a univariable model and quadratic polynomial.

Details are for Table 1.

(PNG)

S2 Table. Summary of odds ratios for the 80th and 90th percentiles of genetic risk score

within each age interval. (A) Mean odds ratio of the 90th percentile GRS over the population

average. (B) Mean odds ratios of the 80th percentile GRS over the population average. Paren-

theses contain the 95% confidence intervals of the mean.

(PNG)

S3 Table. Summary of changes in genetic risk contributions. Summary of changes in genetic

risk contributions from before 45 years old to after 75 years old, when risk profiles are fitted

using a linear model.

(PNG)

S4 Table. Posterior mean risk profiles for all diseases. Posterior mean risk profiles for all dis-

eases analysed here, fitted with a single quadratic polynomial. Standard errors are also pro-

vided. Values are the mean effect size within the age interval for individual variants.

(PNG)

S5 Table. Comparison of area under the curve (AUC) metrics under different age assign-

ments for estimation and prediction for all diseases. The population is divided into a youn-

ger group and an older group, where GRS is estimated in the training set from one group and
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receiver-operating curves (ROCs) are computed from the testing set in one group. By the com-

bining age assignments for the training and testing sets there are four conditions: GRS and

ROC are both computed from the younger (third column) or older group (fourth column);

GRS is computed from the younger group and ROC is computed using the older group (fifth

column) and the other way around (sixth column). Regardless of whether the training data

and testing data are from the same age group, we use 80% of the sample as the training set and

20% as the testing set to match the sample sizes of each condition.

(PNG)

S6 Table. Estimated parameters of frailty from the UK Biobank. The fitted model has a haz-

ard rate of hi = ui γtk, where ui ~ Gamma(shape = 1/θ, scale = θ).

(PNG)

S7 Table. Comparison of risk between an early age group and a late age group. Comparison

of baseline hazard rate (population-level risk), genetic risk factor effect size and absolute haz-

ard rate (baseline hazard multiplied by genetic risk factor) for an early age group and a late age

group across the diseases studied here. The genetic risk factor and absolute hazard are com-

puted from the group with the highest decile of genetic risk.

(PNG)
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