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Abstract

Wolf Pack Algorithm (WPA) is a swarm intelligence algorithm that simulates the food

searching process of wolves. It is widely used in various engineering optimization problems

due to its global convergence and computational robustness. However, the algorithm has

some weaknesses such as low convergence speed and easily falling into local optimum. To

tackle the problems, we introduce an improved approach called OGL-WPA in this work,

based on the employments of Opposition-based learning and Genetic algorithm with Levy’s

flight. Specifically, in OGL-WPA, the population of wolves is initialized by opposition-based

learning to maintain the diversity of the initial population during global search. Meanwhile,

the leader wolf is selected by genetic algorithm to avoid falling into local optimum and the

round-up behavior is optimized by Levy’s flight to coordinate the global exploration and local

development capabilities. We present the detailed design of our algorithm and compare it

with some other nature-inspired metaheuristic algorithms using various classical test func-

tions. The experimental results show that the proposed algorithm has better global and local

search capability, especially in the presence of multi-peak and high-dimensional functions.

1 Introduction

With the rapid growth of the complexity of data applications and systems, swarm intelligence

has received increasing attentions. Specifically, to solve complex optimization problems in an

acceptable time, different algorithms such as Genetic Algorithm (GA), Particle Swarm Optimi-

zation (PSO), Ant Colony Optimization (ACO) as well as their variations have been proposed

in the last few decades. All the approaches can be broadly decomposed into a population ini-

tialization stage followed by an iteration computing process, and they have been widely used

on handling numerical and real-world optimization problems in various domains (e.g., engi-

neering and computer systems).

The Wolf Pack Algorithm (WPA) is a typical swarm intelligence algorithm based on the liv-

ing habits of wolves [1, 2]. Generally, WPA includes three main intelligent behaviors (i.e.,

wolf’s searching behavior, leader wolf’s calling behavior and fierce wolf’s round-up behavior)
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and two mechanisms (i.e., the leader wolf’s competition mechanism based on winner is king
and the wolf pack’s updating mechanism based on survival of the fittest wolves). Compared to

other swarm intelligence, WPA has demonstrated good capability in global convergence and

computational robustness [2]. Although the algorithm has been applied in various practical

problems, such as for placement and path selection [3], network management [4], UAV trajec-

tory planning [5], data flow control [6], etc., it still has several issues in handling complex

problems because of the following issues.

• Issue 1: The population in WPA lacks effective initialization. Generally, an advanced initiali-

zation can ensure the uniform distribution of solutions in searching space to some extent,

and thus it can provide better solutions for the iterative process in a swarm intelligence.

However, WPA initializes the spatial position of the individual wolf pack in a random way,

which reduces the population diversity of the algorithm, and is not conducive to the genera-

tion of the optimal solution of the algorithm.

• Issue 2: The searching wolf in WPA adopts a greedy wandering strategy. However, when the

maximum wandering number is set to a large value, the searching wolf will be prone to get

into a local optimal solution due to the excessive greed. In this case, it will not be able to con-

tinue to expand the exploration space and thus the global search capability of the algorithm

of will reduced.

• Issue 3: The convergence speed of WPA is fast at early stages of computing, but has a signifi-

cant reduction at the later stages. This is mainly because the effect of fierce wolf’s round-up

behavior, which will lead to the local optimization of the algorithm and the poor local search

effect and reduce the performance of the algorithm.

• Issue 4: In WPA, a wolf is randomly selected to be the leader. If its target function value is

smaller than that of other wolves, the position of the leader wolf will be replaced. However,

updating the leader wolf in such a way will easily result in the whole algorithm falling into a

local optimum. Moreover, the lack of a leader wolf’s influence will also reduce the stability of

the algorithm.

In fact, to achieve better optimization performance, various works have been proposed to

improve the WPA approach, especially for the first three issues described above. For example,

the work [7] has introduced different approaches for WPA to improve its population diver-

sity. For the second issue, the study [8] has pointed out that applying chaos strategy in WPA’s

searching behavior can effectively avoid falling into local optimum. Moreover, the paper [9]

has presented how to use Levy behavior to optimize the round-up behavior for the third

problems. In comparison, to the best of our knowledge, the fourth issue has not been studied

yet.

To improve the WPA method in a comprehensive way, in this work, we introduce an opti-

mized approach called OGL-WPA, i.e., an improved WPA based on the Opposition-based

learning and Genetic algorithm with Levy’s flight. Specifically, we focus on leveraging the exist-

ing intelligent techniques (i.e.,opposition-based learning, GA and Levy’s flight) to optimize

WPA. We believe that our design and the evaluation conducted in the work as well as the

reported results are of value to the community as a basis for understanding the merits of our

algorithm. Generally, the contributions of this paper are summarized as follows.

• To improve the performance of WPA, we introduce an optimized approach called

OGL-WPA, with the seamless integration of three intelligent techniques: opposition-based

learning, Genetic algorithm and Levy’s flight.
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• We present the details on how to use the three intelligent techniques to optimize WPA as

well as the general implementation flow of OGL-WPA.

• Our evaluation over classical test functions demonstrate that OGL-WPA has better local

and global search capability, compared to some popular swarm intelligence algorithms.

Specifically, it has significant advantages in solving multi-peak and high-dimensional

problems.

The remainder of this paper is organized as follows. The related work of WPA and its prin-

ciple are introduced in Section 2 and Section 3 respectively. The proposed OGL-WPA is pre-

sented in Section 4. The relevant experimental results are reported in Section 5 and the

conclusions of this work are summarized in section 6.

2 Related work

In this section, we mainly present the related work of WPA. Since another wolf related swarm

intelligence called Grey Wolf Optimizer (GWO) [10] becomes increasingly popular in the cur-

rent research, we also give the relevant studies of GWO.

2.1 WPA related works

2.1.1 Optimization of WPA. Xiu et al. [9] proposed a tent chaotic map and Levy flight in

WPA. Experimental results showed that the optimized algorithm has faster convergence speed

and higher precision. Li et al. [8] proposed a Chaos-based WPA, which can effectively improve

the local search ability and had good development and balance ability. Simulated results

showed that the algorithm has higher effectiveness and robustness.

2.1.2 Hybrid algorithms based on WPA. Chen et al. [7] proposed a hybrid algorithm

based on WPA and differential evolution algorithm (DEA). The DEA was introduced into the

individual of WPA to increase the individual diversity of the population and improve the local

search ability. Simulation experiments showed that the algorithm performance is better than

genetic algorithm (GA), DEA, PSO and artificial bee colony (ABC) algorithms. Based on

WPA, Chen et al. [11] gave a hybrid improved algorithm WPA-PSO and demonstrated that it

can improve the performance effectively.

2.1.3 Applications of WPA. Jiang et al. [12] showed that WPA can improve the efficiency

of route planning. Dong et al. [13] proposed a hybrid optimization algorithm based on wolf

pack search and local search (WPS-LS) in business travel problems. They found that it had

better robustness and planning effect by simulations. Liang et al. [14] proposed a cluster coop-

erative algorithm based on improved wolf’s behavior, which showed that the model can effec-

tively guarantee the efficiency of solving large-scale complex optimization problems and the

operational effectiveness of distributed cluster cooperative attack problems. Moreover, the

convergence of the algorithm is proved by Markov asymptotic convergence theory. Zhang

et al. [15] proposed a hybrid prediction model of WPA based on fuzzy clustering and least

squares vector machine, and applied this model to electric bus, which obtained high prediction

accuracy and stability. Han et al. [16] used the WPA for scheduling in the RHFS problem, and

the experimental results show that the Wolf pack algorithm can effectively solve the existing

scheduling problems in the RHFS problem. Gao et al. [17] proposed a WPA based on quantum

coding to solve the 0–1 knapsack problem, it is showed that the algorithm had better global

search ability by simulation. Chen et al. [18] proposed the optimized WPA for the route plan-

ning of the three-dimensional UAV and the route planning accuracy can be greatly increased

by simulation.
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2.2 GWO related works

2.2.1 Optimization of GWO. Gupta et al. [19] proposed an improved algorithm

RW-GWO based on random walking. Simulated results showed that the performance of the

improved GWO improved greatly. Long et al. [20] proposed a GWO based on reverse learn-

ing, namely RL-GWO. Simulation results showed that this algorithm is an effective and reli-

able algorithm for solving function optimization problems.

2.2.2 Hybrid algorithms based on GWO. Arora [21] proposed an algorithm based on the

fusion of GWA and Crow algorithm–GWOCSA. Simulated results showed that the algorithm

has a good ability to solve complicated problems. Al-Tashi et al. [22] proposed another algo-

rithm which combined binary-based particle swarm and GWA, it called BGWOPSO. The

algorithm found the best feature subset through K-nearest neighbor classifier. Simulated

results showed that the algorithm was better than GWO, PSO, GA and other algorithms. Singh

et al. [23] proposed an improved grey wolf optimization algorithm, which was used to solve

the economic power load scheduling problem and achieved good results. Barraza et al. [24]

proposed a fusion algorithm based on FWA and GWO. The test of the benchmark function

showed that the fusion algorithm had better performance. Gaidhane et al. [25] created

GWO-ABC by combining ABC with GWO. Firstly, the algorithm applied the chaotic strategy

for population initialization in the WPA. Then, enhance its exploration ability by applying the

information sharing strategy of the bees in the ABC. Simulated results showed that the perfor-

mance of the improved gray wolf algorithm has been improved. Zhi et al. [26] combined the

PSO algorithm with the GWO algorithm, which we called PSO-GWO. In the simulated experi-

ments, they used Tent to initialize population, and the best individual idea of PSO is used to

update the individual of the wolf group, which can prevent it from falling into local optimum.

The presented simulation results showed that PSO-GWO had a better global optimal solution.

In addition, Al-Wajih et al. [27] proposed an algorithm called HBGWOHHO, which is based

on the combination of GWO algorithm and Harris Hawks Optimization. Moreover, Banaie-

Dezfouli et al. [28] proposed a method called R-GWO, which is constructed by a representa-

tive based grey wolf optimizer.

2.2.3 Applications of GWO. Maharana et al. [29] applied the GWA and the JAYA algo-

rithm for job scheduling in the workshop. The simulated results showed that the GWA has

better performance. Zapotecas-Martnez et al. [30] introduced a multi-objective decomposi-

tion GWA, which modeled the multi-objective optimization problem in the form of Pareto’s

optimal equilibrium optimal solution set. Simulated results showed that the algorithm has

higher quality. In order to achieve lower costs, Kaur et al. [31] used the GWA to optimize

the offload scheduling of programs on the mobile device side. Simulated experiments

showed that the algorithm has better scheduling effect. Al-Moalmi et al. [32] proposed the

use of the GWA for the optimization of virtual machine layout, which can reduce the num-

ber and energy of active hosts. Experiments showed that using this algorithm can effectively

reduce energy consumption and use CPU and memory resources better. In order to solve

large-scale numerical optimization problems, Long et al. [33] proposed an optimized GWO,

which we also called ERGWO. The algorithm used a nonlinear adjustment strategy of parti-

cle swarms for balancing exploration and development. The simulated results showed that

the proposed ERGWO can find high-quality solutions with low computational cost and fast

convergence.

From the above related work, we can see that the research on GWO is very active, even

more than the WPA. However, as we will demonstrate in this work, an improved WPA can

actually perform much better than GWO and also its variants.
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3 Basic idea of Wolf pack algorithm

WPA [2] is an intelligent algorithm which simulates the wolf pack predation in the natural

universe. Generally, the individuals in the wolf pack are divided into three types: the leader

wolf, the detection wolf and the fierce wolf. Different kinds of wolves undertake their own

responsibility, meanwhile they work cooperatively to catch the prey.

There is only one leader wolf in a pack which acts as a decision maker, leading the pack to

catch food as quickly as possible. But the leader wolf in a pack is not fixed, any individual in

the pack can become the leader wolf, the leader wolf is determined by competition, that is,

only the wisest and fiercest wolf in the group can become the leader wolf. A wolf pack has mul-

tiple detection wolves, mainly responsible for the search for the location of the prey within the

scope of activities, and then conveyed the prey information to the leader wolf. The location of

a wolf’s prey is obtained mainly by the scent of its prey. If the scent is stronger, the closer the

wolf is to the prey. There are several fierce wolves in a wolf pack, the wolf is mainly responsible

for rounding up the prey. After the detection wolf to find the trail of its prey and report it to

the wolf, the wolf called down to round up the prey. When prey is captured, it is not evenly dis-

tributed to each individual in the pack. The prey is given priority to the most powerful wolf,

and then assigned to the lesser wolf, and finally not even to the weakest wolf.

The distribution rules ensure that the competent wolves can survive, and the small and

weak wolves are gradually eliminated, which is conducive to the overall survival and develop-

ment of the wolves. Therefore, the whole wolf colony algorithm mainly includes two mecha-

nisms, the leader wolf generation mechanism and the wolf pack update mechanism, and three

behaviors, namely, search behavior, call behavior and round-up behavior.

The hunting area of the wolf pack is a European space called N × D, where N means the

total number of individuals in the wolf pack and D means the variable dimension of space. The

position state of a wolf in a wolf pack is represented by Xi = (xi1,xi2, . . ., xiD), where xid repre-

sented the location of wolf i in the d(d = 1, 2. . .D) dimension variable space. Note the concen-

tration (target function value) of the scent of prey perceived by each individual in the wolf

pack as Yi, then Yi = f(Xi)(i = 1, 2,. . .N). The goal of the wolf colony algorithm is to find xi in a

given range of variable values to maximize the value of f(xi), that is, the maximum value of the

target function, which is a function solving optimization problem.

The two mechanisms and three behaviors of the algorithm are given below, and the detailed

analysis of the improved algorithm is prepared.

1) Leader wolf’s generating mechanism
The leader wolf changes with the process of rounding up and iteration. During each round

up, if the target function value of an individual in a wolf pack is greater than that of the leader

wolf, the individual immediately replaces the original position of the leader wolf. During the

iteration, the target function value of the optimal wolf after each iteration is compared to the

value of the leader wolf in the previous generation, and the position of the leader wolf is

updated if better. Throughout the process, we note that the location of the leader wolf is Xlead

and its corresponding target function value is Ylead.

2) Wolf pack’s updating mechanism
The food distribution rules of the wolf pack cause part of small and weak wolves to be

starved to death, so in the wolf colony algorithm, to remove the target function value of the

worst R wolf individual, and then randomly add R wolf individual, where R 2 [N/(2 × β),N/β]

with β for the population update ratio coefficient which is artificially set.

3) Searching behavior
In the process of searching for prey, the wolves do not send out the whole pack, but choose

the best other than the leader wolf to search for prey first. Set the number of detection wolf
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random take a whole number of ½ N
aþ1
; N
a
�, where α is the proportion factor of detection wolf and

is artificially set. When a wolf i’s current position of the prey concentration value Yi> Ylead,

then Ylead = Yi; When Yi< Ylead, the wolf moves the step length of Stepa in each direction of h,

calculates the target function value after each step and then returns to its original position. The

location of wolf i in dimension d space after moving in direction p(p = 1, 2, . . .,h) is:

xp
id ¼ xid þ sin ð2p� p=hÞ � Stepd

a: ð1Þ

At this point, Wolf i selects the direction of maximum odor concentration and greater than

the current position to go further, update Wolf Status to xi and repeat the search process until

the detection Wolf perceived odor concentration value Yi> Ylead or the maximum number of

iterations.

4) Calling behavior
When the leader wolf calls on the nearby fierce wolf to set the Stepb step to the leader wolf

position, the position of the i wolf in the d dimension variable space at iteration k + 1 is:

xkþ1
id ¼ xk

id þ Stepd
b � ðg

k
d � xk

idÞ=jg
k
d � xk

idj; ð2Þ

where gk
d is the position of the first wolf of the generation K in the d dimension space. When

attacking prey, if wolf i smell the prey odor concentration value Yi> Ylead, then Ylead = Yi, the

wolf immediately transformed into a leader and launched a call; if Ylead< Yi, wolf i continues

to attack until the distance from the leader is less than

dnear ¼
1

D� o
�
XD

d¼1

jmaxd � mindj; ð3Þ

where, ω is the distance determinant, and the value range of the D-variable is [mind, maxd].

5) Rounding-up behavior
When the wolf is close to the prey, the wolf will jointly explore the wolf to round up the

prey, rounding up the behavior as follow:

xkþ1
id ¼ xk

id þ l� Stepd
c � jG

k
d � xk

idj; ð4Þ

where, λ represents a random number that is uniformly distributed in [−1, 1], Stepd
c is the

attack step size, and the Gk
d represents the position of the prey in d dimension space in iteration

K, actually the position of the leader wolf as its location. In addition, the relationship within

the three steps in the algorithm are as follows: searching step size Stepa, attacking step size

Stepb and attacking step size Stepc).

Stepd
a ¼ Stepd

b=2 ¼ 2Stepd
c ¼ jmaxd � mindj=S; ð5Þ

where, S is the step length factor, which indicates the degree of granularity of searching the

optimal solution in the solution space.

4 The improved Wolf pack algorithm

Like many other swarm intelligence algorithms, WPA has good global searchinng capability,

but it is easy to fall into local optimization and has slow convergence as we have described. To

improve the problems, we propose three improvements in our design. Firstly, using opposi-

tion-based learning to initialize the population, which can keep the diversity of the population

and avoid the algorithm getting into precocity. Secondly, the genetic algorithm is used to

improve the selection of the leader wolf. Thirdly, the Levy flight mechanism is used to optimize

the round-up behavior.
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4.1 Opposition-based learning for population initialization

The initial population construction strategy refers to the distribution of the initial population

in the solution space. If the initial solution is close to the optimal solution, the algorithm can

converge faster, so the initial population construction will directly affect the performance of

the algorithm. The initial solution of WPA is randomly generated and the initialization

method is simple and easy to implement, but it will reduce the efficiency of the algorithm

because it does not estimate the individual. Fortunately, we can solve this problem by opposi-

tion-based learning strategies. Opposition-based learning [34] is an optimization method used

in machine learning. In each iteration of the algorithm, all the reverse solutions of the current

solution are given, and the solution is selected in the current solution and the reverse solution

facilitates the evolution, reducing the blindness of the algorithm. In this paper, the population

initialization strategy based on opposition-based learning is adopted, by searching the current

solution and the reverse solution simultaneously, and selecting the better solution as the initial

solution, thus probability of finding the best initial solution is increased. The steps are as

follows:

• Step 1: Create the initial population randomly. The initial population NP1 = {x1(t), x2(t), . . .,

xN(t)} of the random generation algorithm is calculated according to the formula (6),

xj
i ¼ xj

min þ randð0; 1Þðxj
max � xj

minÞ: ð6Þ

where xj
i represents the ith individual in dimension j, i is in the range [1, N], j is in the range

[1, D], xj
min and xj

max represent the upper and lower bounds of the space, respectively.

• Step 2: Solve the inverse solution. The inverse population NP1 corresponding to

NPop ¼ f~x1ðtÞ; ~x2ðtÞ; . . . ; ~xNðtÞg is obtained, and the inverse solution of each individual is

given as follows,

~xiðtÞ ¼ xj
min þ xj

max � xj
i: ð7Þ

• Step 3: Select the optimal individual. First select the individual xbest with the best

value of the target function from NP1 [ NPop, and then calculate the average value

xmean ¼ ðx1 þ x2 þ . . .þ xN þ ~x1 þ ~x2 þ . . .þ ~xNÞ=2N of the solution in NP1 [ NPop,
finally compare the corresponding target function values of xbest and xmean respectively.

The individual with the largest value of the target function is the best individual of the pop-

ulation, and record it as xopbest, which is obtained by the following formula,

xopbest ¼

( xbest; if f ðxbestÞ > f ðxmeanÞ

xmean; otherwise
: ð8Þ

The opposition-based learning algorithm can search in a larger search space and guide

individuals to evolve toward the optimal value, thus improve the overall convergence

speed of the algorithm.

4.2 Genetic algorithm for leader Wolf selection

The goal of WPA is to determine the location of the leader wolf, which is the parameter value

of the optimal solution of the algorithm. In WPA, the location of the leader wolf is only deter-

mined by the size of the scent concentration of prey, which affects the search ability of the
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global optimal solution. In this paper, the selection, crossover and mutation of genetic algo-

rithm (GA) are used to select the leader wolf, which makes the new leader wolf have stronger

robustness and global optimization, and can accelerate the convergence speed of the algo-

rithm. Set the leader wolf in iteration g to xg
lead, the steps are as follows.

4.2.1 Select actions. According to the GA, the fitness function γ is defined as the recipro-

cal of the objective function. The target function value γ corresponding to the individual xg
i in

the wolves in iteration g is defined as follows:

gðxg
i Þ ¼

1

f ðxg
i Þ
; i ¼ 1; 2; . . . ;N; ð9Þ

where formula (9)indicates the value of the fitness function corresponding to the individual in

the wolf pack. The probability of a wolf individual being selected is set according to the roulette

method, as shown in the formula (10):

pg
i ¼

gðxg
i Þ

PN
i¼1
gðxg

i Þ
; i ¼ 1; 2; . . . ;N; ð10Þ

4.2.2 Cross action. Two individuals, xg
r1 and xg

r2, are randomly selected by probability pg
r1

and pg
r2 for cross operation, as shown in formula (11).

(
�xg
r1 ¼ rxg

r1 þ ð1 � rÞxg
r2

�xg
r2 ¼ ð1 � rÞxg

r1 þ rÞxg
r2

: ð11Þ

The value of cross probability r is 0.95, and �xg
r1 and �xg

r2 are the values after the two individu-

als cross.

4.2.3 Mutation operation. The leader wolf individual and the two random individuals are

performed a mutation operation after cross operation. The variation operation formula (12) is

as follows:

Vgþ1

i ¼

( xg
lead þ l� jx

g
r1 � xg

r2j; randðÞ < pm

xg
lead; otherwise

; ð12Þ

where Vgþ1

i represents the individual after xg
lead mutation, the mutation probability pm is set to

0.01, rand() is a random number between (0, 1), λ is a random factor between (0, 1), when

rand()< pm, Vgþ1

i is the new individual after xg
lead mutation. Otherwise it is still xg

lead.

The target function values of individual Vgþ1

i are compared with xg
lead by selecting, crossing,

and mutating. If f ðVgþ1

i Þ > f ðxg
leadÞ, the new leader wolf Vgþ1

i is used. Otherwise xg
lead continues

to be used.

4.3 Levy’s flight for rounding-up behavior

A large number of studies have shown that in the process of hunting in large environment,

there are basically Levy’s flight search characteristics, that is, long short distance search trajec-

tory and occasional long distance search trajectory interlace. Edwards et al. [35] studied the

activity characteristics of a particular animal and concluded that in a larger space and a limited

search, Levy’s flight is the best search strategy in the local area because it can not only satisfy

the search in a small range ensure to obtain the target but also satisfy the coarse search in a

large range to avoid local optimum. In order to avoid the local optimization of the algorithm,

the Levy’s flight mechanism is introduced in the round-up behavior. The characteristics of
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Levy’s flight are a random transformation process, and there is no fixed function representa-

tion. The study shows that the distribution density function of the variation of the Levy’s flight

step can be approximated as follows:

LevyðsÞ � jsj� 1� b
; 0 < b � 2; ð13Þ

where s is the random step length of Levy’s flight behavior, and according to the literature [36],

s is expressed as follows:

s ¼ m=jvj1=b: ð14Þ

Parameter μ, v obeys normal distribution, i.e.,

m � Nð0; s2
m
Þ; v � Nð0; s2

vÞ; ð15Þ

with

sm ¼
Gð1þ bÞ sin ðpb=2Þ

G½ð1þ bÞ=2�2b� 1=2

� � 1=b

; sv ¼ 1: ð16Þ

In this paper, the motion steps generated by the Levy’s flight step length are applied to the

round-up behavior of the basic wolf algorithm and improved

xkþ1
id ¼ xk

id þ l� s� jGk
id � xk

idj; ð17Þ

where λ is a random number between [0, 1] and s is the moving step length, and the Levy’s

flight method can make the wolf algorithm jump out of the local optimization in the later

search iteration, enhance the exploration ability of the algorithm, and accelerate the conver-

gence speed of the algorithm.

4.4 Algorithm steps

The implementation workflow of our proposed OGL-WPA is shown in Fig 1. It contains main

six steps as following.

Step 1: Set the population individual number to be N, maximum number of iterations to be

Max, number of searches for wolves to be h, max number of searches for detection wolves

to be Tmax, search step size, attack step size, and initialize the population according to oppo-

sition-based learning.

Step 2: Choose the best individual leader wolf according to the description of genetic algo-

rithm. The location is xlead, the target function value is Ylead and the wolf with the largest

target value except the leader wolf is selected as the detection wolf. The formula (1) shall be

followed to search the behavior until the Yi is obtained by a wolf greater than Ylead, or the

number of searches reaches Tmax.

Step 3: Select Mnum fierce wolf randomly from the wolf pack except the leader wolf to attack

the prey according to the formula (2). When the wolf smell of prey Yi> Ylead, Yi = Ylead

instead of the first wolf to initiate the call behavior. Otherwise, the attack will be continued

until the distance is less than dnear in formula (3).

Step 4: Perform round-ups in accordance with the Levy’s flight mechanism.

Step 5: Update the position of the leader wolf according to the leader mechanism and update

the population according to the new mechanism.
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Step 6: Decide whether the optimization is accurate or the number of iterations is reached to

Tmax. If that case, the location of the output leader wolf is the best solution. Otherwise,

return to step 2.

5 Experimental simulation

5.1 Experiment setting

To illustrate the superiority of our algorithm, we have compared OGL-WPA with some popu-

lar swarm intelligence algorithms such as the ant colony optimization (ACO), particle swarm

optimization (PSO), Whale Optimization Algorithm(WOA) [37] and LSHADE [38], which

are commonly used for solving complex optimization problems, such as task scheduling [39],

data communications optimization [40], resource management [41], etc. Moreover, we also

have compared OGL-WPA with the GWO algorithm [10, 30] and β-GWO algorithm [42],

which represent another two latest wolf-related swarm intelligence algorithms. We have imple-

mented all the algorithms with MATLAB 2018b, and run all the tests on a commodity laptop

with an I7 CPU running at 1.8Ghz and a 8GB memory. For a general case, the parameters

used for each algorithms are presented in Table 1.

Fig 1. Flow chart of this algorithm.

https://doi.org/10.1371/journal.pone.0254239.g001
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5.2 Test functions

We have used 12 typical test functions (shown in Table 2) to evaluate the performance of our

algorithm. Specifically, these test functions are the basic functions for the design of the CEC

competitions [43]. They have both high and low dimensions which can be used to illustrate the

comprehensive comparison effects between our algorithm and other six algorithms. The

experiment selects the average value, the minimum value, the maximum value and the stan-

dard deviation as the evaluation index, in which the maximum value and the minimum value

reflect the quality of the solution. The average value reflects the accuracy that the algorithm

can be achieved under the given number of iterations, and the standard deviation reflects the

convergence speed of the algorithm.

5.3 Experimental results

For the 12 test functions, we just report the comparisons of fitness values of the five algorithms

in Figs 2–13. Specifically, the detailed comparisons of the four indicators (i.e., minimum value,

maximum value, average value and variance) achieved in the dimensions of 2, 5, 10, and 30 as

well as the elapsed time have been given online as an S1 Appendix, the link of which has been

given in the support information at the end of this work.

Fig 2 shows that the convergence of OGL-WPA happens when the number of iteration

reaches 180. In comparison, the WOA happens when the number of iteration is 20, LSHADE

Table 1. Main parameters of the 7 algorithms.

Algorithms Main parameters

ACO Population size is 100;

pheromone value is 0.005;

volatility coefficient of pheromone is 0.01;

path selection probability is 0.5.

PSO Population size is 100;

inertia weight is 0.5;

two learning factors is 0.5;

random number weight set to be 0.5.

GWO Population size is 100;

maximum iterations is 1000;

alpha = 1000, beta = 2000, GAMMA = 3000.

β-GWO Population size is 100;

maximum iterations is 1000;

scaling factor BETA = 0.8, alpha = 1000,

beta = 2000, gamma = 3000.

WOA Population size is 100;

maximum iterations is 1000;

a decrease linearly from 2 to 0.

LSHADE Population size is 100;

maximum iterations is 1000;

Storage size is 5;

The optimal selection rate is 0.11.

OGL-WPA Population size is 100;

maximum iterations 1000, h is 4, Tmax is 15;

Stepa is 2, Stepb is 1,

step factor is 1, λ is 0.5.

https://doi.org/10.1371/journal.pone.0254239.t001
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Table 2. The used test functions in the evaluation.

No. Function Name Test Function Dimension Search Space Optimal Solution

F1 Sphere f ðxÞ ¼
Xn

i¼1
x2

i
2 [-100,100] 0

5 [-100,100] 0

10 [-100,100] 0

30 [-100,100] 0

F2 Schwefel 2.22 f ðxÞ ¼
Xn

i¼1
jxij þ

Yn

i¼1
jxij

2 [-100,100] 0

5 [-100,100] 0

10 [-100,100] 0

30 [-10,10] 0

F3 Schwefel 1.2 f ðxÞ ¼
Xn

i¼1

Xi

j¼1
xj

� �
2 [-100,100] 0

5 [-100,100] 0

10 [-100,100] 0

30 [-100,100] 0

F4 Schwefel 2.21 f ðxÞ ¼ max abs xið Þð Þ 2 [-10,10] 0

5 [-10,10] 0

10 [-10,10] 0

30 [-100,100] 0

F5 Rosenbrock f ðxÞ ¼
Xn� 1

i¼1
100 xiþ1 � x2

i

� �2
þ xi � 1ð Þ

2
h i

2 [-30,30] 0

5 [-30,30] 0

10 [-30,30] 0

30 [-30,30] 0

F6 Step f ðxÞ ¼
Pn

i¼1
xi þ 0:5ð Þ

2 2 [-100,100] 0

5 [-100,100] 0

10 [-100,100] 0

30 [-100,100] 0

F7 Rastrigin f ðxÞ ¼
Pn

i¼1
x2
i � 10cos 2pxið Þ þ 10

� �
2 [-5.12,5.12] 0

5 [-5.12,5.12] 0

10 [-5.12,5.12] 0

30 [-5.12,5.12] 0

F8 Ackley f ðxÞ ¼ 20þ e�

20exp �
1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
x2

i

r !

�

exp
1

n

Xn

i¼1
cos 2pxið Þ

� �

2 [-32,32] 0

5 [-32,32] 0

10 [-32,32] 0

30 [-32,32] 0

F9 Griewank
f ðxÞ ¼ 1

1000

Xn

i¼1
x2
i �

Yn

i� 1
cos

xiffiffi
i
p

� �

þ 1
2 [-600,600] 0

5 [-600,600] 0

10 [-600,600] 0

30 [-600,600] 0

F10 Penalgy 1 f ðxÞ ¼
p

n
f10sin py1ð Þþ

Xn� 1

i¼1
y1 � 1ð Þ

2
1þ 10sin2 pyiþ1

� �� �
þ yn � 1ð Þg2

þ
Xn

i¼1
u xi; 10; 100; 4ð Þ;

yi ¼ 1þ
xi þ 1

4
;

u xi; a; k;mð Þ ¼

k xi � að Þ
m
; xi > a

0 � a < xi < a

k � xi � að Þ
m
; xi < � a

8
>>>><

>>>>:

2 [-50,50] 0

5 [-50,50] 0

10 [-50,50] 0

30 [-50,50] 0

(Continued)
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Table 2. (Continued)

No. Function Name Test Function Dimension Search Space Optimal Solution

F11 Bent Cigar f ðxÞ ¼ x2
1
þ 106

Xn

i¼2
x2
i

2 [-50,50] 0

5 [-50,50] 0

10 [-50,50] 0

30 [-50,50] 0

F12 Sumsquares-2 f xð Þ ¼
Pn

i¼1
ix2

i 2 [-50,50] 0

5 [-50,50] 0

10 [-50,50] 0

30 [-50,50] 0

https://doi.org/10.1371/journal.pone.0254239.t002

Fig 2. F1 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g002

Fig 3. F2 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g003
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is 260, PSO happens when the number of iteration is around 150, β-GWO is about 950, and

the convergence of GWO happens when the number of iteration is around 900. From Fig 2, it

can be found that the fitness of ACO decreases at the first half of iterations, and in oscillation

process at the latter half, which means it can not converge. Moreover, we can see that our pro-

posed algorithms can achieve the smallest fitness value, compared to other algorithms.

Fig 3 demonstrates that the convergence of OGL-WPA happens when the number of itera-

tions is 800, WOA happens when the number of iteration is 20, LSHADE is 230, the conver-

gence of PSO happens when the number of iteration is around 200. We can also see that

fitness values of β-GWO and GWO decrease with increasing number of iteration. Although

the whole processes of them are both smooth, they can not reach convergence at all. Moreover,

for the ACO algorithm, we can see that its fitness value decreases and increases with increasing

the number of iterations, demonstrating its poor performance in terms of convergence.

Fig 4. F3 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g004

Fig 5. F4 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g005
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Fig 4 shows that the convergence of OGL-WPA happens when the number of iterations is

about 50, WOA is 10, LSHADE is about 80, the convergence of PSO happens when the num-

ber of iteration is about 180, the convergence of β-GWO happens when the number of itera-

tion is about 900, the convergence of GWO happens when the number of iteration is 760.

Similar to previous results, the fitness value of ACO decreases and increases with increasing

the number of iterations, which means that it cannot converge in a well way. Compared to the

fitness values of all the algorithms, it can be seen that the proposed OGL-WPA can actually

achieve the best performance for the optimization problem.

Fig 5 shows that the convergence of OGL-WPA happens when the number of iterations is

about 350. Moreover, the convergence of WOA happens when the number of iteration is 10,

LSHADE is 210, PSO is about 150. It also shows that the descending trend of β-GWO and

GWO increases with increasing the numbers of iterations, and finally their fitness values can

Fig 6. F5 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g006

Fig 7. F6 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g007
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reach a fix point. Similar to the results above, ACO cannot converge well, and our proposed

method can get a smallest fitness value for the test function, compared to all other algorithms.

Fig 6 shows that the convergence of OGL-WPA happens when the number of iterations is

about 100. Moreover, WOA convergences when the number of iteration is 10, LSHADE is

220, the convergence of PSO achieves at the beginning of iteration. The results also show the

overall descending trend of β-GWO and GWO appear with the number of iterations increase,

then the whole processes of them are smooth.

Fig 7 shows that the convergence of OGL-WPA happens when the number of iterations is

780. The convergence of WOA is around 300, LSHADE is 230 and the convergence of PSO

happens when the number of iteration is around 200. It also shows that the overall descending

trend of β-GWO and GWO first appears with the increased number of iterations, and then the

whole process goes to a smooth status. From Fig 7 it can be also found that the convergence of

Fig 8. F7 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g008

Fig 9. F8 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g009
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ACO decreases before the number of iterations is 100, and then the whole process is in oscilla-

tion with the increased number of iterations, which means it cannot converge well.

Fig 8 shows that the convergence of OGL-WPA happens when the number of iterations is

around 400, WOA is around 20, LSHADE is 230, the convergence of PSO happens when the

number of iteration is around 190. It also shows the β-GWO and GWO decrease with the

number of iterations increase. The whole processes of them are smooth, but they can not reach

convergence at all. The ACO alongs with the increase of the number of iterations, but the

whole process is in oscillation causing convergence can not be reached.

Fig 9 shows that the convergence of OGL-WPA happens when the number of iterations is

around 100, WOA is 10, LSHADE is 220, the convergence of PSO happens when the number

of iteration is around 200. It also shows the β-GWO and GWO decrease with the increased

Fig 10. F9 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g010

Fig 11. F10 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g011
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number of iterations. The whole processes of them are smooth, but they can not reach conver-

gence at all. It can be found that the ACO achieves convergence directly.

Fig 10 shows that the convergence of OGL-WPA happens when the number of iterations is

around 450. In comparison, the convergence of WOA happens when the number of iteration

is 10, LSHADE is 10, the convergence of PSO happens almost at the beginning. It also shows

that the β-GWO and GWO decrease with the number of iterations increase. The whole pro-

cesses of them are smooth, but they cannot reach convergence at all. Moreover, from the

results, we can see that the ACO is in the status of oscillation with increasing the number of

iterations, which means it cannot converge neither. In contrast, our algorithm can achieve the

smallest fitness value in a quick way, demonstrating its strong capability in solving the optimi-

zation problems similar to the test function 9.

Fig 11 shows that that the convergence of OGL-WPA happens when the number of itera-

tions is around 50, WOA is 50, LSHADE is 210, and the convergence of PSO happens when

Fig 12. F11 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g012

Fig 13. F12 iteration curve.

https://doi.org/10.1371/journal.pone.0254239.g013
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the number of iteration is around 200. It also shows the β-GWO and GWO decrease with the

increased number of iterations, but they cannot reach convergence in a good way. Moreover,

the ACO appears the decreasing trend when the number of iterations is about 200, and then it

goes into the oscillation status, which demonstrates its poor performance in converge again.

Fig 12 shows that the convergence of OGL-WPA happens when the number of iterations is

around 900, WOA is 10, LSHADE is 250, and PSO happens when the number of iteration is

200. Moreover, the convergence of β-GWO happens when the number of iteration is about

650. The ACO is in the status of oscillation in the whole process, which means it cannot con-

verge. In addition, we can see that our algorithm can get the best fitness value again, compared

to other approaches.

Fig 13 shows that the convergence of OGL-WPA happens when the number of iterations is

around 900, WOA is 10, LSHADE is 220, PSO is 180. Moreover, the convergence of β-GWO

happens when the number of iteration is about 900. Again, the ACO is in the oscillation status

with increasing the number of iterations, demonstrating a poor convergence performance.

Although the LSHADE can achieve the best performance in terms of fitness values, our

method can get the second best result.

Generally, from the results reported in Figs 2–11 above, we can see that PSO is better than

OGL-WPA on the convergence speed in functions F1, F2, F4, F5, F6, F7, F9, F10, F11 and F12.

Table 3. Computational time of each algorithm—Part I.

Algo. Dim. F1 F2 F3 F4 F5 F6

OGL-WPA 2 1.424 2.036 2.39 1.287 1.507 1.204

5 2.647 4.038 8.249 2.742 6.084 3.137

10 4.863 7.81 26.695 5.396 13.011 4.96

30 15.95 27.58 236.85 18.159 75.258 17.927

ACO 2 0.289 0.367 0.611 0.284 0.325 0.228

5 0.646 0.717 1.382 0.629 1.119 0.595

10 1.239 1.387 3.858 1.27 1.921 1.672

30 3.361 3.715 22.7 3.994 8.2 3.702

PSO 2 0.192 0.172 0.279 0.161 0.21 0.148

5 0.359 0.346 0.807 0.338 0.527 0.397

10 0.995 0.99 2.484 0.683 1.176 0.732

30 2.247 2.711 16.536 1.931 5.198 1.923

GWO 2 0.255 0.206 0.302 0.191 0.34 0.223

5 0.521 0.545 1.005 0.536 0.694 0.531

10 1.098 1.239 2.908 1.198 1.619 1.174

30 4.475 4.778 19.29 4.782 7.936 4.793

BETAGWO 2 0.734 1.083 1.156 0.783 0.808 0.924

5 4.153 4.139 5.847 4.004 4.605 4.198

10 12.582 12.176 14.755 13.709 15.659 14.997

30 103.31 104.15 126.333 102.097 113.266 145.464

WOA 2 1.050 1.518 1.564 0.954 1.308 1.143

5 5.103 4.826 6.885 5.090 5.877 5.560

10 16.386 15.248 18.926 17.426 22.179 17.885

30 134.963 150.652 188.610 147.939 135.533 161.436

LSHADE 2 2.304 2.693 3.02 1.975 2.64 2.337

5 13.057 10.409 17.162 11.368 13.144 14.673

10 32.532 34.434 40.815 40.94 37.705 39.829

30 294.629 339.91 397.47 320.735 296.749 442.459

https://doi.org/10.1371/journal.pone.0254239.t003
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However, the fitness value of PSO is obviously lower than OGL-WPA. Moreover, GWO and

β-GWO have done improvements on WPA, but they always perform worse than OGL-WPA

in all the functions. In the meantime, WOA and LSHADE have done improvements on WPA,

but they always perform worse than OGL-WPA in all the functions except F2, F6, F7, F12. Spe-

cifically, our proposed method can always converge well and can also achieve a good result for

all the 12 test functions, demonstrating its advantages in processing different optimization

problems.

Table 4. Computational time of each algorithm—Part II.

Algo. Dim. F7 F8 F9 F10 F11 F12

OGL-WPA 2 2.148 1.689 1.042 2.667 1.245 3.241

5 4.913 3.52 2.558 9.843 4.544 11.542

10 9.577 7.297 6.31 26.326 12.883 33.248

30 38.945 31.309 33.09 173.54 72.544 157.541

ACO 2 0.29 0.435 0.466 1.071 0.978 1.921

5 0.762 1.046 0.954 3.532 2.722 4.581

10 1.345 1.83 1.589 9.227 7.821 12.441

30 4.721 6.104 5.674 74.516 45.548 73.954

PSO 2 0.258 0.252 0.23 0.648 0.712 0.821

5 0.487 0.526 0.464 2.012 2.124 2.459

10 0.791 1.127 0.976 6.464 5.887 7.241

30 2.481 3.484 3.059 52.312 40.814 55.631

GWO 2 0.214 0.289 0.229 0.67 0.692 0.721

5 0.589 0.771 0.64 2.259 2.315 2.812

10 1.3 1.645 1.379 6.668 6.887 7.354

30 5.224 6.05 5.605 50.534 51.527 58.972

BETAGWO 2 0.997 0.995 0.954 1.397 1.548 1.821

5 4.118 4.115 3.976 5.468 5.955 7.0581

10 14.669 14.315 14.208 19.591 21.763 24.542

30 139.55 123.03 106.73 154.03 167.821 182.972

WOA 2 1.382 1.506 1.326 1.745 2.125 2.265

5 5.655 5.494 4.766 8.533 8.359 8.853

10 18.894 20.534 18.855 26.028 29.083 29.670

30 195.772 193.093 113.920 240.921 214.840 210.727

LSHADE 2 2.767 2.415 3.083 3.635 4.476 5.527

5 12.69 12.214 11.58 16.552 14.888 25.139

10 38.338 39.793 41.004 60.072 54.519 64.823

30 339.547 341.349 350.002 425.281 479.914 527.511

https://doi.org/10.1371/journal.pone.0254239.t004

Table 5. Analysis of Wilcoxon statistical test results.

Algorithm R+ R- P-value

OGL-WPA vs ACO 335 56 0.0012

OGL-WPA vs PSO 204 75 0.0505

OGL-WPA vs GWO 178 98.5 0.2022

OGL-WPA vs BETAGWO 133 125 0.8596

OGL-WPA vs WOA 144 115 0.4391

OGL-WPA vs LSHADE 107 105 0.9773

https://doi.org/10.1371/journal.pone.0254239.t005
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Tables 3 and 4 report the running time of each algorithm in the presence of the 12 test func-

tions. From the results there, we can see that the computational time of the proposed algorithm

in this paper is generally longer than the simple algoritihm, such as ACO, PSO, GWO. How-

ever, it can converge well and always get a better fitness value. On the other hand, compared to

the advanced algorithsm such as BETAGWO, WOA and LSHADE, the computational over-

head of our algorithm is generally samller. In addition, we also have performed statistical anal-

ysis of our results and reported the results in Table 5. There, we have used the Wilcoxon test,

and the R+ and R- [44] represent the maximum and minimum sum ranks, respectively. The

parameters of Wilcoxon test are set to 0.01 and 0.05. From the results presented there, we can

see that in all cases, the R+ value provided by OGL-WPA is higher than R-. Therefore, we can

say that OGL-WPA can indeed achieve a better performance in generally, compared to other

methods.

6 Conclusion

In this paper, we have proposed an improved WPA approach called OGL-WPA. Specifically,

we focus on leveraging the existing intelligent techniques, i.e., Opposition-based learning,

Genetic algorithm and Levy’s flight, to handle the issues in WPA (e.g., popular initialization,

local optimum and convergence speed). To the best of our knowledge, this is the first work on

how to improve the WPA in a comprehensive way. We have given the detailed design and

implementation of OGL-WPA. Moreover, we also have compared our approach with some

other swarm intelligent algorithms over different test functions with extensive experiments.

Our experimental results have shown that the proposed OGL-WPA has better global search

and local search capability, especially in the cases for multi-peak and high-dimensional

functions.

Supporting information

S1 Appendix. Additional experimental results. The results about the comparison of different

dimensions are available at 10.5281/zenodo.5109519.
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