
Multiscale Reweighted Stochastic Embedding: Deep Learning of
Collective Variables for Enhanced Sampling
Jakub Rydzewski* and Omar Valsson*

Cite This: J. Phys. Chem. A 2021, 125, 6286−6302 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Machine learning methods provide a general framework
for automatically finding and representing the essential characteristics of
simulation data. This task is particularly crucial in enhanced sampling
simulations. There we seek a few generalized degrees of freedom,
referred to as collective variables (CVs), to represent and drive the
sampling of the free energy landscape. In theory, these CVs should
separate different metastable states and correspond to the slow degrees
of freedom of the studied physical process. To this aim, we propose a
new method that we call multiscale reweighted stochastic embedding
(MRSE). Our work builds upon a parametric version of stochastic
neighbor embedding. The technique automatically learns CVs that map
a high-dimensional feature space to a low-dimensional latent space via a deep neural network. We introduce several new
advancements to stochastic neighbor embedding methods that make MRSE especially suitable for enhanced sampling simulations:
(1) weight-tempered random sampling as a landmark selection scheme to obtain training data sets that strike a balance between
equilibrium representation and capturing important metastable states lying higher in free energy; (2) a multiscale representation of
the high-dimensional feature space via a Gaussian mixture probability model; and (3) a reweighting procedure to account for
training data from a biased probability distribution. We show that MRSE constructs low-dimensional CVs that can correctly
characterize the different metastable states in three model systems: the Müller-Brown potential, alanine dipeptide, and alanine
tetrapeptide.

1. INTRODUCTION
Modeling the long-timescale behavior of complex dynamical
systems is a fundamental task in the physical sciences. In
principle, molecular dynamics (MD) simulations allow us to
probe the spatiotemporal details of molecular processes, but the
so-called sampling problem severely limits their usefulness in
practice. This sampling problem comes from the fact that a
typical free energy landscape consists of many metastable states
separated by free energy barriers much higher than the thermal
energy kBT. Therefore, on the timescale one can simulate,
barrier crossings are rare events, and the system remains
kinetically trapped in a single metastable state.
One way to alleviate the sampling problem is to employ

enhanced sampling methods.1,2 In particular, one class of such
methods works by identifying a few critical slow degrees of
freedom, commonly referred to as collective variables (CVs),
and then enhancing their fluctuations by introducing an external
bias potential.2−4 The performance of CV-based enhanced
sampling methods depends heavily on the quality of the CVs.
Effective CVs should discriminate between the relevant
metastable states and include most of the slow degrees of
freedom.5 Typically, the CVs are selected manually by using
physical and chemical intuition. Within the enhanced sampling
community, numerous generally applicable CVs1,6,7 have been
developed and implemented in open-source codes.8−10

However, despite immense progress in devising CVs, it may
be far from trivial to find a set of CVs that quantify all the
essential characteristics of a molecular system.
Machine learning (ML) techniques, in particular dimension-

ality reduction or representation learning methods,11,12 provide
a possible solution to this problem by automatically finding or
constructing the CVs directly from the simulation data.13−16

Such dimensionality reduction methods typically work in a high-
dimensional feature space (e.g., distances, dihedral angles, or
more intricate functions17−19) instead of directly using the
microscopic coordinates, as this is much more efficient.
Dimensionality reduction may employ linear or nonlinear
transformations, for example, diffusion map,20−23 stochastic
neighbor embedding (SNE),24−26 sketch-map,27,28 and
UMAP.29 In the recent years, there has been a growing interest
in performing nonlinear dimensionality reduction with deep
neural networks (NNs) to provide parametric embeddings.
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Inspired by the seminal work of Ma and Dinner,30 several such
techniques recently applied to finding CVs include variational
autoencoders,31−34 time-lagged autoencoders,35 symplectic
flows,36 stochastic kinetic embedding,37 and encoder map.38

This work proposes a novel technique called multiscale
reweighted stochastic embedding (MRSE) that unifies
dimensionality reduction via deep NNs and enhanced sampling
methods. The method constructs a low-dimensional represen-
tation of CVs by learning a parametric embedding from a high-
dimensional feature space to a low-dimensional latent space.
Our work builds upon various SNE methods.24−26,39 We
introduce several new aspects to SNE that makes MRSE
particularly suitable for enhanced sampling simulations:

1. Weight-tempered random sampling as a landmark
selection scheme to obtain training data sets that strike
a balance between equilibrium representation and
capturing important metastable states lying higher in
free energy.

2. Multiscale representation of the high-dimensional feature
space via a Gaussian mixture probability model.

3. Reweighting procedure to account for the sampling of the
training data from a biased probability distribution.

We note that the overall objective of our research is to employ
MRSE within an enhanced sampling scheme and improve the
learned CVs iteratively. However, we focus mainly on the
learning procedure for training data from enhanced sampling
simulations in this work. Therefore, to eliminate the influence of
possible incomplete sampling, we employ idealistic sampling
conditions that are generally not achievable in practice.40 To
gauge the performance of the learning procedure and the quality
of the resulting embeddings, we apply MRSE to three model
systems (the Müller-Brown potential, alanine dipeptide, and
alanine tetrapeptide) and provide a thorough analysis of the
results.

2. METHODS
2.1. CV-Based Enhanced Sampling. We start by giving a

theoretical background on CV-based enhanced sampling
methods. We consider a molecular system, described by
microscopic coordinates R and a potential energy function
U(R), which we want to study using MD or Monte Carlo
simulations. Without loss of generality, we limit our discussion
to the canonical ensemble (NVT). At equilibrium, the
microscopic coordinates follow the Boltzmann distribution,
P(R) = e−βU(R)/∫ dR e−βU(R), where β = (kBT)

−1 is the inverse of
the thermal energy.
In CV-based enhanced sampling methods, we identify a small

set of coarse-grained order parameters that correspond to the
essential slow degrees of freedom, referred to as CVs. The CVs
are defined as s(R) = [s1(R), s2(R),..., sd(R)], where d is the
number of CVs (i.e., the dimension of the CV space), and the
dependence on R can be either explicit or implicit. Having
defined the CVs, we obtain their equilibrium marginal
distribution by integrating out all other degrees of freedom

∫ δ= [ − ]P Ps R s s R R( ) d ( ) ( )
(1)

where δ[·] is the Dirac delta function. The integral in eq 1 is
equivalent to ⟨δ[s − s(R)]⟩, where ⟨·⟩ denotes an ensemble
average. Up to an unimportant constant, the free energy surface
(FES) is given by F(s) = −β−1 log P(s). In systems plagued by
sampling problems, the FES consists of many metastable states

separated by free energy barriers much larger than the thermal
energy kBT. Therefore, on the timescales we can simulate, the
system stays kinetically trapped and is unable to explore the full
CV space. In other words, barrier crossings between metastable
states are rare events.
CV-based enhanced sampling methods overcome the

sampling problem by introducing an external bias potential
V(s(R)) acting in CV space. This leads to sampling according to
a biased distribution
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We can trace this idea of non-Boltzmann sampling back to the
seminal work by Torrie and Valleau published in 1977.41 Most
CV-based methods adaptively construct the bias potential on-
the-fly during the simulation to reduce free energy barriers or
even completely flatten them. At convergence, the CVs follow a
biased distribution
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that is easier to sample. CV-based methods differ in how they
construct the bias potential and which kind of biased CV
sampling they obtain at convergence. A non-exhaustive list of
modern CV-based enhanced sampling techniques includes
multiple windows umbrella sampling,42 adaptive biasing
force,43−45 Gaussian-mixture umbrella sampling,46 metadynam-
ics,2,47,48 variationally enhanced sampling,49,50 on-the-fly
probability-enhanced sampling,51,52 and ATLAS.53 In the
following, we focus on well-tempered metadynamics (WT-
MetaD).2,48 However, we can use MRSE with almost any CV-
based enhanced sampling approach.
In WT-MetaD, the time-dependent bias potential is

constructed by periodically depositing repulsive Gaussian
kernels at the current location in CV space. Based on the
previously deposited bias, the Gaussian height is scaled such that
it gradually decreases over time.48 In the long-time limit, the
Gaussian height goes to zero. As has been proven,54 the bias
potential at convergence is related to the free energy by

γ
→ ∞ = − −
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k
jjjj
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and we obtain a so-called well-tempered distribution for the CVs
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where γ > 1 is a parameter called bias factor that determines how
much we enhance CV fluctuations. The limit γ→ 1 corresponds
to the unbiased ensemble, while the limit γ→∞ corresponds to
conventional (non-well-tempered) metadynamics.47 If we take
the logarithm of both sides of eq 5, we can see that sampling the
well-tempered distribution is equivalent to sampling an effective
FES, Fγ(s) = F(s)/γ, where the barriers of the original FES are
reduced by a factor of γ. In general, one should select a bias factor
γ such that effective free energy barriers are on the order of the
thermal energy kBT.
Due to the external bias potential, each microscopic

configuration R carries an additional statistical weight w(R)
that needs to be taken into account when calculating equilibrium

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.1c02869
J. Phys. Chem. A 2021, 125, 6286−6302

6287

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.1c02869?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


properties. For a static bias potential, the weight is time-
independent and given by w(R) = eβV(s(R)). In WT-MetaD,
however, we need to take into account the time dependence of
the bias potential, and thus, the weight is modified in the
following way

β= [ ̃ ]w t V tR s R( , ) exp ( ( ), ) (6)

where Ṽ(s(R), t) = V(s(R), t)− c(t) is the relative bias potential
modified by introducing c(t), a time-dependent constant that
can be calculated from the bias potential at time t as2,55
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There are also other ways to reweight WT-MetaD
simulations.56−59

InMD simulations, we do not only need to know the values of
theCVs but also their derivatives with respect to themicroscopic
coordinates,∇Rs(R). The derivatives are needed to calculate the
biasing force −∇RV(s(R)) = −∂sV(s)·∇Rs(R). In practice,
however, the CVs might not depend directly on R, but rather
indirectly through a set of some other input variables (e.g.,
features). We can even define a CV that is a chain of multiple
variables that depend sequentially on each other. In such cases, it
is sufficient to know the derivatives of the CVs with respect to
the input variables, as we can obtain the total derivatives via the
chain rule. In codes implementing CVs and enhanced sampling
methods,8−10 like PLUMED,9,60 the handling of the chain rule is
done automatically. Thus, when implementing a new CV, we
only need to calculate its values and derivatives with respect to
the input variables.
Having provided the basics of CV-based enhanced sampling

simulations, we now introduce our method for learning CVs.
2.2. Multiscale Reweighted Stochastic Embedding.

The basis of our method is the t-distributed variant of stochastic
neighbor embedding (t-SNE),25 a dimensionality reduction
algorithm for visualizing high-dimensional data, for instance,
generated by unbiasedMD simulations.61−64 We introduce here
a parametric and multiscale variant of SNE aimed at learning
CVs from atomistic simulations. In particular, we focus on using
the method within enhanced sampling simulations, where we
need to consider biased simulation data. We refer to this method
as MRSE.
We consider a high-dimensional feature space, x = [x1,..., xk],

of dimension k. The features could be distances, dihedral angles,
or some more complex functions,17−19 which depend on the
microscopic coordinates. We introduce a parametric embedding
function fθ(x) = s(x) that depends on parameters, θ, tomap from
the high-dimensional feature space to the low-dimensional
latent space (i.e., the CV space), s = [s1,..., sd], of dimension d.
From a molecular simulation, we collect N observations (or
simply samples) of the features, [x1,...,xN]

T, that we use as
training data. Using these definitions, the problem of finding a
low-dimensional set of CVs amounts to using the training data to
find an optimal parametrization for the embedding function
given a nonlinear ML model. We can then use the embedding as
CVs and project any point in feature space to CV space.
In SNE methods, this problem is approached by taking the

training data andmodeling the pairwise probability distributions
for distances in the feature and latent space. To establish the
notation, we write the pairwise probability distributions as M =
(pij) and Q = (qij), where 1 ≤ i, j ≤ N, for the feature and the

latent space, respectively. For the pairwise probability
distribution M (Q), the interpretation of a single element pij
(qij) is that higher the value, higher is the probability of picking xj
(sj) as a neighbor of xi (si). The mapping from the feature space
to the latent space is then varied by adjusting the parameters θ to
minimize a loss function that measures the statistical difference
between the two pairwise probability distributions. In the
following, we explicitly introduce the pairwise probability
distributions and the loss function used in MRSE.

2.2.1. Feature Pairwise Probability Distribution.We model
the feature pairwise probability distribution for a pair of samples
xi and xj from the training data as a discrete Gaussian mixture.
Each term in the mixture is a Gaussian kernel

ε= − || − ||εK x x x x( , ) exp( )i j i i j 2
2

i (8)

that is characterized by a scale parameter εi associated to feature
sample xi. A scale parameter is defined as εi = 1/(2σi

2), where σi is
the standard deviation (i.e., bandwidth) of the Gaussian kernel.
Because εi ≠ εj, the kernels are not symmetric. To measure the
distance between data points, we employ the Euclidean distance
∥·∥2 as an appropriate metric for representing high-dimensional
data on a low-dimensional manifold.65 Then, a pair xi and xj of
points close to each other, as measured by the Euclidean
distance, has a high probability of being neighbors.
For training data obtained from an enhanced sampling

simulation, we need to correct the feature pairwise probability
distribution because each feature sample x has an associated
statistical weight w(x). To this aim, we introduce a reweighted
Gaussian kernel as

̃ =ε εK r Kx x x x x x( , ) ( , ) ( , )i j i j i ji i (9)

where r(xi,xj) = w wx x( ) ( )i j is a pairwise reweighting factor. As

noted previously, the exact expression for the weights depends
on the enhanced sampling method used. For training data from
an unbiased simulation, or if we do not incorporate the weights
into the training, all the weights are equal to one and r(xi, xj)≡ 1
for 1 ≤ i, j ≤ N.
A reweighted pairwise probability distribution for the feature

space is then written as

= =
̃

∑ ̃
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ε ε
≤ ≤p p
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x x

x x
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( , )ij i j N ij
i j

k i k
1 ,

i
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with pii
ε = 0. This equation represents the reweighted pairwise

probability of features xi and xj for a given set of scale parameters
ε = [ε1, ε2,..., εN], where each scale parameter is assigned to a row
of the matrix P. The pairwise probabilities pij

ε are not symmetric
due to the different values of the scale parameters (εi ≠ εj),
which is in contrast to t-SNE, where the symmetry of the feature
pairwise probability distribution is enforced.25

As explained in Section 2.2.3 below, the multiscale feature
pairwise probability distribution M is written as a mixture of
such pairwise probability distributions, each with a different set
of scale parameters. In the next section, we describe how to
calculate the scale parameters for the probability distribution
given by eq 10.

2.2.2. Entropy of the Reweighted Feature Probability
Distribution. The scale parameters ε used for the reweighted
Gaussian kernels in eq 10 are positive scaling factors that need to
be optimized to obtain a proper density estimation of the
underlying data. We have that εi = 1/(2σi

2), where σi is the
standard deviation (i.e., bandwidth) of the Gaussian kernel.
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Therefore, we want a smaller σi in dense regions and a larger σi in
sparse regions. To achieve this task, we define the Shannon
entropy of the ith Gaussian probability as

∑= − ε εH p px( ) logi ij
j

ij
i i

(11)

where the term pij
εi refers to matrix elements from the ith row of P

as eq 11 is solved for each row independently. We can write
= ̃ε

ε̅
p K x x( , )ij p i j

1i

i
i

, where = ∑ ̃εp K x x( , )i k i ki
is a row-wise

normalization constant.
Inserting pij

εi from eq 10 leads to the following expression
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where HV(xi) is a correction term due to the reweighting factor
r(xi, xj) introduced in eq 9. The reweighting factor is included
also in the other two terms through K̃εi(xi,xj). For weights of the
exponential form, like in WT-MetaD (eq 6), we have w(xi) =
eβV(xi), and the correction term HV(xi) further reduces to

∑β= −
̅

̃ +ε

i

k

jjjjjjj
y
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zzzzzzzH
p
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1
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For the derivation of eqs 12 and 13, see Section S1 in
Supporting Information.
For an unbiased simulation, or if we do not incorporate the

weights into the training, is r(xi, xj) ≡ 1 for 1 ≤ i, j ≤ N and the
correction term HV(xi) vanishes. Equation 12 then becomes

= ̅ + ∑ || − ||ε
ε̅

H p Kx x x x x( ) log ( , )i i p j i j i j 2
2i

i
i

.

We use eq 12 to define an objective function for an
optimization procedure that fits the Gaussian kernel to the
data by adjusting the scale parameter so that H(xi) is
approximately log2PP (i.e., minεi[H(xi) − log2PP]). Here PP is
a model parameter that represents the perplexity of a discrete
probability distribution. Perplexity is defined as an exponential
of the Shannon entropy, PP = 2H, and measures the quality of
predictions for a probability distribution.66 We can view the
perplexity as the effective number of neighbors in a
manifold.25,26 To find the optimal values of the scale parameters,
we perform the optimization using a binary search separately for
each row of P (eq 10).
2.2.3. Multiscale Representation. As suggested in the work

of Hinton and Roweis,24 the feature probability distribution can
be extended to a mixture, as done in refs 67−69. To this aim, for
a given value of the perplexity PP, we find the optimal set of scale
parameters εPP using eq 12. We do this for multiple values of the
perplexity, PPl = 2LPP−l+1, where l goes from 0 to LPP = ⌊logN⌋ −
2, and N is the size of the training data set. We then write the
probabilities pij as an average over the different reweighted
feature pairwise probability distributions

∑= = ε
≤ ≤

=

p p
N

pM ( ) and
1

ij i j N ij
PP l

L

ij1 ,
0

PP PP l

(14)

where NPP is the number of perplexities. Therefore, by taking pij
as a Gaussian mixture over different perplexities, we obtain a

multiscale representation of the feature probability distribution
M, without the need of setting perplexity by the user.

2.2.4. Latent Pairwise Probability Distribution. A known
issue in many dimensionality reduction methods, including
SNE, is the so-called “crowding problem”,24,70 which is caused
partly by the curse of dimensionality.71 In the context of
enhanced sampling, the crowding problem would lead to the
definition of CVs that inadequately discriminate between
metastable states due to highly localized kernel functions in
the latent space. As shown in Figure 1, if we change from a

Gaussian kernel to a more heavy-tailed kernel for the latent
space probability distribution, like a t-distribution kernel, we
enforce that close-by data points are grouped while far-away data
points are separated.
Therefore, for the pairwise probability distribution in the

latent space, we use a one-dimensional heavy-tailed t-
distribution, which is the same as in t-SNE. We set

= =
+ || − ||

∑ + || − ||≤ ≤

−

−q qQ
s s

s s
( ) and

(1 )

(1 )ij i j N ij
i j

k i k
1 ,

2
2 1

2
2 1

(15)

where qii = 0 and the latent variables (i.e., the CVs) are obtained
via the embedding function; for example, si = fθ(xi).

2.2.5. Minimization of Loss Function. For the loss function
to be minimized during the training procedure, we use the KL
divergence DKL(M||Q) to measure the statistical distance
between the pairwise probability distributions M and Q.72

The loss function L for a data batch is defined as

∑ ∑|| =
= =

≠

i
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jjjjjjj
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1
log

i

N

i
i j

N

ij
ij

ij
KL

b 1 1

b b

(16)

where DKL(M||Q) ≥ 0 with equality only when M = Q, and we
split the training data into B batches of size Nb. We show the
derivation of the loss function for the full set of N training data
points in Section S2 in Supporting Information.
For the parametric embedding function fθ(x), we employ a

deep NN (see Figure 2). After minimizing the loss function, we
can use the parametric NN embedding function to project any
given point in feature space to the latent space without rerunning
the training procedure. Therefore, we can use the embedding as

Figure 1. Schematic representation depicting how MRSE (and t-SNE)
preserves the local structure of high-dimensional data. The pairwise
probability distributions are represented by Gaussian kernels in the
high-dimensional feature space and by the t-distribution kernels in the
low-dimensional latent space. The minimization of the Kullback−
Leibler (KL) divergence between the pairwise probability distributions
enforces similar feature samples close to each other and separates
dissimilar feature samples in the latent space. As the difference between
the distributions fulfillsΔ′ >Δ, MRSE is likely to group close-by points
into metastable states that are well separated.
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CVs, s(x) = fθ(x). The derivatives of fθ(x) with respect to x are
obtained using backpropagation. Using the chain rule, we can
then calculate the derivatives of s(x) with respect to the
microscopic coordinates R, which is needed to calculate the
biasing force in an enhanced sampling simulation.
2.3. Weight-Tempered Random Sampling of Land-

marks. A common way to reduce the size of a training set is to
employ a landmark selection scheme before performing a
dimensionality reduction.73−76 The idea is to select a subset of
the feature samples (i.e., landmarks) representing the underlying
characteristics of the simulation data.
We can achieve this by selecting the landmarks randomly or

with some given frequency in an unbiased simulation. If the
unbiased simulation has sufficiently sampled phase space or if we
use an enhanced sampling method that preserves the
equilibrium distribution, like parallel tempering (PT),77 the
landmarks represent the equilibrium Boltzmann distribution.
However, such a selection of landmarks might give an
inadequate representation of transient metastable states lying
higher in free energy, as they are rarely observed in unbiased
simulations sampling the equilibrium distribution.
For simulation data resulting from an enhanced sampling

simulation, we need to account for sampling from a biased
distribution when selecting the landmarks. Thus, we take the
statistical weights w(R) into account within the landmark
selection scheme. Ideally, we want the landmarks obtained from
the biased simulation to strike a balance between an equilibrium
representation and capturing higher-lying metastable states.
Inspired by well-tempered farthest-point sampling (WT-FPS)73

(see Section S3 in Supporting Information), we achieve this by
proposing a simple landmark selection scheme appropriate for
enhanced sampling simulations that we call weight-tempered
random sampling.
In weight-tempered random sampling, we start by modifying

the underlying data density by rescaling the statistical weights of
the feature samples as w(R) → [w(R)]1/α. Here, α ≥ 1 is a
tempering parameter similar in a spirit to the bias factor γ in the
well-tempered distribution (eq 5). Next, we randomly sample
landmarks according to the rescaled weights. This procedure
results in landmarks distributed according to the following
probability distribution
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which we can rewrite as a biased ensemble average
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Similar weight transformations have been used for treating
weights degeneracy in importance sampling.78

For α = 1, we recover weighted random sampling,79 where we
sample landmarks according to their unscaled weights w(R). As
we can see from eq 17, this should, in principle, give an
equilibrium representation of landmarks, Pα=1(x) = P(x). By
employing α > 1, we gradually start to ignore the underlying
weights when sampling the landmarks and enhance the
representation of metastable states lying higher in free energy.
In the limit of α→∞, we ignore the weights (i.e., all are equal to
unity) and sample the landmarks randomly so that their
distribution should be equal to the biased feature distribution
sampled under the influence of the bias potential, Pα→∞(x) =
PV(x). Therefore, the tempering parameter α allows us to tune
the landmark selection between these two limits of equilibrium
and biased representation. Using α > 1 that is not too large, we
can obtain a landmark selection that makes a trade-off between
an equilibrium representation and capturing higher-lying
metastable states.
To understand better the effect of the tempering parameter α,

we can look at how the landmarks are distributed in the space of
the biased CVs for the well-tempered case (eq 5). As shown in
Section S4 in Supporting Information, we obtain
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where we introduce an effective tempering parameter α̃ as
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that is unity for α = 1 and goes to γ in the limit α→∞. Thus, the
effect of α is to broaden the CV distribution of the selected
landmarks. In Figure 3, we show how the effective tempering
parameter α̃ depends on α for typical bias factor values γ.
The effect of α on the landmark feature distribution Pα(x) is

harder to gauge as we cannot write the biased feature
distribution PV(x) as a closed-form expression. In particular,
for the well-tempered case, PV(x) is not given by ∝ [P(x)]1/γ, as

Figure 2. NN used to model the parametric embedding function fθ(x).
The input features x, dim(x) = k are fed into the NN to generate the
output CVs s, dim(s) = d. The parameters θ represent the weights and
biases of NN. The input layer is shown in blue, and the output layer is
depicted in red. The hidden layers (gray) use dropout and leaky ReLU
activations.

Figure 3. Effective tempering parameter α̃ in the weight-tempered
random sampling landmark selection scheme.
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the features are generally not fully correlated to the biased
CVs.80 The correlation of the features with biased CVs will vary
greatly, also within the selected feature set. For features
uncorrelated to the biased CVs, the biased distribution is nearly
the same as the unbiased distribution. Consequently, the effect
of tempering parameter α for a given feature will depend on the
correlation with the biased CVs. In Section 4.2, we will show
examples of this issue.
2.4. Implementation. We implement the MRSE method

and the weight-tempered random sampling landmark selection
method in an additional module called LowLearner in a
development version (2.7.0-dev) of the open-source PLUMED

9,60

enhanced sampling plugin. The implementation is available
openly at Zenodo81 (DOI: 10.5281/zenodo.4756093) and from
the PLUMED NEST60 under plumID:21.023 at https://www.
plumed-nest.org/eggs/21/023/. We use the LibTorch82 library
(PyTorch C++ API, git commit 89d6e88 used to obtain the
results in this paper) that allows us to perform immediate
execution of dynamic tensor computations with automatic
differentiation.83

3. COMPUTATIONAL DETAILS

3.1. Model Systems. We consider three different model
systems to evaluate the performance of the MRSE approach: the
Müller-Brown Potential, alanine dipeptide, and alanine
tetrapeptide. We use WT-MetaD simulations to generate biased
simulation data sets used to train the MRSE embeddings for all
systems. We also run unbiased simulation data sets for alanine
di- and tetrapeptide by performing PT simulations that ensure
proper sampling of the equilibrium distribution.
3.1.1. Müller-Brown Potential.We consider the dynamics of

a single particle moving on the two-dimensional Müller-Brown

potential,84 = ∑U x y A e( , ) j j
p x y( , )j , where pj(x,y) = aj(x − x0,j)

2

+ bj(x − x0,j) (y − y0,j) + cj(y − y0,j)
2, x, y are the particle

coordinates and A, a, b, c, x0 and y0 are the parameters of the
potential given by A = (−40, −20, −34, 3), a = (−1, −1, 6.5,
0.7), b = (0, 0, 11, 0.6), c = (−10, −10, −6.5, −0.7), x0 = (1, 0,
−0.5, −1), and y0 = (0, 0.5, 1.5, 1). Note that the A parameters
are not the same as in ref 84 as we scale the potential to reduce
the height of the barrier by a factor of 5. The FES as a function of
the coordinates x and y is given directly by the potential, F(x, y)
=U(x, y). We employ rescaled units such that kB = 1. We use the
pesmd code from PLUMED

9,60 to simulate the system at a
temperature of T = 1 using a Langevin thermostat85 with a
friction coefficient of 10 and employ a time step of 0.005. At this
temperature, the potential has a barrier of around 20 kBT
between its two states and thus is a rare event system.
For the WT-MetaD simulations, we take x and y as CVs. We

use different bias factors values (3, 4, 5, and 7), an initial
Gaussian height of 1.2, a Gaussian width of 0.1 for both CVs, and
deposit Gaussians every 200 steps. We calculate c(t) (eq 7),
needed for the weights, every time a Gaussian is added using a
grid of 5002 over the domain [−5,5]2. We run the WT-MetaD
simulations for a total time of 2× 107 steps.We skip the first 20%
of the runs (up to step 4 × 106) to ensure that we avoid the
period at the beginning of the simulations where the weights
might be unreliable due to rapid changes of the bias potential.
For the remaining part, we normalize the weights such that they
lie in the range 0 to 1 to avoid numerical issues.
We employ features saved every 1600 steps for the landmark

selection data sets, yielding a total of 104 samples. From these
data sets, we then use weight-tempered random sampling with α

= 2 to select 2000 landmarks that we use as training data to
generate the MRSE embeddings.
For the embeddings, we use the coordinates x and y as input

features (k = 2), while the number of output CVs is also 2 (d =
2). We do not standardize or preprocess the input features.

3.1.2. Alanine Dipeptide. We perform alanine dipeptide
(Ace-Ala-Nme) simulations using the GROMACS 2019.2 code86

patched with a development version of the PLUMED plugin.9,60

We use the Amber99-SB force field87 and a time step of 2 fs. We
perform the simulations in the canonical ensemble using the
stochastic velocity rescaling thermostat88 with a relaxation time
of 0.1 fs. We constrain hydrogen bonds using LINCS.89 The
simulations are performed in vacuumwithout periodic boundary
conditions. We employ no cut-offs for electrostatic and non-
bonded van der Waals interactions.
We employ four replicas with temperatures distributed

geometrically in the range 300−800 K (300.0, 416.0, 576.9,
and 800.0 K) for the PT simulation. We attempt exchanges
between neighboring replicas every 10 ps. We run the PT
simulation for 100 ns per replica. We only use the 300 K replica
for analysis.
We perform the WT-MetaD simulations at 300 K using the

backbone dihedral anglesΦ andΨ as CVs and employ different
values for the bias factor (2, 3, 5, and 10). We use an initial
Gaussian height of 1.2 kJ/mol, a Gaussian width of 0.2 rad for
both CVs, and deposit Gaussians every 1 ps. We calculate c(t)
(eq 7) every time a Gaussian is added (i.e., every 1 ps)
employing a grid of 5002 over the domain [−π,π]2. We run the
WT-MetaD simulations for 100 ns. We skip the first 20 ns of the
runs (i.e., first 20%) to ensure that we avoid the period at the
beginning of the simulations where the weights might be
unreliable due to rapid changes in the bias potential. For the
remaining part, we normalize the weights such that they lie in the
range 0−1 to avoid numerical issues.
For the landmark selection data sets, we employ features saved

every 1 ps, which results in data sets of 8 × 104 and 1 × 105

samples for the WT-MetaD and PT simulations, respectively.
We select 4000 landmarks for the training from these data sets,
using weighted random sampling for the PT simulation and
weight-tempered random sampling for the WT-MetaD
simulations (α = 2 unless otherwise specified).
For the embeddings, we use 21 heavy atoms pairwise

distances as input features (k = 21) and the number of output
CVs as 2 (d = 2). To obtain an impartial selection of features, we
start with all 45 heavy-atom pairwise distances. Then, to avoid
unimportant features, we automatically check for low variance
features and remove all distances with a variance below 2 × 10−4

nm2 from the training set (see Section S9 in Supporting
Information). This procedure removes 24 distances and leaves
21 distances for the embeddings (both training and projections).
We standardize remaining distances individually such that their
mean is zero and their standard deviation is one.

3.1.3. Alanine Tetrapeptide. We perform simulations of
alanine tetrapeptide (Ace-Ala3-Nme) in vacuum using the
GROMACS 2019.2 code86 and a development version of the
PLUMED plugin.9,60 We use the sameMD setup and parameters as
for alanine dipeptide system, for example, the Amber99-SB force
field;87 see Section 3.1.2 for further details.
For the PT simulation, we employ eight replicas with

temperatures ranging from 300 to 1000 K according to a
geometric distribution (300.0, 356.4, 424.3, 502.6, 596.9, 708.9,
842.0, and 1000.0 K). We attempt exchanges between
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neighboring replicas every 10 ps. We simulate each replica for
100 ns. We only use the 300 K replica for analysis.
We perform the WT-MetaD simulation at 300 K using the

backbone dihedral angles Φ1, Φ2, and Φ3 as CVs and a bias
factor of 5. We use an initial Gaussian height of 1.2 kJ/mol, a
Gaussian width of 0.2 rad, and deposit Gaussians every 1 ps. We
run the WT-MetaD simulation for 200 ns. We calculate c(t)
every 50 ps using a grid of 2003 over the domain [−π,π]3. We
skip the first 40 ns of the run (i.e., first 20%) to ensure that we
avoid the period at the beginning of the simulation where the
weights are not equilibrated.We normalize the weights such that
they lie in the range 0 to 1.
For the landmark selection data sets, we employ features saved

every 2 ps for the WT-MetaD simulation and every 1 ps for the
PT simulation. This results in data sets of 8 × 104 and 1 × 105

samples for the WT-MetaD and PT simulations, respectively.
We select 4000 landmarks for the training from these data sets,
using weighted random sampling for the PT simulation and
weight-tempered random sampling with α = 2 for the WT-
MetaD simulations.
For the embeddings, we use sines and cosines of the dihedral

angles (Φ1, Ψ1, Φ2, Ψ2, Φ3, Ψ3) as input features (k = 12), and
the number of output CVs is 2 (d = 2). We do not standardize or
preprocess the input features further.
3.2. NNArchitecture. For the NN, we use the same size and

number of layers as in the work of van der Maaten and
Hinton.26,90 The NN consists of an input layer with a size equal
to the dimension of the feature space k, followed by three hidden
layers of sizes h1 = 500, h2 = 500, and h3 = 2000, and an output
layer with a size equal to the dimension of the latent space d.
To allow for any output value, we do not wrap the output layer

within an activation function. Moreover, for all hidden layers, we
employ leaky rectified linear units (leaky ReLU)91 with a leaky
parameter set to 0.2. Each hidden layer is followed by a dropout
layer92 (dropout probability p = 0.1). For the details regarding
the architecture of NNs, see Table 1.
3.3. Training Procedure. We shuffle the training data sets

and divide them into batches of size 500. We initialize all
trainable weights of the NNs with the Glorot normal scheme93

using the gain value calculated for leaky ReLU. The bias
parameters of the NNs are initialized with 0.005.
We minimize the loss function given by eq 16 using the Adam

optimizer94 with AMSGrad,95 where we use learning rate η =
10−3 and momenta β1 = 0.9 and β2 = 0.999. We also employ a
standard L2 regularization term on the trainable network
parameters in the form of weight decay set to 10−4. We perform
the training for 100 epochs in all cases. The loss function
learning curves for the systems considered here are shown in
Section S7 in Supporting Information.
We report all hyperparameters used to obtain the results in

this work in Table 1. For reproducibility purposes, we also list
the random seeds used while launching the training runs (the
seed affects both the landmark selection and the shuffling of the
landmarks during the training).

3.4. Kernel Density Estimation.We calculate FESs for the
trained MRSE embeddings using kernel density estimation
(KDE) with Gaussian kernels. We employ a grid of 2002 for the
FES figures. We choose the bandwidths for each simulation data
set by first estimating them using Silverman’s rule and then
adjusting the bandwidths by comparing the KDE FES to an FES
obtained with a discrete histogram. We show a representative
comparison between KDE and discrete FESs in Section S6 in
Supporting Information. We employ reweighting for FESs from
WT-MetaD simulation data where we weigh each Gaussian
KDE kernel by the statistical weight w(R) of the given data
point.

3.5. Data Availability. The data supporting the results of
this study are openly available at Zenodo81 (DOI: 10.5281/
zenodo.4756093). PLUMED input files and scripts required to
replicate the results presented in the main text are available from
the PLUMED NEST60 under plumID:21.023 at https://www.
plumed-nest.org/eggs/21/023/.

4. RESULTS
4.1. Müller-Brown Potential. We start by considering a

single particle moving on the two-dimensional Müller-Brown
potential, as shown in Figure 4a. We use this system as a simple
test to check if the MRSE method can preserve the topography
of the FES in the absence of any dimensionality reduction when
performing a mapping with a relatively large NN.
We train the MRSE embeddings on simulation data sets

obtained from WT-MetaD simulations using the coordinates x
and y as CVs. Here, we show only the results obtained with bias
factor γ = 5, while the results for other values are shown in
Section S8 in Supporting Information. The MRSE embeddings
can be freely rotated, and overall rotation is largely determined
by the random seed used to generate the embeddings.
Therefore, to facilitate comparison, we show here results
obtained using the Procrustes algorithm to find an optimal
rotation of the MRSE embeddings that best aligns with the
original coordinates x and y. The original non-rotated
embeddings are shown in Section S8 in Supporting Information.
We present the FESs obtained with the MRSE embeddings in
Figure 4b,c. We can see that the embeddings preserve the
topography of the FESs very well and demonstrate a fine
separation of metastable states, both when we incorporate the
weights into the training through eq 9 (panel b), andwhenwe do
not (panel c).
To quantify the difference between the x and y coordinates

and the CVs found by MRSE, we normalize all coordinates and
plot CV1 as a function of x andCV2 as a function of y. In Figure 5,
we can see that the points lie along the identity line, which shows

Table 1. Hyperparameters Used to Obtain the Results
Reported in This Paper

hyperparameter Müller-Brown alanine dipeptide
alanine

tetrapeptide

features x and y heavy atom
distances

dihedral angles
(cos/sin)

NN architecture [2, 500, 500,
2000, 2]

[21, 500, 500,
2000, 2]

[12, 500, 500,
2000, 2]

optimizer Adam
(AMSGrad)

Adam
(AMSGrad)

Adam (AMSGrad)

number of
landmarks

N = 2000 N = 4000 N = 4000

batch size Nb = 500 Nb = 500 Nb = 500
training
iterations

100 100 100

learning rate η = 10−3 η = 10−3 η = 10−3

seed 111 111
(SI: 222, 333)

111

leaky parameter 0.2 0.2 0.2
dropout p = 0.1 p = 0.1 p = 0.1
weight decay 10−4 10−4 10−4

β1, β2 0.9 and 0.999 0.9 and 0.999 0.9 and 0.999
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that both MRSE embeddings preserve well the original
coordinates of the MB system. In other words, the embeddings
maintain the normalized distances between points. We analyze
this aspect in a detailed manner for a high-dimensional set of
features in Section 4.2.
4.2. Alanine Dipeptide. Next, we consider alanine

dipeptide in vacuum, a small system often used to benchmark
free energy and enhanced sampling methods. The free energy
landscape of the system is described by the backbone (Φ, Ψ)
dihedral angles. Generally, the (Φ, Ψ) angles are taken as CVs
for biasing, as we do here to generate the training data set.
However, for this particular setup in vacuum, it is sufficient to
bias Φ to drive the sampling between states as Ψ is a fast CV
compared to Φ. We can see in Figure 6 that three metastable
states characterize the FES. TheC7eq andC5 states are separated
only by a small barrier of around 1−2 kBT, so transitions
between these two states are frequent. The C7ax state lies higher
in free energy (i.e., is less probable to sample) and is separated by
a high barrier of around 14 kBT from the other two states; so
transitions from C7eq/C5 to C7ax are rare.
For the MRSE embeddings, we do not use the (Φ, Ψ) angles

as input features, but rather a set of 21 heavy atom pairwise
distances that we impartially select as described in Section 3.1.2.
Using only the pairwise distances as input features makes the

exercise of learning CVs more challenging as theΦ andΨ angles
cannot be represented as linear combinations of the interatomic
distances. We can assess the quality of our results by examining
how well the MRSE embeddings preserve the topography of the
FES on local and global scales. However, before presenting the
MRSE embeddings, let us consider the landmark selection,
which we find crucial to our protocol to construct embeddings
accurately.
As discussed in Section 2.3, we need to have a landmark

selection scheme that takes into account the weights of the
configurations and gives a balanced selection that ideally is close
to the equilibrium distribution but represents all metastable
states of the system, also the higher-lying ones.We devise for this
task a method called weight-tempered random sampling. This
method has a tempering parameter α that allows us to
interpolate between an equilibrium and a biased representation
of landmarks (see eq 17).
The effect of the tempering parameter α on the landmark

feature distribution Pα(x) will depend on the correlation of the
features with the biased CVs. The correlation will vary greatly,
also within the selected feature set. In Figure 7, we show the
marginal distributions for two examples from the feature set. For
a feature correlated with the biased CVs, the biasing enhances
the fluctuations, and we observe a significant difference between
the equilibrium distribution and the biased one, as expected. In
this case, the effect of introducing α is to interpolate between
these two limits. On the other hand, for a feature not correlated
to the biased CVs, the equilibrium and biased distribution are
almost the same, and α does not affect the distribution of this
feature.
In Figure 8, we show the results from the landmark selection

for one of theWT-MetaD simulations (γ = 5). In the top row, we
show how the selected landmarks are distributed in the CV

Figure 4. Results for the Müller-Brown potential. FESs for MRSE embeddings obtained from the WT-MetaD simulation (γ = 5). We show MRSE
embeddings obtained with (b) and without (c) incorporating weights into the training via a reweighted feature pairwise probability distribution (see eq
9). The units for the MRSE embeddings are arbitrary and only shown as a visual guide. To facilitate comparison, we post-process the MRSE
embeddings using the Procrustes algorithm to find an optimal rotation that best aligns with the original coordinates x and y; see text.

Figure 5. Results for the Müller-Brown potential. We show how the
MRSE embeddings map the coordinates x and y by plotting the
normalized coordinates x and y versus the normalized MRSE CVs. The
MRSE embeddings are trained using data from a WT-MetaD
simulation with γ = 5, and obtained with (red) and without (blue)
incorporating weights into the training via a reweighted feature pairwise
probability distribution (see eq 9). To facilitate comparison, we post-
process the MRSE embeddings using the Procrustes algorithm to find
an optimal rotation that best aligns with the original coordinates x and
y; see text.

Figure 6. Results for alanine dipeptide in vacuum at 300 K. (a) Free
energy landscape F(Φ, Ψ) from the PT simulation. The metastable
states C7eq, C5, and C7ax are shown. (b) Molecular structure of alanine
dipeptide with the dihedral angles Φ and Ψ indicated.
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space. In the bottom row, we show the effective FES of selected
landmarks projected on the Ψ dihedral angle.
For α = 1, equivalent to weighted random sampling,76 we can

see that we get a worse representation of the C7ax state as
compared to the other states. We can understand this issue by
considering the weights of configurations in the C7ax that are
considerably smaller than the weights from the other states. As
shown in Section S10 in Supporting Information, using the α = 1
landmark results in an MRSE embedding close to the
equilibrium PT embedding (shown in Figure 10a below) but
has a worse separation of the metastable states as compared to
other embeddings.
On the other hand, if we use α = 2, we obtain a much more

balanced landmark selection that is relatively close to the
equilibrium distribution but has a sufficient representation of the
C7ax state. Using larger values of α renders a selection closer to
the sampling from the underlying biased simulation, with more

features higher in free energy. We observe that using α = 2 gives
the best MRSE embedding. In contrast, higher values of α result
in worse embeddings characterized by an inadequate mapping of
the C7ax state, as can be seen in Section S12 in Supporting
Information. Therefore, in the following, we use a value of α = 2
for the tempering parameter in the landmark selection. This
value corresponds to an effective landmark CV distribution
broadening of α̃ ≈ 1.67 (see eqs 19 and 20).
These landmark selection results underline the importance of

having a balanced selection of landmarks that is close to the
equilibrium distribution and gives a proper representation of all
metastable states but excludes points from unimportant higher-
lying free energy regions. The exact value of α that achieves such
optimal selection will depend on the underlying free energy
landscape.
In Section S11 in Supporting Information, we show results

obtained using WT-FPS for the landmark selection (see Section
S3 in Supporting Information for a description of WT-FPS). We
can observe that the WT-MetaD embeddings obtained using
WT-FPS with α = 2 are similar to the WT-MetaD embeddings
shown, as in Figure 10 below. Thus, for small values of the
tempering parameter, both methods give similar results.
Having established how to perform the landmark selection,

we now consider the results for MRSE embeddings obtained on
unbiased and biased simulation data at 300 K. The unbiased
simulation data comes from a PT simulation that accurately
captures the equilibrium distribution within each replica.77

Therefore, for the 300 K replica used for the analysis and
training, we obtain the equilibrium populations of the different
metastable states while not capturing the higher-lying and
transition-state regions. In principle, we could also include
simulation data from the higher-lying replica into the training by
considering statistical weights to account for the temperature
difference, but this would defeat the purpose of using the PT to
generate unbiased simulation data that does not require
reweighting. We refer to the embedding trained on the PT
simulation data as the PT embedding. The biased simulation
data comes fromWT-MetaD simulations where we bias the (Φ,
Ψ) angles. We refer to these embeddings as the WT-MetaD
embeddings.
In the WT-MetaD simulations, we use bias factors from 2 to

10 to generate training data sets representing a biased

Figure 7.Results for alanine dipeptide in vacuum at 300 K. The effect of
the tempering parameter α in the weight-tempered random sampling
landmark selection scheme for a WT-MetaD simulation (γ = 5) biasing
(Φ, Ψ). Marginal landmark distributions for two examples of features
(i.e., heavy atom distances) from the feature set that are (a) correlated
and (b) uncorrelated with the biased CVs. The units are nm.

Figure 8. Results for alanine dipeptide in vacuum at 300 K. Weight-tempered random sampling as a landmark selection scheme for a WT-MetaD
simulation (γ = 5) biasing (Φ, Ψ). (a) In the first two panels, we show the reference FES in the (Φ, Ψ) space and the points sampled during the
simulations. In the subsequent panels, we present the 4000 landmarks selected for different values of the α parameter. (b) In the bottom row, we show
the results projected on Φ, where the reference FES is shown in light blue. The projections (black) are calculated as a negative logarithm of the
histogram of the selected landmarks.
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distribution that progressively goes from a distribution closer to
the equilibrium one to more flatter distribution as we increase γ
(see eq 5). In this way, we can test how the MRSE training and
reweighting procedure works when handling simulation data
obtained under different biasing strengths.
For the WT-MetaD training data sets, we also investigate the

effect of not incorporating the weight into the training via a
reweighted feature pairwise probability distribution (i.e., all
weights equal to unity in eq 9). In this case, only the weight-
tempered random sampling landmark selection takes the
weights into account. In the following, we refer to these WT-
MetaD embeddings as without reweighting or not-reweighted.
To be consistent and allow for a fair comparison between

embeddings, we evaluate all the trainedWT-MetaD embeddings
on the unbiased PT simulation data and use the resulting
projections to perform analysis and generate FESs. This
procedure is possible as both the unbiased PT and the biased
WT-MetaD simulations sample all metastable states of alanine

dipeptide (i.e., the WT-MetaD simulations do not sample
metastable states that the PT simulation does not).
To establish that the MRSE embeddings correctly map the

metastable states, we start by considering the clustering results in
Figure 9. We can see that the PT embedding (second panel)
preserves the topography of the FES and correctly maps all the
important metastable states. We can say the same for the
reweighted (third panel) and not-reweighted (fourth panel)
embeddings. Thus, the embeddings map both the local and
global characteristics of the FES accurately. Next, we consider
the MRSE embeddings for the different bias factors.
In Figure 10, we show the FESs for the different embeddings

along with the FES for the Φ and Ψ dihedral angles. For the
reweighted WT-MetaD embeddings (top row of panel c), we
can observe that all the embeddings are of consistent quality and
exhibit a clear separation of the metastable states. In contrast, we
can see that the not-reweighted WT-MetaD embeddings
(bottom row of panel c) have a slightly worse separation of

Figure 9. Results for alanine dipeptide in vacuum at 300 K. Clustering of the PT simulation data for the different embeddings. The results show how
the embeddingsmap themetastable states. The data points are colored accordingly to their cluster. The first panel shows themetastable state clusters in
the (Φ,Ψ) space. The second panel shows the results for the PT embedding. The third and fourth panels show the results for a representative case of a
WT-MetaD embedding (γ= 5), obtained with andwithout incorporating weights into the training via a reweighted feature probability distribution (see
eq 9), respectively. For the details about clustering,96 see Section S5 in theSupporting Information. The units for the MRSE embeddings are arbitrary
and only shown as a visual guide.

Figure 10. Results for alanine dipeptide in vacuum at 300 K. MRSE embeddings trained on unbiased and biased simulation data. (a) Free energy
landscape F(Φ,Ψ) from the PT simulation. The metastable states C7eq, C5, and C7ax are shown. (b) FES for the MRSE embedding trained using the
PT simulation data. (c) FESs for theMRSE embeddings trained using theWT-MetaD simulation data. We show results obtained from the simulations
using different bias factors γ. We show WT-MetaD embeddings obtained with (top row) and without (bottom row) incorporating weights into the
training via a reweighted feature pairwise probability distribution (see eq 9). We obtain all the FESs by calculating the embeddings on the PT
simulation data and using KDE as described in Section 3.4. The units for the MRSE embeddings are arbitrary and only shown as a visual guide.
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the metastable states. Thus, we can conclude that incorporating
the weights into the training via a reweighted feature pairwise
probability distribution (see eq 9) improves the visual quality of
the embeddings for this system.
To further check the quality of the embeddings, we calculate

the free energy difference between metastable states as

∫ ∫Δ = −
β

β β− −( )F s slog d e / d eA B A
F

B
Fs s

,
1 ( ) ( ) , where the integra-

tion domains are the regions in CV space corresponding to the
statesA and B, respectively. This equation is only valid if the CVs
correctly discriminate between the different metastable states.
For the MRSE embeddings, we can thus identify the integration
regions for the different metastable states in the FES and
calculate the free energy differences. Reference values can be
obtained by integrating the F(Φ,Ψ) FES from the PT
simulation. A deviation from a reference value would indicate
that an embedding does not correctly map the density of the
metastable states. In Figure 11, we show the free energy

differences for all the MRSE embeddings. All free energy
differences obtained with the MRSE embeddings agree with the
reference values within a 0.1 kBT difference for both reweighted
and not-reweighted WT-MetaD embeddings. For bias factors
larger than 3, we can observe that the reweighted embeddings
perform distinctly better than the not-reweighted ones.
As a final test of the MRSE embeddings for this system, we

follow the approach used by Tribello and Gasparotto.75,76 We
calculate the pairwise distances between points in the high-
dimensional feature space and the corresponding pairwise
distances between points in the low-dimensional latent (i.e.,
CV) space given by the embeddings. We then calculate the joint
probability density function of the distances using histogram-
ming. The joint probability density should be concentrated on
the identity line if an embedding preserves distances accurately.
However, this only is valid for the MRSE embeddings
constructed without incorporating the weights into the training,

since for this case, there are no additional constraints besides
geometry.
As we can see in Figure 12, the joint density is concentrated

close to the identity line for most cases. For the reweighted WT-
MetaD embeddings (panel b), the density for the distances in
the middle range slightly deviates from the identity line in
contrast to the not-reweighted embeddings. This deviation is
due to additional constraints on the latent space. In the
reweighted cases, apart from the Euclidean distances, we also
include the statistical weights into the construction of the feature
pairwise probability distribution. Consequently, having land-
marks with low weights in the feature space decreases the
probability of being neighbors to these landmarks in the latent
space. Therefore, the deviation from the identity line must be
higher for the reweighted embeddings.
Summarizing the results in this section, we can observe that

MRSE can construct embeddings, both from unbiased and
biased simulation data, that correctly describe the local and
global characteristics of the free energy landscape of alanine
dipeptide. For the biased WT-MetaD simulation data, we have
investigated the effect of not including the weights in the training
of the MRSE embeddings. Then, only the landmark selection
takes the weights into account. The not-reweighted embeddings
are similar or slightly worse than the reweighted ones. We can
explain the slight difference between the reweighted and not-
reweighted embeddings by that the weight-tempered random
sampling does the primary reweighting. Nevertheless, we can
conclude that incorporating the weights into the training is
beneficial for alanine dipeptide test case.

4.3. Alanine Tetrapeptide. As the last example, we
consider alanine tetrapeptide, a commonly used test system
for enhanced samplingmethods.51,53,97−101 Alanine tetrapeptide
is a considerably more challenging test case than alanine
dipeptide. Its free energy landscape consists of many metastable
states, most of which are high in free energy and thus difficult to
capture in an unbiased simulation. We anticipate that we can
only obtain an embedding that accurately separates all of the
metastable states by using training data from an enhanced
sampling simulation, which better captures higher-lying
metastable states. Thus, the system is a good test case to
evaluate the performance of the MRSE method and the
reweighting procedure.
As it is often customary,51,53,97,98 we consider the backbone

dihedral angles Φ ≡ (Φ1, Φ2, Φ3) and Ψ ≡ (Ψ1, Ψ2, Ψ3) that
characterize the configurational landscape of alanine tetrapep-
tide. We show the dihedral angles in Figure 13b. For this
particular setup in vacuum, it is sufficient to use Φ to describe
the free energy landscape and separate the metastable states, as
Ψ are fast CVs in comparison to Φ.51,97 To generate biased
simulation data, we performWT-MetaD simulation using theΦ
angles as CVs and a bias factor γ = 5. Moreover, we perform a PT
simulation and employ the 300 K replica to obtain unbiased
simulation data. As before, the embeddings obtained by training
on these simulation data sets are denoted as WT-MetaD and PT
embeddings, respectively. As before, we also consider a WT-
MetaD embedding, denoted as not-reweighted, where we do not
include the weights into the construction of the feature pairwise
probability distribution.
To verify the quality of the sampling and the accuracy of the

FESs, we compare the results obtained from theWT-MetaD and
PT simulations to results from bias-exchange metadynamics
simulations102 using Φ and Ψ as CVs (see Section S13 in
Supporting Information). Comparing the free energy profiles for

Figure 11. Results for alanine dipeptide in vacuum at 300 K. Free
energy differences between metastable states for the FESs of the
embeddings, as shown in Figure 10. We show the reference values from
the F(Φ,Ψ) FES obtained from the PT simulation at 300 K as
horizontal gray lines. The results for the reweighted embeddings are
shown as red crosses, while the results for the not-reweighted
embeddings are shown as blue dots. The results for the PT embedding
are shown as green plus symbols.
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Figure 12. Results for alanine dipeptide in vacuum at 300 K. The joint probability density functions for the pairwise distances in the high-dimensional
feature space and the low-dimensional latent space for the embeddings shown in Figure 10. We show the results for the (a) PT and (b) WT-MetaD
embeddings (evaluated on the PT simulation data). These histograms show the similarities between distances in the feature and latent spaces. For an
embedding that preserves distances accurately, the density would lie on the identity line y = x (shown as a black line). We normalize the distances to lie
in the range 0 to 1.

Figure 13. Results for alanine tetrapeptide in vacuum at 300 K. (a) Conditional FESs (eq 21), obtained from the WT-MetaD simulation, shown as a
function ofΦ1 andΦ2 for two minima ofΦ3 labeled as A and B. We denote the ten metastable states as s1 to s10. (b) Alanine tetrapeptide system with
the backbone dihedral anglesΦ ≡ (Φ1, Φ2, Φ3) andΨ ≡ (Ψ1, Ψ2, Ψ3) that we use as the input features for the MRSE embeddings. (c) Free energy
profile F(Φ3), obtained from the WT-MetaD simulation, with the two minima A and B. The gray-shaded area indicates the areas integrated over in eq
21. The FESs are obtained using KDE as described in Section 3.4.

Figure 14.Results for alanine tetrapeptide in vacuum at 300 K. FESs for theMRSE embeddings trained on the unbiased and biased simulation data. (a)
PT embedding trained and evaluated on the PT simulation data. (b,c) WT-MetaD embeddings trained and evaluated on the WT-MetaD simulation
data. The WT-MetaD embeddings are obtained without (b) and with (c) incorporating weights into the training via a reweighted feature pairwise
probability distribution (see eq 9). The FESs are obtained using KDE as described in Section 3.4. The state labels in the FESs correspond to the
labeling used in Figure 13a. The embeddings are rescaled so that the equilibrium states are of similar size. The units for the MRSE embeddings are
arbitrary and thus not shown.
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Φ obtained with different methods (Figure S12 in Supporting
Information), and keeping in mind that the 300 K replica from
the PT simulation only describes well the lower-lying metastable
states, we find that all simulations are in good agreement.
Therefore, we conclude that theWT-MetaD and PT simulations
are converged.
To show the results from the three-dimensional CV space on a

two-dimensional surface, we consider a conditional FES where
the landscape is given as a function ofΦ1 andΦ2 conditioned on
values of Φ3 being in one of the two distinct minima shown in
Figure 13c. We label these minima as A and B. We define the
conditional FES as

∫β
Φ Φ |Φ ∈ = − Φ β Φ−F S( , )

1
log d e

S

F
1 2 3 3

( )

(21)

where F(Φ) is the FES obtained from the WT-MetaD
simulation (aligned such that its minimum is at zero), S is
either the A or B minima, and we integrate over the regions
indicated by the gray areas in Figure 13c. We show the two
conditional FESs in Figure 13a. Through a visual inspection of
Figure 13, we can identify ten different metastable states,
denoted as s1 to s10. Three of the states, s5, s7, and s8, are sampled
properly in the 300 K replica of the PT simulation, and thus, we
consider them as the equilibrium metastable states. The rest of
the metastable states are located higher in free energy and only
sampled accurately in the WT-MetaD simulation. The number
of the metastable states observed in Figure 13a is in agreement
with a recent study of Giberti et al.53

We can judge the quality of the MRSE embeddings based on
whether they can correctly capture the metastable states in only
two dimensions. As input features for the MRSE embeddings,
we use sines and cosines of backbone dihedral angles Φ and Ψ
(12 features in total), instead of heavy atom distances as we do in
the previous section for alanine dipeptide. We use weight-
tempered random sampling with α = 2 to select landmarks for
the training of the WT-MetaD embeddings.
We show the PT and WT-MetaD embeddings in Figure 14.

We can see that the PT embedding in Figure 14a is able to
accurately describe the equilibrium metastable states (i.e., s5, s7,
and s8). However, as expected, the PT embedding cannot
describe all ten metastable states, as the 300 K replica in the PT
simulation rarely samples the higher-lying states.
In contrast, we can see that the WT-MetaD embeddings in

Figure 14b,c capture accurately all ten metastable states. By
visual inspection of the simulation data, we can assign state labels
for the embeddings in Figure 14, corresponding to the states
labeled in Figure 13a. One interesting aspect of the MRSE
embeddings in Figure 14 is that they similarly map the
equilibrium states, even if we obtain the embeddings from
different simulation data sets (PT and WT-MetaD). This
similarity underlines the consistency of our approach. The fact
that both the reweighted and not-reweighted WT-MetaD
embeddings capture all ten states suggests we could use both
embeddings as CVs for biasing.
However, we can observe that the reweighted embedding has

a better visual separation of the states. For example, we can see
this for the separation between s9 and s10. Furthermore, we can
see that the reweighted embedding separates the states from the
A and B regions better than the not-reweighted embedding. In
the reweighted embedding, states s1 to s4 are close to each other
and separated from states s5−s10 as indicated by line drawn in
Figure 14c. Therefore, we can conclude that the reweightedWT-
MetaD embedding is of better quality and better represents

distances between metastable states for this system. These
results show that we need to employ a reweighted feature
pairwise probability distribution for more complex systems.

5. DISCUSSION AND CONCLUSIONS

We present MRSE, a general framework that unifies enhanced
sampling and ML for constructing CVs. MRSE builds on top of
ideas from SNE methods.24−26,39 We introduce several
advancements to SNE methods that make MRSE suitable for
constructing CVs from biased data obtained from enhanced
sampling simulations.
We show that this method can construct CVs automatically by

learning mapping from a high-dimensional feature space to a
low-dimensional latent space via a deep NN. We can use the
trained NN to project any given point in feature space to CV
space without rerunning the training procedure. Furthermore,
we can obtain the derivatives of the learned CVs with respect to
the input features and bias the CVs within an enhanced sampling
simulation. In future work, we will use this property by
employing MRSE within an enhanced sampling scheme where
the CVs are iteratively improved.33,34,37

In this work, we focus entirely on the training of the
embeddings, using training data sets obtained from both
unbiased simulation and biased simulation employing different
biasing strengths (i.e., bias factors in WT-MetaD). As the
“garbage in, garbage out” adage applies toML (amodel is only as
good as training data), to eliminate the influence of incomplete
sampling, we employ idealistic sampling conditions that are not
always achievable in practice.40 In future work, we will need to
consider how MRSE performs under less ideal sampling
conditions. One possible option to address this issue is to
generate multiple embeddings by running independent training
attempts and score them using themaximum caliber principle, as
suggested in ref 40.
The choice of the input features depends on the physical

system under study. In this work, we use conventional features,
that is, microscopic coordinates, distances, and dihedral angles,
as they are a natural choice for the model systems considered
here. In general, the features can be complicated functions of the
microscopic coordinates.19 For example, symmetry functions
have been used as input features in studies of phase
transformations in crystalline systems.17,18 Additionally, features
may be correlated or simply redundant. See ref 103 for a general
outline of feature selection in unsupervised learning. We will
explore the usage of more intricate input features and modern
feature selection methods104,105 forMRSE embeddings in future
work.
One of the issues with using kernel-based dimensionality

reduction methods, such as diffusion maps23 or SNEmethods,24

is that the user needs to select the bandwidths (i.e., the scale
parameters ε) when using the Gaussian kernels. In t-SNE,25,26

the Gaussian bandwidths are optimized by fitting to a parameter
called perplexity. We can view the perplexity as the effective
number of neighbors in a manifold.25,26 However, this only
redirects the issue as the user still needs to select the perplexity
parameter.106 Larger perplexity values lead to a larger number of
nearest neighbors and an embedding less sensitive to small
topographic structures in the data. Conversely, lower perplexity
values lead to fewer neighbors and ignore global information in
favor of the local environment. However, what if several length
scales characterize the data? In this case, it is impossible to
represent the density of the data with a single set of bandwidths,
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so viewing multiple embeddings obtained with different
perplexity values is quite common.106

In MRSE, we circumvent the issue of selecting the Gaussian
bandwidths or the perplexity value by employing a multiscale
representation of feature space. Instead of a single Gaussian
kernel, we use a Gaussian mixture where each term has its
bandwidths optimized for a different perplexity value. We
perform this procedure in an automated way by employing a
range of perplexity values representing several length scales. This
mixture representation allows describing both the local and
global characteristics of the underlying data topography. The
multiscale nature of MRSE makes the method particularly
suitable for tackling complex systems, where the free energy
landscape consists of several metastable states of different sizes
and shapes. However, as we have seen in Section 4.3, also model
systems may exhibit such complex behavior.
Employing nonlinear dimensionality reduction methods is

particularly problematic when considering training data
obtained from enhanced sampling simulations. In this case,
the feature samples are drawn from a biased probability
distribution, and each feature sample carries a statistical weight
that we need to take into account. In MRSE, we take the weights
into account when selecting the representative feature samples
(i.e., landmarks) for the training. For this, we introduce a weight-
tempered selection scheme that allows us to obtain landmarks
that strike a balance between equilibrium distribution and
capturing important metastable states lying higher in free
energy. This weight-tempered random sampling method
depends on a tempering parameter α that allows us to tune
between obtaining equilibrium and biased distribution of
landmarks. This parameter is case-dependent and similar in
spirit to the bias factor γ in WT-MetaD. Generally, α should be
selected so that every crucial metastable state is densely
populated. However, α should not be too large, as it may result
in including feature samples from unimportant higher-lying free
energy regions.
The weight-tempered random sampling algorithm is inspired

by and bears a close resemblance to the WT-FPS landmark
selection algorithm, introduced by Ceriotti et al.73 For small
values of the tempering parameter α, both methods give similar
results, as discussed in Section 4.2. The main difference between
the algorithms lies in the limit α → ∞. In weight-tempered
random sampling, we obtain a landmark distribution that is the
same as the biased distribution from the enhanced sampling
simulation. On the other hand, WT-FPS results in landmarks
that are sampled uniformly distributed from the simulation data
set. Due to usage of FPS107 in the initial stage, WT-FPS is
computationally more expensive. Thus, as we are interested in a
landmark selection obtained using smaller values of α and do not
want uniformly distributed landmarks, we prefer weight-
tempered random sampling.
The landmarks obtained with weight-tempered random

sampling still carry statistical weights that can vary considerably.
Thus, we also incorporate the weights into the training by
employing a reweighted feature pairwise probability distribu-
tion. To test the effect of this reweighting, we constructedMRSE
embeddings without including the weights in the training. Then,
we only take the weights into account during the landmark
selection. For alanine dipeptide, the reweighted MRSE
embeddings are more consistent and slightly better than the
not-reweighted ones. For the more challenging alanine
tetrapeptide case, both the reweighted and not-reweighted
embeddings capture all the metastable states. However, we can

observe that the reweighted embedding has a better visual
separation of states. Thus, we can conclude from these two
systems that employing a reweighted feature pairwise proba-
bility distribution is beneficial or even essential, especially when
considering more complex systems. Nevertheless, this is an issue
that we need to consider further in future work.
Finally, we have implemented the MRSE method and weight-

tempered random sampling in the open-source PLUMED library
for enhanced sampling and free energy computation.9,60 Having
MRSE integrated into PLUMED is of significant advantage.We can
use MRSE with the most popular MD codes and learn CVs in
postprocessing and on the fly during a molecular simulation.
Furthermore, we can employ the learned CVs with the various
CV-based enhanced sampling methods implemented in PLUMED.
We will make our code publicly available under an open-source
license by contributing it as a module called LowLearner to the
official PLUMED repository in the future. In the meantime, we
release an initial implementation of LowLearner with our data.
The archive of our data is openly available at Zenodo81 (DOI:
10.5281/zenodo.4756093). PLUMED input files and scripts
required to replicate the results are available from the PLUMED

NEST60 under plumID:21.023 at https://www.plumed-nest.
org/eggs/21/023/.
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