Skip to main content
. 2021 Aug 26;63(10):2693–2718. doi: 10.1007/s10115-021-01602-3

Table 3.

The training accuracies of predicting the datasets

Datasets SVM ANN RF GMDH RVFL-GMDH
R M E R M E R M E R M E R M E
Boston 0.909 0.004 0.914 0.939 0.003 0.939 0.982 0.001 0.982 0.891 0.005 0.891 0.891 0.005 0.891
Abalone 0.562 0.006 0.578 0.566 0.006 0.566 0.926 0.001 0.926 0.533 0.006 0.533 0.578 0.006 0.562
Airfoil 0.841 0.005 0.842 0.848 0.005 0.848 0.993 0.000 0.993 0.842 0.005 0.842 0.842 0.005 0.842
Comm 0.803 0.011 0.807 0.768 0.013 0.768 0.937 0.004 0.937 0.665 0.019 0.665 0.667 0.019 0.667
CCPP Seg 0.937 0.003 0.937 0.938 0.003 0.938 0.993 0.001 0.993 0.938 0.003 0.938 0.939 0.003 0.939
Stock 0.950 0.003 0.950 0.986 0.000 0.986 0.996 0.000 0.996 0.942 0.003 0.942 0.990 0.001 0.990
Average 0.834 0.005 0.838 0.841 0.005 0.841 0.971 0.001 0.971 0.802 0.007 0.802 0.818 0.007 0.815

(R: R2, M: MSE, E: EVAR)