Table 3.
The training accuracies of predicting the datasets
| Datasets | SVM | ANN | RF | GMDH | RVFL-GMDH | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| R | M | E | R | M | E | R | M | E | R | M | E | R | M | E | |
| Boston | 0.909 | 0.004 | 0.914 | 0.939 | 0.003 | 0.939 | 0.982 | 0.001 | 0.982 | 0.891 | 0.005 | 0.891 | 0.891 | 0.005 | 0.891 |
| Abalone | 0.562 | 0.006 | 0.578 | 0.566 | 0.006 | 0.566 | 0.926 | 0.001 | 0.926 | 0.533 | 0.006 | 0.533 | 0.578 | 0.006 | 0.562 |
| Airfoil | 0.841 | 0.005 | 0.842 | 0.848 | 0.005 | 0.848 | 0.993 | 0.000 | 0.993 | 0.842 | 0.005 | 0.842 | 0.842 | 0.005 | 0.842 |
| Comm | 0.803 | 0.011 | 0.807 | 0.768 | 0.013 | 0.768 | 0.937 | 0.004 | 0.937 | 0.665 | 0.019 | 0.665 | 0.667 | 0.019 | 0.667 |
| CCPP Seg | 0.937 | 0.003 | 0.937 | 0.938 | 0.003 | 0.938 | 0.993 | 0.001 | 0.993 | 0.938 | 0.003 | 0.938 | 0.939 | 0.003 | 0.939 |
| Stock | 0.950 | 0.003 | 0.950 | 0.986 | 0.000 | 0.986 | 0.996 | 0.000 | 0.996 | 0.942 | 0.003 | 0.942 | 0.990 | 0.001 | 0.990 |
| Average | 0.834 | 0.005 | 0.838 | 0.841 | 0.005 | 0.841 | 0.971 | 0.001 | 0.971 | 0.802 | 0.007 | 0.802 | 0.818 | 0.007 | 0.815 |
(R: R2, M: MSE, E: EVAR)