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A B S T R A C T   

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the global coronavirus 
disease 2019 (COVID-19) pandemic. Despite several single-cell RNA sequencing (RNA-seq) studies, conclusions 
cannot be reached owing to the small number of available samples and the differences in technology and tissue 
types used in the studies. To better understand the cellular landscape and disease severity in COVID-19, we 
performed a meta-analysis of publicly available single-cell RNA-seq data from peripheral blood and lung samples 
of COVID-19 patients with varying degrees of severity. Patients with severe disease showed increased numbers of 
M1 macrophages in lung tissue, while the number of M2 macrophages was depleted. Cellular profiling of the 
peripheral blood showed a marked increase of CD14+, CD16+ monocytes and a concomitant depletion of overall 
B cells and CD4+, CD8+ T cells in severe patients when compared with moderate patients. Our analysis indicates 
the presence of faulty innate-to-adaptive switching, marked by a prolonged innate immune response and a 
dysregulated adaptive immune response in severe COVID-19 patients. Furthermore, we identified cell types with 
a transcriptome signature that can be used as a prognostic biomarker for disease state prediction and the effective 
therapeutic management of COVID-19 patients.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 
infected millions of people and caused more than 2 million fatalities 
worldwide, resulting in the coronavirus disease 2019 (COVID-19) 
pandemic. Most COVID-19 patients have mild to moderate symptoms, 
but approximately 20% develop more severe systemic inflammation 
accompanied by acute respiratory distress syndrome (ARDS), often 
leading to death [1,2]. Multiple studies have implicated the immune 
response in severe cases, which plays a crucial role in determining the 
outcome of COVID-19 patients [3–11]. However, these studies were 
heavily reliant on either the local or peripheral response and included 
limited numbers of patient samples. Thus, an understanding of the local 
and peripheral immune landscape in relation to disease severity and 

progression is required and would help improve the therapeutic man-
agement of COVID-19 symptoms. 

Recent single-cell RNA sequencing (RNA-seq) studies of severe 
COVID-19 patients have provided evidence of a reduced lymphocyte 
count and higher numbers of inflammatory myeloid cells [3–5]. Other 
studies have found that severe COVID-19 patients have abundant 
pro-inflammatory monocytes or monocyte-derived macrophages in 
bronchoalveolar lavage fluid (BALF) [6–8]. Older COVID-19 patients 
exhibit more severe symptoms compared with children and young 
adults. However, the molecular mechanisms that underlie the imbal-
anced host response leading to disease severity remain unclear. 

Innate immune cells act as the first line of defense against invading 
viruses and clear the infection by producing type I interferon (IFN) [12]. 
Severe and terminally ill patients exhibit higher levels of cytokines and 
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chemokines, such as IL6, IL36G, CXCL2, CXCL10, CCL2, CCL3, and 
CCL5. This finding points toward an overactive innate immune 
cell-mediated cytokine storm, leading to the development of ARDS. 
However, the type I IFN-mediated innate immune response is reportedly 
impaired and delayed [13], suggesting a dynamic shift in the overall 
immune response. 

The adaptive immune response controls the excessive innate immune 
response; thus, lower lymphocyte counts in severe COVID-19 patients 
partly explain the observed hyperactivated innate immune response 
[14]. Furthermore, recent studies reported that a lower lymphocyte 
count and a reduced ratio of lymphocytes in the blood contribute to the 
increase in myeloid cells in the blood and BALF [15,16]. Indeed, older 
patients aged 60 years or more exhibit low numbers of CD4+ and CD8+ T 
cells [17], whereas children with SARS-CoV-2 infection have normal 
lymphocyte counts [18]. Therefore, we posit that this weakened adap-
tive response, along with a hyperactivated innate immune inflammatory 
response, may increase the fatality rate. 

To understand the immune landscape in the lungs and blood of 
COVID-19 patients, we collated single-cell RNA-seq datasets from 
healthy controls and moderate, severe, and fatal cases. Our meta- 
analysis revealed phenotypic switching of immune cell types and pro-
portionality in the lung and blood of severe cases. Principal component 
analysis (PCA) of important cell types could discriminate disease 
severity. Furthermore, cells that were strongly associated with severe 
disease or mortality had high expression levels of inflammatory genes. 

2. Materials and methods 

2.1. Ethics statement 

All required ethical guidelines were followed, and ethics committee 
approvals were obtained by the original study groups. 

2.2. Datasets 

Single-cell RNA seq raw datasets were collected from the gene 
expression omnibus (GEO) of the National Center for Biotechnology 
Information database. GSE163668 [19] and GSE166992 [20] were used 

for the analysis of blood samples, while GSE168215 [21], GSE169471 
[22], and GSE145926 [6] were used for lung samples. GSE157344 [23] 
was used for both blood and lung samples. Briefly, patients who were 
not admitted to an ICU for longer than 3 days and did not require me-
chanical ventilation/intubation were designated as moderate patients. 
Patients admitted to an ICU for a longer period and/or required me-
chanical ventilation/intubation were designated as severe patients. 

2.3. Single-cell data analysis 

Seurat (version 4.0.2) in the R program environment (4.0.1) was 
used for the data quality control and analysis, as comprehensively out-
lined by the package developer [24] and others, owing to its fast pro-
cessing time and ability to integrate multiple datasets across platforms 
[25]. Briefly, Seurat objects were created from individual expression 
matrices. Unique molecular identifier (UMI) counts were scaled by li-
brary size and a natural log transformation. Gene counts for each cell 
were divided by the total UMI count of that cell, scaled by a factor of 10, 
000, and then transformed via the natural log plus 1 function, “Nor-
malizeData”. The normalized data were further scaled with the “Scale-
Data” function so that the mean expression across cells was 0 and the 
variance was 1. PCA was used with the “RunPCA” function in Seurat to 
reduce the dimensionality of the data by clustering similar cells from 
different datasets. Next, we identified anchors across datasets using the 
“FindIntegrationAnchors” function in Seurat by embedding cells in a 
k-nearest neighborhood-based approach to identify mutual neighbors 
from different datasets and scored them based on their mutual nearest 
neighbors. Noise and batch effect variances among the datasets were 
taken into consideration by using reference cells from each dataset. 
These anchors were then used to integrate data across datasets using the 
“IntegrateData” function. The uniform manifold approximation and 
projection (UMAP) method [26] was used to visualize high-dimensional 
cellular data in an easy and comprehensive manner. Differentially 
expressed genes (DEGs) were identified using the default “FindMarkers” 
function in Seurat based on the non-parametric Wilcoxon rank–sum test. 

Fig. 1. Schematic flow diagram of the dataset curation and meta-analysis process. N denotes the number of GEO datasets, n denotes the number of patients.  
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2.4. Cell type annotation 

The automated cell annotation program scCATCH (version 2.1) [27] 
was used in the R environment. scCATCH uses paired comparisons and 
evidence-based scoring to identify potential marker genes and annotate 
clustered cells. 

2.5. Gene ontology analysis 

Metascape [28] (web version) was used to assess the functional 
enrichment of DEGs. Metascape queries publicly available databases, 
such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes [29], 
and assigns DEGs to their respective enriched pathways by calculating 
the pairwise similarity between any two terms. The hypergeometric test 
and Benjamini–Hochberg p-value correction algorithm were used to 
identify significantly enriched ontology terms. 

Table 1 
Clinical information of patients and healthy controls who donated blood samples.  

GSE Type Status GSM ID Sex Age ICU Symptoms onset to sampling days Publication status 

GSE163668 Blood Healthy GSM4995449 Male 49 N/A N/A Yes (ref:19) 
Healthy GSM4995451 Male 52 N/A N/A 
Healthy GSM4995453 Male 30 N/A N/A 
Healthy GSM4995454 Male 34 N/A N/A 
Healthy GSM4995455 Female 28 N/A N/A 
Healthy GSM4995456 Male 41 N/A N/A 
Healthy GSM4995459 Female 34 N/A N/A 

GSE166992 Blood Healthy GSM5090446 – – N/A N/A Yes (ref: 20) 
Healthy GSM5090448 – – N/A N/A 
Healthy GSM5090454 – – N/A N/A 

GSE163668 Blood Moderate GSM4995431 Male 41.1 General ward Not available Yes (ref: 19) 
Moderate GSM4995432 Male 58.6 ICU 4 
Moderate GSM4995434 Male 73.2 General ward Not available 
Moderate GSM4995435 Female 45.5 General ward 6 
Moderate GSM4995436 Female 85 General ward 2 

GSE157344 Blood Severe GSM4762161 Female 68 ICU Not available Yes (ref: 23) 
Severe GSM4762168 Male 67 ICU Not available 
Severe GSM4762163 Male 77 ICU Not available 
Severe GSM4762164 Male 65 ICU Not available 
Severe GSM4762165 Female 51 ICU Not available 

GSE163668 Blood Severe GSM4995437 Male 44.2 ICU 20 Yes (ref: 19) 
Severe GSM4995438 Female 61.4 ICU 14 
Severe GSM4995442 Female 48.3 ICU 6 
Severe GSM4995446 Male 62.4 ICU Not available 
Severe GSM4995447 Male 44.1 ICU 6 

GSE157344 Blood Dead GSM4762162 Male 58 ICU Not available Yes (ref: 23) 
Dead GSM4762167 Male 80 ICU Not available 
Dead GSM4762169 Male 69 ICU Not available 
Dead GSM4762171 Male 71 ICU Not available 
Dead GSM4762172 Male 68 ICU Not available  

Table 2 
Clinical information of patients and healthy controls who donated lung tissue samples.  

GSE Type Status GSM ID Sex Age ICU Symptoms onset to sampling days Publication status 

GSE169471 Lung Healthy GSM5206782 Male 76 N/A N/A Yes (ref: 22) 
Healthy GSM5206783 Male 56 N/A N/A 
Healthy GSM5206784 Male 56 N/A N/A 
Healthy GSM5206785 Male 55 N/A N/A 
Healthy GSM5206786 Female 57 N/A N/A 
Healthy GSM5206787 Male 18 N/A N/A 

GSE145926 Lung Moderate GSM4339769 Male 36 General ward 11 Yes (ref: 6) 
Moderate GSM4339770 Female 37 General ward 9 
Moderate GSM4339772 Male 35 General ward 13 
Severe GSM4339771 Male 66 ICU 11 
Severe GSM4339773 Male 62 ICU 18 
Severe GSM4339774 Male 63 ICU 14 

GSE168215 Lung Severe GSM5134112 Not available – Intubated Not available Preprint (ref: 21) 
Severe GSM5134116 Not available – Intubated Not available 
Severe GSM5134117 Not available – Intubated Not available 
Severe GSM5134119 Not available – Intubated Not available 

GSE157344 Lung Severe GSM4762139 Female 68 ICU Not available Yes (ref: 23) 
Severe GSM4762146 Male 67 ICU Not available 
Severe GSM4762141 Male 77 ICU Not available 
Severe GSM4762142 Male 65 ICU Not available 
Severe GSM4762143 Female 51 ICU Not available 
Dead GSM4762140 Male 58 ICU Not available 
Dead GSM4762145 Male 80 ICU Not available 
Dead GSM4762147 Male 69 ICU Not available 
Dead GSM4762149 Male 71 ICU Not available 
Dead GSM4762150 Male 68 ICU Not available  
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Fig. 2. Cross-sectional analysis of single-cell RNA-seq blood datasets. (A) Uniform manifold approximation and projection (UMAP) of blood cells obtained from control, moderate, severe, and deceased subjects. 
Cells were clustered based on similar gene expression levels and colored by cell type. (B) Stacked bar chart showing the cell type proportion based on disease severity. Significantly altered cell types (CD4+ T cells, CD14+

monocytes, CD16+ monocytes) are presented in separate graphs along with their respective numbers in the different COVID-19 severities. 
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Fig. 3. Cross-sectional analysis of single-cell RNA-seq lung datasets. (A) Uniform manifold approximation and projection (UMAP) of lung cells obtained from control, moderate, severe, and deceased subjects. Cells 
were clustered based on similar gene expression levels and colored by cell type. (B) Stacked bar chart showing the cell type proportion based on disease severity. Significantly altered cell types (airway secretory cells, M1 
macrophages, M2 macrophages) are presented in separate graphs along with their respective numbers in the different COVID-19 severities. 
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2.6. Principal component analysis 

We performed PCA on selected gene expression changes (log2 fold 
change) of target cell types to distinguish the COVID-19 disease states (i. 
e., control, moderate, severe, deceased). The PCA involved six steps. In 
step 1, we standardized the expression changes in the target feature gene 
list by calculating the mean and standard deviation. In step 2, the 
covariance matrix for the feature genes was calculated. In step 3, the 
eigenvalues and eigenvectors for the covariance matrix were calculated. 
In step 4, eigenvalues and their corresponding eigenvectors were sorted. 
In step 5, k = 2 eigenvalues were selected to form a matrix of eigen-
vectors. In step 6, the original matrix was transformed (i.e., feature 
matrix * top k eigenvectors = transformed data). In this analysis, we 
selected the first two PCs because the variances explained by them were 
significant for evaluating the disease state. Loading plots of the first two 
PC coefficients for the various disease states showed that the gene 
expression changes (log2 fold change) widely varied among the mod-
erate, severe, and deceased COVID-19 patients and healthy controls. 

3. Results 

3.1. Indications of lymphopenia and an abundance of monocytes in blood 

Fig. 1 presents an overview of the dataset curation and analysis. We 
assigned the datasets into healthy control, moderate, severe, and 
deceased groups. The datasets, comprising several individuals, were 
combined and integrated for each group (Table 1 and Table 2). Visual-
ization using UMAP showed distinct differences between the COVID-19 
patient groups and the healthy controls. Moderate COVID-19 cases were 
comparable to the controls in terms of the presence of immature tran-
sitional B cells and CD8+ T cells, whereas these cell types were depleted 

in severe and fatal cases (Fig. 2A and Fig. 2B). Moderate cases had a 
slight increase of CD14+ monocytes and memory B cells (Fig. 2A and B). 
We did not observe any non-classical CD16+ monocytes in healthy 
controls or moderate cases; however, CD16+ monocytes were increased 
in severe cases and constituted approximately 50% of the total cell ratio 
in fatal cases. These data indicate an imbalance between lymphocytes 
and monocytes in the blood of severe COVID-19 cases. Our analysis also 
revealed significant alterations in B-cell subsets. In moderate cases, we 
detected transitional B cells and memory B cells, which constituted 
approximately 50% of the total cell population. In contrast, these B-cell 
subsets accounted for only 1%–4% of the total cell population in severe 
and fatal cases (Fig. 2B). Interestingly, we observed platelets only in 
fatal cases (Fig. 2A), suggesting a role of platelets in blood clot forma-
tion, which may be a decisive factor in the outcome of SARS-CoV-2 
infection. 

3.2. Macrophage class switching was evident in severe COVID-19 patients 

The lungs are the most severely affected organ in SARS-CoV-2 
infection, and therefore we focused our analysis on the variability of 
the cellular landscape in lung. M2 macrophages resolve inflammation, 
and are known as anti-inflammatory macrophages, and were abundant 
in the lungs of healthy controls (Fig. 3A and Fig. 3B). The total number 
of M2 macrophages was decreased in moderate, severe, and fatal cases, 
and the number of M1 (pro-inflammatory) macrophages increased with 
the progression of disease severity (Fig. 3A and B). The number of 
airway secretory cells was increased in severe cases and accounted for 
approximately 45% of the total cell ratio in fatal cases (Fig. 3B). 

Fig. 4. Hierarchical clustering of immune cells in blood based on gene set enrichment analysis. (A) Hierarchical clustering of the regulated pathways of 
significantly modulated genes in CD4+ T cells from different disease states. (B) Hierarchical clustering of the regulated pathways of significantly modulated genes in 
CD8+ T cells from different disease states. (C) Hierarchical clustering of the regulated pathways of significantly modulated genes in CD14+ monocytes from different 
disease states. (D) Hierarchical clustering of the regulated pathways of significantly modulated genes in CD16+ monocytes from different disease states. The den-
drograms are colored according to the p values; gray cells indicate a lack of significant enrichment. 
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3.3. Gene set enrichment analysis showed a lack of adaptive response in 
the blood of fatal cases 

The cellular landscape was altered in SARS-CoV-2 infection, and the 
dynamic shift was associated with the degree of COVID-19 severity. We 
next analyzed whether the functional properties of the investigated cells 
were also altered. Gene set enrichment analysis (GSEA) was performed 
with the top 30 genes of the cells that demonstrated a large dynamic 
shift, either positively or negatively. GSEA showed that moderate cases 
had an adaptive response in immature transitional B cells, whereas these 
cells were absent in severe and fatal cases (Fig. 4A). In moderate cases, 
the CD8+ T cells showed a similar pattern as in healthy controls, with a 
nearly identical adaptive response (Fig. 4B). However, the CD8+ T cells 
in severe and fatal cases did not express genes involved in the adaptive 
immune response. These data demonstrate the requirement for a 
lymphocyte-mediated adaptive response for the successful resolution of 
SARS-CoV-2 infection. 

Interestingly, CD16+ monocytes were not found in healthy controls. 
However, CD14+ monocytes did not exhibit much difference among the 
disease states, apart from a milder response in terms of positive regu-
lation of the defense response in severe and fatal cases (Fig. 4C). The 
GSEA of CD16+ monocytes closely clustered severe and fatal cases and 
indicated a strong response of the lipopolysaccharide-like phenotype 
and neutrophil migration (Fig. 4D). This could lead to prolonged 
inflammation and the development of a sepsis-like condition. 

3.4. Fatal cases showed dysfunctional surfactant metabolism in the lung 

Intriguingly, airway secretory cells accounted for almost half of the 
total cell population in the lung of fatal cases (Fig. 3B). The GSEA of 
airway secretory cells identified dysfunctional surfactant metabolism in 

all COVID-19 patient groups, whereas airway secretory cells from 
healthy controls were enriched with genes involved in surfactant 
metabolism (Fig. 5A). We were unable to detect M1 macrophages in 
healthy controls; by contrast, M1 macrophages were increased in severe 
cases. The GSEA showed that M1 macrophages activate antigen pro-
cessing and presentation (Fig. 5B). Interestingly, M2 macrophages 
demonstrated a similar phenotype of antigen processing and presenta-
tion via MHC class II in moderate, severe, and fatal cases (Fig. 5C). 
Macrophages that were positive for FCGR3A and FCGR3B were unable 
to initiate phagocytosis in severe and fatal cases (Fig. 5D). This not only 
indicates that the cellular landscape was altered but that cellular func-
tion was also impaired by SARS-CoV-2 infection. 

3.5. Principal component analysis could discriminate COVID-19 disease 
states 

Functional alterations of the cellular landscape were evident and 
may decide the outcome of patients infected with SARS-CoV-2. We next 
investigated whether differential cellular landscapes and gene expres-
sion patterns could distinguish between disease states. We performed 
PCA on significantly altered cell types individually. The PCA of imma-
ture transitional B cells shifted directions in accordance with gene 
expression (Fig. 6A). Immature transitional B cells exhibited almost 
identical gene expression in healthy controls and the moderate patient 
group (Fig. 6A). CD8+ T cells were not present in fatal cases, but the gene 
expression patterns could discriminate between the healthy controls, 
moderate cases, and severe cases (Fig. 6B). CD14+ monocytes were 
clearly discriminatory among the groups. Severe and fatal cases were in 
close proximity to each other and distinct from healthy controls and 
moderate cases (Fig. 6C). Auto-regulatory genes such as LAGLS1, 
LGALS3, and S100A4 were upregulated in the CD14+ monocytes of 

Fig. 5. Hierarchical clustering of lung cells based on gene set enrichment analysis. (A) Hierarchical clustering of the regulated pathways of significantly 
modulated genes in airway secretory cells from different disease states. (B) Hierarchical clustering of the regulated pathways of significantly modulated genes in M1 
macrophages from different disease states. (C) Hierarchical clustering of the regulated pathways of significantly modulated genes in M2 macrophages from different 
disease states. (D) Hierarchical clustering of the regulated pathways of significantly modulated genes in macrophages from different disease states. The dendrograms 
are colored according to the p values; gray cells indicate a lack of significant enrichment. 
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COVID-19 patients but not in healthy controls. Notably, the classical 
monocyte markers S100A8 and S100A9 were upregulated in moderate 
cases, but their expression levels were reduced in severe and fatal cases 
(Fig. 6C). Non-classical CD16+ monocytes were not present in healthy 
controls, but their gene expression pattern could distinguish moderate 
cases from severe and fatal cases. Compared with severe cases, CD16+

monocytes from moderate cases had higher expression levels of com-
plement factors such C1QA/B/C; they also showed higher interferon- 
induced transmembrane protein 3 expression compared with these 
cells from severe and fatal cases. Severe and fatal cases distinctively 
expressed inflammatory chemokine CXCL8 and other inflammatory 
marker genes such as PTGS2, S100A12, S100A8, and MMP9 (Fig. 6D). 

The airway secretory cells of healthy controls expressed numerous 
S100 fused-type proteins (SFTPs). The PCA of airway secretory cells 
clearly demonstrated that COVID-19 cases did not express these SFTP 
genes (Fig. 7A). M1 macrophages from moderate cases expressed IF130, 
but this expression diminished with disease severity. Notably, M1 
macrophages from all disease states expressed several chemokines, such 
as CCL2, CCL7, and CXCL10 (Fig. 7B). Additionally, genes responsible 
for inflammation, such as APOE, CD68, GRN, human leukocyte antigen 
(HLA)-DQA1, HLA-DQB1, HLA-DRB1, SERPINA1, and CCL18, were 
induced in M1 and M2 macrophages (Fig. 7B and C), indicating that 
macrophages play a predominantly inflammatory role. The PCA of 
macrophages revealed distinct clustering among groups. Macrophages 
from severe and fatal cases expressed HSPA1A, HSPB1, and HSPA6, 
indicating that an unfolded protein response was triggered. Further-
more, the severe and fatal cases showed higher expression levels of 
CCL3L1 and CCL4L2, indicating a chemokine-mediated action or 
neutrophil chemotaxis activation (Fig. 7D). 

4. Discussion 

Mapping the immunological cell landscape of SARS-CoV-2 infection 
is of great importance to help combat the COVID-19 pandemic. An 
enormous effort by scientists across the globe has enabled us to under-
stand the pathological nature of this virus. However, many in-
vestigations have been directed toward specific target tissues, and a lack 
of synchronized effort in collecting different tissues across the disease 
severity spectrum makes it difficult to form a complete picture. Here, we 
provide a comprehensive understanding of the varying disease states 
based on the cellular landscape of blood and lung in moderate, severe, 
and fatal COVID-19 cases. 

Cross-sectional data analysis of moderate, severe, and fatal COVID- 
19 cases enabled us to identify links between the cellular landscape 
and disease outcome. For instance, we observed the abundant presence 
of lymphocytes in the blood of moderate cases, while B-cell subtypes and 
CD8+ T cells were largely missing in severe and fatal cases. This was also 
evident in previous studies [30–32] and in cases of SARS-CoV-1 infec-
tion [33]. T cells control hyperactive innate immune responses [34]. The 
loss of B-cell subtypes and CD4+ and CD8+ T cells may heighten the 
innate immune response for a prolonged period. This is in accordance 
with Zhou et al. [35], who identified a heightened innate immune 
response in the BALF of COVID-19 patients. 

We observed that increased numbers of non-classical CD14+ and 
CD16+ monocytes were present in severe and fatal cases. Monocytes 
from older adults exhibited a higher proportion of non-classical mono-
cytes but expressed a basal level of cytokines [36,37]. Another study 
reported that COVID-19 patients with ARDS have a higher percentage of 
intermediate CD14+ and CD16+ monocytes, which constitute almost 

Fig. 6. Principal component analysis (PCA) and heatmap of blood immune cells. (A) PCA and heatmap of significantly modulated genes along with their 
expression in CD4+ T cells from different disease states. (B) PCA and heatmap of significantly modulated genes along with their expression in CD8+ T cells from 
different disease states. (C) PCA and heatmap of significantly modulated genes along with their expression in CD14+ monocytes from different disease states. (D) PCA 
and heatmap of significantly modulated genes along with their expression in CD16+ monocytes from different disease states. The heatmaps are colored according to 
the gene expression values. 
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50% of the total cell population [38]. In our study, CD14+ and CD16+

monocytes comprised approximately 13% of the total cell ratio; how-
ever, this was increased to 31% and 57% in severe and fatal cases, 
respectively. Interestingly, the CD14+ and CD16+ monocytes expressed 
the macrophage marker FCN1, suggesting monocyte differentiation into 
macrophages upon SARS-CoV-2 infection. Moreover, we noted that the 
expression of HLA-DRA/DPA1 was absent in CD16+ monocytes isolated 
from severe and fatal cases. Such downregulation may hamper antigen 
presentation to CD4+ T cells and is often associated with a sepsis-like 
condition [39]. We also observed that immature transitional B cells in 
moderate patients activated CD4+ T-cell differentiation (Fig. 4A), and 
convalescent COVID-19 patients exhibited a virus-specific CD4+ T-cell 
response [40]. This is an indication that moderate cases may have un-
dergone proper switching from the innate to adaptive response, whereas 
this switching did not take place in severe cases. 

To date, most severe and fatal cases occur in older adults, and the 
clinical symptoms in children are mostly mild [41], raising concerns of 
immunosenescence. Indeed, naïve CD4+ T cells and CD8+ T cells 
decrease as we age [42], whereas naïve CD4+ T cells obtained from 
gestational age 18–22 weeks differentiate into the FoxP3+, CD25+ Treg 
phenotype [43]. This may explain the high fatality rate in older people 
and supports the idea, in line with our findings, that the depletion of T 
cells is linked to COVID-19 severity. 

We also investigated lung epithelial cells and their immune 
connection using cross-sectional datasets obtained from lung or BALF. A 
dramatic increase of airway secretory cells and M1-like macrophages 
was evident. In severe and fatal cases, airway secretory cells were devoid 
of SFTPs. This indicates a surfactant dysfunction-like disorder that may 
induce breathing difficulties, leading to ARDS, which often requires 

mechanical ventilation. Indeed, surfactant therapy is effective in 
reversing the impaired oxygenation in COVID-19 patients with ARDS 
[44]. Macrophages accounted for 50% of the total cell population in 
severe and fatal cases in our analysis, which is in line with previous 
observations in which post-mortem lungs from Middle East respiratory 
syndrome (MERS) and SARS-CoV-1 patients exhibited a predominant 
presence of macrophages [45]. Macrophages exert their effect as innate 
immune cells by triggering the adaptive immune response, initiating the 
phagocytosis process [46,47]. However, in our data analysis, macro-
phages from severe and fatal cases exhibited a complete decline in 
phagocytosis. This suggests not only quantitative changes but also 
qualitative changes in the immune landscape of COVID-19 patients. 
Notably, CD163+ macrophages have been reported as intermediate 
macrophages and are increased in severe COVID-19 patients [48,49]. 
This is in agreement with our analysis because M1 macrophages that 
exhibited high CD163 expression in severe COVID-19 cases accounted 
for 20% of the total cell population. We found that macrophages ob-
tained from severe and fatal COVID-19 cases expressed various 
neutrophil and monocyte attractant chemokines, such as CCL2, CCL3, 
CCL4, CCL7, CCL8, CXCL8, CXCL9, CXCL10, and CXCL11. Patients 
requiring mechanical ventilation exhibited an extensive occurrence of 
these chemokines [50–52]. These chemokines may conceivably attract 
more inflammatory cells to local sites in the lung and prolong local 
inflammation, thereby initiating pulmonary dysfunction [53]. Thus, 
these chemokines can be used as prognostic biomarkers of severity, and 
the early detection of these markers may help in designing effective 
therapeutic interventions. 

To the best of our knowledge, this is the first cross-sectional study 
using single-cell RNA-seq datasets from COVID-19 patients with various 

Fig. 7. Principal component analysis (PCA) and heatmap of lung cells. (A) PCA and heatmap of significantly modulated genes along with their expression in 
airway secretory cells from different disease states. (B) PCA and heatmap of significantly modulated genes along with their expression in M1 macrophages from 
different disease states. (C) PCA and heatmap of significantly modulated genes along with their expression in M2 macrophages from different disease states. (D) PCA 
and heatmap of significantly modulated genes along with their expression in macrophages from different disease states. The heatmaps are colored according to the 
gene expression values. 
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degrees of severity. We identified that the immunological cellular 
landscape in blood was altered in severe and fatal cases. Notably, T-cell 
and B-cell subsets were reduced, and the number of monocytes was 
increased (see graphical abstract). This resulted in an aberrant periph-
eral adaptive immune response. We also found that macrophages in lung 
acquired an inflammatory phenotype, with a high abundance of 
CD163+ M1-like macrophages. Our data revealed a qualitative alter-
ation because these immune cells adopted a pro-inflammatory pheno-
type and secreted an extensive set of chemokines that could continue to 
recruit additional inflammatory immune cells to local sites. Despite 
these distinct findings, our study had some limitations. Owing to the 
limited number of severe and fatal cases in children and young adults, 
we were unable to draw direct comparisons between T-cell depletion 
and aging. Because the number of T cells may be the determining factor 
for successful viral clearance, future studies should focus on the rela-
tionship between T-cell numbers and disease severity among children, 
young adults, and those over 65 years of age. This will shed light on the 
differential outcomes between children and older adults with SARS- 
CoV-2 infection. 
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