Skip to main content
Malaria Journal logoLink to Malaria Journal
. 2021 Aug 25;20:349. doi: 10.1186/s12936-021-03866-0

Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: a systematic review of literature

Elahe Tajbakhsh 1, Tebit Emmanuel Kwenti 2,3,4, Parya Kheyri 5, Saeed Nezaratizade 5, David S Lindsay 6, Faham Khamesipour 7,8,
PMCID: PMC8390284  PMID: 34433465

Abstract

Background

Malaria still constitutes a major public health menace, especially in tropical and subtropical countries. Close to half a million people mainly children in Africa, die every year from the disease. With the rising resistance to frontline drugs (artemisinin-based combinations), there is a need to accelerate the discovery and development of newer anti-malarial drugs. A systematic review was conducted to identify the African medicinal plants with significant antiplasmodial and/or anti-malarial activity, toxicity, as wells as assessing the variation in their activity between study designs (in vitro and in vivo).

Methods

Key health-related databases including Google Scholar, PubMed, PubMed Central, and Science Direct were searched for relevant literature on the antiplasmodial and anti-malarial activities of African medicinal plants.

Results

In total, 200 research articles were identified, a majority of which were studies conducted in Nigeria. The selected research articles constituted 722 independent experiments evaluating 502 plant species. Of the 722 studies, 81.9%, 12.4%, and 5.5% were in vitro, in vivo, and combined in vitro and in vivo, respectively. The most frequently investigated plant species were Azadirachta indica, Zanthoxylum chalybeum, Picrilima nitida, and Nauclea latifolia meanwhile Fabaceae, Euphorbiaceae, Annonaceae, Rubiaceae, Rutaceae, Meliaceae, and Lamiaceae were the most frequently investigated plant families. Overall, 248 (34.3%), 241 (33.4%), and 233 (32.3%) of the studies reported very good, good, and moderate activity, respectively. Alchornea cordifolia, Flueggea virosa, Cryptolepis sanguinolenta, Zanthoxylum chalybeum, and Maytenus senegalensis gave consistently very good activity across the different studies. In all, only 31 (4.3%) of studies involved pure compounds and these had significantly (p = 0.044) higher antiplasmodial activity relative to crude extracts. Out of the 198 plant species tested for toxicity, 52 (26.3%) demonstrated some degree of toxicity, with toxicity most frequently reported with Azadirachta indica and Vernonia amygdalina. These species were equally the most frequently inactive plants reported. The leaves were the most frequently reported toxic part of plants used. Furthermore, toxicity was observed to decrease with increasing antiplasmodial activity.

Conclusions

Although there are many indigenous plants with considerable antiplasmodial and anti-malarial activity, the progress in the development of new anti-malarial drugs from African medicinal plants is still slothful, with only one clinical trial with Cochlospermum planchonii (Bixaceae) conducted to date. There is, therefore, the need to scale up anti-malarial drug discovery in the African region.

Supplementary Information

The online version contains supplementary material available at 10.1186/s12936-021-03866-0.

Keywords: Malaria, Medicinal plants, Antiplasmodial activity, Antimalarial activity

Background

Malaria still constitutes a major public health menace, especially in tropical and subtropical countries. Various species of Plasmodium, transmitted through the bite of an infected female Anopheles mosquito, cause malaria, including Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax, and Plasmodium knowlesi. Among these species, P. falciparum is the most virulent, responsible for the highest morbidity and mortality. It is also the predominant species in sub-Saharan Africa (SSA), a region with the highest number of malaria cases and deaths in the world. According to the World Health Organization (WHO), there were 228 million cases, and 405,000 malaria attributed deaths in 2018 [1]. In SSA, children and pregnant women are the most at-risk groups [13].

Malaria can be treated using chemotherapy but there is widespread resistance to many of the drugs. The first case of resistance to artemisinins was reported in Cambodia in 2006 and has then spread to most of South-East Asia [4, 5]. The safety of chemoprophylaxis is also a major concern; for instance, primaquine, atovaquone, and doxycycline are contraindicated in pregnant women and children [6]. All these shortcomings necessitate the discovery and production of new drugs to treat malaria.

In the past 50 years, natural compounds including plant products, have played a major role in drug discovery and have provided value to the pharmaceutical industry [7]. For instance, therapeutics for various infectious diseases, cancer, and other debilitation diseases caused by metabolic disorders have all benefitted from many drug classes that were initially developed based on active compounds from plant sources [8]. Furthermore, quinine and artemisinin, and their synthetic derivatives which are the mainstay of anti-malarial chemotherapy, were also derived from plant sources. In malaria-endemic areas, especially in Africa, many people rely on herbal medicines as the first line of treatment [9]. The common reasons for their preference vary from the cost of standard drugs, availability and accessibility, perceived effectiveness, low side effect, and faith in traditional medicines [10].

Reviews of the antiplasmodial and anti-malarial activities of medicinal plants are needed to drive research into the discovery and production of new anti-malarial drugs. Only a few reviews of the antiplasmodial or anti-malarial activity of medicinal plants have been published in the scientific literature [1116]. These reviews focused only on studies with high antiplasmodial or anti-malarial activity and hardly report on their toxicity. The purpose of this study was to review medicinal plants with moderate to very good antiplasmodial and anti-malarial activities, as well as assess the variation in the activities between different methods. Furthermore, the toxicity of plant species is highlighted.

Methods

The literature was reviewed in search of scientific articles reporting antiplasmodial activities (IC50, ED50, LD50, and parasite suppression rate) of medicinal plants used in Africa to treat malaria. The current study conforms to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines [17].

Search strategy and selection criteria

Relevant articles were searched in health-related electronic databases including PubMed, PubMed Central, Google Scholar, and ScienceDirect using the keywords: Traditional herbs or Medicinal plants or Antiplasmodial activity or Antimalarial activity or Herbal medicine or Plasmodium.

The search was limited to studies published in English or containing at least an abstract written in English until May 2020. The titles and abstracts were subsequently examined by two reviewers, independently (parallel method) to identify articles reporting the antiplasmodial activity of medicinal plants. In the case of any discrepancy in their reports, a third reviewer was brought in to resolve the issue. Relevant papers were equally manually cross-checked to identify further references. The following data were extracted from the selected articles by the reviewers: plant species, plant family, place of collection of plant, parts of the plant used, type of study (whether in vitro, in vivo, or human), the extraction solvent used, IC50 or ED50 values, parasite suppression rate, isolated compounds, interaction with known malarial drugs (whether synergistic or antagonistic), and toxicity. Articles that did not report antiplasmodial or anti-malarial activity of medicinal plants as well as review articles were excluded. The entire selection process is presented in Fig. 1.

Fig. 1.

Fig. 1

Flowchart of the selection process for publications included in this review

In this study, antiplasmodial activity pertains to studies performed in vitro using different strains of Plasmodium falciparum, meanwhile, anti-malarial activity is reserved for in vivo studies performed using mice and various parasite models (including Plasmodium berghei, Plasmodium yoelii, and Plasmodium chabaudi) and reporting parasite suppression rate.

Categorization of antiplasmodial and anti-malarial activities

For in vitro studies, the antiplasmodial activity of an extract was considered very good if IC50 < 5 µg/ml, good 5 µg/ml ≤ IC50 < 10 µg/ml, and moderate 10 µg/ml ≤ IC50 < 20 µg/ml [18]. For in vivo studies, the anti-malarial activity of an extract is considered very good if the suppression is ≥ 50% at 100 mg/kg body weight/day, good if the suppression is ≥ 50% at 250 mg/kg body weight/day, and moderate if the suppression is ≥ 50% at 500 mg/kg body weight/day [18]. Antiplasmodial activities of 20 µg/ml and above for in vitro studies and anti-malarial ≥ 50% at > 500 mg/kg body weight/day for in vivo studies, were considered inactive.

Risk of bias in individual studies

The level of risk of bias for the study was likely to be high mainly because of differences in the studies and the methods used to determine the antiplasmodial or anti-malarial activity. The stains of Plasmodium used to assess the antiplasmodial or anti-malarial activity of the medicinal plants equally varied between studies. Furthermore, the extraction solvent, as well as the extraction yield of the plants in the different studies, was not the same, which may have accounted for the variation in the antiplasmodial and anti-malarial activities for the same plants but in the different studies.

Results

The PRISMA flowchart (Fig. 1) presents a four-phase study selection process in the present systematic review study. A total of 25,159 titles were identified in the initial search. After the title and abstract screening, 228 full-text articles were retrieved. Of these, a final 200 articles were identified for the review.

For this review, the evaluation of the individual plant species was considered as an independent study, so it is common for one article to have more than one study depending on the number of plant species evaluated. In all, there were 722 independent studies. Five hundred and ninety-on (81.9%) of the independent studies were in vitro (Table 1), 90 (12.4%) were in vivo (Table 2) and 40 (5.5%) were both in vitro and in vivo (Table 3). There was only one human study (clinical trial) conducted so far (Table 4). The selected research articles were from 31 African countries. Out of the 200 research articles reviewed, most of them were from Nigeria 58 (29.0%), Kenya 24 (12.0%), Ethiopia 13 (6.5%), Cameroon 12 (6.0%), Ivory Coast 11 (5.5%), D.R. Congo 10 (5.0%), and Burkina Faso 7 (3.5%) (Fig. 2). The studies cover the period from 1989 to 2020.

Table 1.

In vitro antiplasmodial activity of African medicinal plants

Plant species Plant family Source Country of study Part of plant used Extraction solvent Antiplasmodial Activity IC50 or ED50 or LD50 Strain of Plasmodium Tested Toxicity (value; assay)
Dicoma anomala subsp. Gerrardii Compositae [19] South Africa Whole plant Methanol, Water, Hexane, Dichloromethane Very gooda 1.865 µM IC50 Plasmodium falciparum 3D7, D10 Nd
Abutilon grandiflorum Malvaceae [20] Tanzania Roots Ethyl Acetate Moderate 10 µg/ml IC50 Plasmodium falciparum K1 Nd
Acacia mellifera Fabaceae [21] Kenya Inner Barks Methanol Very Good 4.48 µg/ml IC50 Plasmodium falciparum D6 No
Acacia nilotica Fabaceae [22] South Africa Twigs Dichloromethane/Methanol Moderate 13 µg/ml IC50 Plasmodium falciparum D10 Nd
[23] Sudan Seeds Methanol Very Good 0.9–4.1 µg/ml IC50 Plasmodium falciparum 3D7, Dd2 No
Acacia polyacantha Fabaceae [20] Tanzania Root Barkss Ethyl Acetate Moderate 13 µg/ml IC50 Plasmodium falciparum K1 Nd
Acacia tortilis Fabaceae [24] Kenya Stem Barks Methanol Moderate 13.4 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[22] South Africa Whole Plant Dichloromethane/Methanol Very Good 4.8 µg/ml IC50 Plasmodium falciparum D10 Nd
Acacia xanthoploea Fabaceae [25] South Africa Stem Barks Acetone Moderate 10.1 µg/ml IC50 Plasmodium falciparum UP1 (CQ-R) Nd
[24] Kenya Stem Barks Methanol Moderate 17.3 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Acacia mellifera Fabaceae [24] Kenya Stem Barks Methanol Moderate 12.3 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Amorpha fruticosa Euphorbiaceae [26] Kenya Leaves Methanol Moderate 13.8 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Acampe pachyglossa Orchidaceae [20] Kenya Leaves Ethyl Acetate Moderate 11 µg/ml IC50 Plasmodium falciparum K1 Nd
Acanthospermum hispidum DC Compositae [27] Burkina Faso Stems, Leaves Crude Alkaloid Good 4–10 µg/ml IC50 Plasmodium falciparum W2 Nd
[28] Ivory Coast Stems and Leaves Ethanol Moderate 13.7 µg/ml IC50 Plasmodium falciparum Fcb1/Colombia Strain Nd
[29] Republic of Congo Leaves Methanolic, Ethanol Very Good 2.8 µg/ml IC50 Plasmodium falciparum No
Achyranthes aspera Amaranthaceae [22] South Africa Whole plant Dichloromethane/Methanol Good 9.9 µg/ml IC50 Plasmodium falciparum D10 Nd
Acmella caulirhiza Compositae [30] Kenya Whole plant Dichloromethane Good 5.201–9.939 µg/ml IC50 Plasmodium falciparum W2, D6 Nd
Acridocarpus chloropterus Malpighiaceae [31] Tanzania Roots Dichloromethane Good 5.06 µg/ml IC50 Plasmodium falciparum K1 No
Achyranthes aspera Amaranthaceae [20] Tanzania Root barks Ethyl Acetate Very Good 3 µg/ml IC50 Plasmodium falciparum K1 Nd
Adansonia digitata Malvaceae [20] Kenya Stem barks Ethyl Acetate Good 8.2 µg/ml IC50 Plasmodium falciparum K1 Nd
Adenia cissampeloides Passifloraceae [32] Ghana Whole plant Ethanol Good 8.521 µg/ml IC50 Plasmodium falciparum 3D7 Nd
Adhatoda latibracteata Acanthaceae [33] Gabon Stems Dichloromethane Very Good 0.7–1.6 µg/ml IC50 Plasmodium falciparum Fcbm W2 No
Aerva javanica Amaranthaceae [34] Sudan Whole plant Petroleum Ether/Chloroform Very Good  < 5 µg/ml IC50 Plasmodium falciparum Nd
Aerva lanata Amaranthaceae [20] Tanzania Whole plant Ethyl Acetate Good 8.6 µg/ml IC50 Plasmodium falciparum K1 Nd
Aframomum giganteum Zingiberaceae [33] Gabon Stems Dichloromethane Moderate 8.3–13.5 µg/ml IC50 Plasmodium falciparum Fcbm W2 No
Agathosma apiculata Rutaceae [22] South Africa Whole plant Dichloromethane/Methanol Good 5.2 µg/ml IC50 Plasmodium falciparum D10 Nd
Ageratum conyzoides Compositae [24] Kenya Whole plant Methanol Moderate 11.5–12.1 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[30] Kenya Whole plant Dichloromethane Very Good 2.15–3.444 µg/ml IC50 Plasmodium falciparum W2, D6 Nd
Ajuga remota Lamiaceae [35] Kenya Ns Ns Gooda 8.2 µM IC50 Plasmodium falciparum FCA 20/GHA No
[35] Kenya Aerial parts Chloroform Good 8.2 µg/ml IC50 Plasmodium falciparum FCA 20/GHA No
Alafia barteri Apocynaceae [36] Nigeria Leaves Water Very Good 1.5 µg/ml IC50 Plasmodium falciparum Nd
Albizia coriaria Fabaceae [30] Kenya Stem barks Dichloromethane Good 6.798–10.679 µg/ml IC50 Plasmodium falciparum W2, D6 Nd
[24] Kenya Stem barks Methanol Moderate 15.2–16.8 µg/ml C50 Plasmodium falciparum D6, W2 Nd
Albizia gummifera Fabaceae [24] Kenya Stem barks Methanol Good 6.7 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[20] Tanzania Stem barks Ethyl Acetate Moderate 15 µg/ml IC50 Plasmodium falciparum K1 Nd
Albizia versicolor Welw.ex Oliv Fabaceae [37] South Africa Roots Dichloromethane Very Good 2.12 µg/ml IC50 Plasmodium falciparum NF54 Nd
Alchornea cordifolia Euphorbiaceae [38] Ivory Coast Leaves Ethanol Very Gooda 0.2–0.5 μM IC50 Plasmodium falciparum Fcm29 Cameroon And Nigerian Strain No
[39] Ivory Coast Stems, leaves Water, Ethanol, Pentane Very Good 2.43–4.56 µg/ml IC50 Plasmodium falciparum Fcm29, Fcb1, Plasmodium falciparum CQ-S (Nigerian) No
[40] D.R.Congo Leaves Water Very Good 4.84 µg/ml IC50 Plasmodium falciparum K1 No
Alepidea amatymbica Apiaceae [22] South Africa Whole plant Dichloromethane/Methanol Moderate 12.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Aloe marlothii Xanthorrhoeaceae [22] South Africa Whole plant Dichloromethane Very Good 3.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Aloe ferox Xanthorrhoeaceae [22] South Africa Whole plant Dichloromethane/Methanol Good 8 µg/ml IC50 Plasmodium falciparum D10 Nd
Aloe maculata Xanthorrhoeaceae [22] South Africa Whole plant Dichloromethane/Methanol Moderate 12.4 µg/ml IC50 Plasmodium falciparum D10 Nd
Aloe pulcherrima Xanthorrhoeaceae [41] Ethiopia Roots N-Hexane, Chloroform, Acetone Ans Methanol Moderatea 18.6 µg/ml IC50 Plasmodiumfalciparum Nd
Aloe secundiflora Xanthorrhoeaceae [24] Kenya Leaves Methanol Moderate 15.4 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Alstonia boonei Apocynaceae [42] Nigeria Stem barks Ethanol Nd nd Plasmodium beghei NK-65 No
[43] Ivory Coast Stem barks Ethanol Moderate 12.3 µg/ml IC50 Plasmodium falciparum FCB1 Nd
Alstonia congensis Apocynaceae [44] D.R. Congo Leaves, Root Barks, Stem Barks Water, Methanol Very Good 2—5 µg/ml IC50 Plasmodium falciparum K1 Nd
Ampelocissus africana Vitaceae [20] Kenya Whole plant Ethyl Acetate Good 9.0 µg/ml IC50 Plasmodium falciparum K1 Nd
Andrographis peniculata Acanthaceae [45] Cambodia Whole plant Dichloromethane Moderate 12.7 µg/ml IC50 Plasmodium falciparum W2 Nd
Annickia kummeriae Annonaceae [31] Tanzania Leaves Methanol Very Good 0.12 µg/ml IC50 Plasmodium falciparum K1 No
Anisopappus chinensis Compositae [46] D.R. Congo Whole plant Methanolic and dichloromethane Good 6.53 µg/ml IC50 Plasmodium falciparum (3D7, W2), Plasmodium berghei berghei No
Annona reticulata Annonaceae [47] Cameroon Roots Ethanol Very good 1.90 µg/ml IC50 Plasmodium falciparum W2 No
Annona muricata Annonaceae [48] Ivory Coast Leaves Pentane Moderate 8–18 µg/ml IC50 Plasmodium falciparum FCM29, Plasmodium falciparum CQ-S (Nigerian) Nd
[49] Cameroon Leaves Hexane Very Good 2.03 µg/ml IC50 Plasmodium falciparum W2 Nd
[47] Cameroon Stem barks Ethanol Very Good 1.45 µg/ml IC50 Plasmodium falciparum W2 No
Anogeissus leiocarpus Combretaceae [50] Nigeria Ns Methanol, Water, Butanol, Ethyl Acetate Moderate 10.94–13.77 µg/ml IC50 Plasmodium falciparum 3D7, K1 Yes (SI = 121; mouse [NBMH])
[51] Ivory Coast Leaves Methylene Chloride Very Good 3.8 µg/ml IC50 Plasmodium falciparum K1 No
Anonidium mannii Annonaceae [49] Cameroon Twigs Methanol Very Good 2.04 µg/ml IC50 Plasmodium falciparum W2 Nd
Ansellia africana Orchidaceae [20] Tanzania Leaves Ethyl Acetate Moderate 10 µg/ml IC50 Plasmodium falciparum K1 Nd
Anthocleista grandiflora Gilg Gentianaceae [37] South Africa Stem barks Dichloromethane Good 8.69 µg/ml IC50 Plasmodium falciparum NF54 Nd
Anthocleista nobilis Gentianaceae [52] Burkina Faso Leaves Dichloromethane Moderate 10 µg/ml Plasmodium falciparum Nd
Anthocleista vogelii Gentianaceae [53] Nigeria Roots Petroleum Ether Good 9.50 µg/ml IC50 Plasmodium falciparum D10 Nd
Arenga engleri Arecaceae [25] South Africa Stem barks Dichloromethane Very Good 1.7 µg/ml IC50 Plasmodium falciparum UP1 (CQ-R) Yes (ID50 = 35 µg/ml; Monkey kidney cells)
Artabotrys monteiroae Annonaceae [22] South Africa Twigs Dichloromethane/Methanol Good 8.7 µg/ml IC50 Plasmodium falciparum D10 Nd
Artemisia afra Asteraceae [54] Zimbabwe Leaves Petrolether/Ethylacetate Moderate 8.9–15.3 µg/ml IC50 Plasmodium falciparum Pow, Dd2 Nd
[22] South Africa Leaves Dichloromethane Good 5 µg/ml IC50 Plasmodium falciparum D10 Nd
[24] Kenya Leaves Methanol Good 3.9–9.1 µg/ml C50 Plasmodium falciparum D6, W2 Nd
Artemisia annua L Asteraceae [24] Kenya Leaves Methanol Good 4.7–5.5 µg/ml C50 Plasmodium falciparum D6, W2 Nd
Artocarpus communis Moraceae [55] Cameroon Stems, Leaves Ethanol, Water, Dichloromethane, Methanol, Hexane Very Good 0.67–8.20 µg/ml IC50 Plasmodium falciparum W2 Nd
Asparagus virgatus Asparagaceae [22] South Africa Whole plant Dichloromethane/Methanol Good 8 µg/ml IC50 Plasmodium falciparum D10 Nd
Aspilia africana Asteraceae [56] Uganda Shoots Ethyl Acetate Moderate 9.3–11.5 µg/ml IC50 Plasmodium falciparum D10, K1 Nd
Aspilia pruliseta Compositae [24] Kenya Root BARKS Methanol Good 6.8–9.7 µg/ml C50 Plasmodium falciparum D6, W2 Nd
Asystasia gangetica Acanthaceae [22] South Africa Twigs Dichloromethane/Methanol Moderate 16 µg/ml IC50 Plasmodium falciparum D10 Nd
Azadirachta indica Meliaceae [57] Ivory Coast Stems, leaves Water Very Good 2.35–6.8 µg/ml IC50 Plasmodium falciparum Fcb1 & F32 Nd
[45] Cambodia Barks Dichloromethane Very Good 4.7 µg/ml IC50 Plasmodium falciparum W2 Nd
[58] Sudan Leaves Methanol Very Good 1.7–5.8 µg/ml IC50 Plasmodium falciparum 3D7, Dd5 Nd
[59] Togo Leaves Ethanol Very Good 2.48–2.5 µg/ml IC50 Plasmodium falciparum W2, D6 Nd
Azanza garckeana Malvaceae [60] Malawi Leaves Dichloromethane Moderate 11·79 µg/ml IC50 Plasmodium falciparum, Vl/S Nd
Balanites aegyptiaca Zygophyllaceae [24] Kenya Root barks Methanol Good 8.9 µg/ml C50 Plasmodium falciparum D6, W2 Nd
[21] Kenya Root barks Methanol Very good 3.49 µg/ml IC50 Plasmodium falciparum D6 No
Balanites maughamii Zygophyllaceae [25] South Africa Stem barks Dichloromethane Very good 1.94 µg/ml IC50 Plasmodium falciparum UP1 (CQ-R) Nd
Barringtonia racemosa Lecythidaceae [22] South Africa Twigs Dichloromethane/Methanol Good 5.7 µg/ml IC50 Plasmodium falciparum D10 Nd
Berberis holstii Berberidaceae [61] Malawi Roots Dichloromethane/Methanol Very good 0.17 µg/ml IC50 Plasmodium falciparum 3D7 Nd
[24] Kenya Root barks Methanol Very Good  < 5 µg/ml C50 Plasmodium falciparum D6, W2 Nd
Bergia suffruticosa Elatinaceae [62] Burkina Faso Whole plant Dichloromethane Moderate 19.53 µg/ml IC50 Plasmodium falciparum 3D7 & W2 Nd
Berula erecta Apiaceae [22] South Africa Whole plant Dichloromethane/Methanol Good 6.6 µg/ml IC50 Plasmodium falciparum D10 Nd
[24] Kenya Leaves Methanol Good 9.9 µg/ml C50 Plasmodium falciparum D6, W2 Nd
[22] South Africa Leaves Methanol Good 5 µg/ml IC50 Plasmodium falciparum D10 Nd
Bidens engleri Compositae [63] Senegal Leaves Petroleum ether Moderate 9–18 µg/ml IC50 Plasmodium falciparum FcM29, FcB1, Plasmodium vinckei petteri Yes (IC50 = 10 µg/ml; Vero cells)
Bixa orellana Bixaceae [45] Cambodia Leaves Water Good 9.3 µg/ml IC50 Plasmodium falciparum W2 Nd
Boscia angustifolia Capparaceae [24] Kenya Stem barks Water Very good 1.4–4.7 µg/ml C50 Plasmodium falciparum D6, W2 Nd
Boscia salicifolia Capparaceae [26] Kenya Stem barks Methanol good 1.1–8.8 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Boswellia dalzielii Burseraceae [50] Nigeria Ns Methanol, Water, Butanol, Ethyl Acetate Moderate 14.59–15.1 µg/ml IC50 Plasmodium falciparum 3D7, K1 Yes (SI ≥ 101; Mouse [NBMH]
[62] Burkina Faso Leaves Methanol Moderate 18.85 µg/ml IC50 Plasmodium falciparum 3D7 & W2 Nd
Bridelia micrantha Phyllanthaceae [26] Kenya Stem Barks Methanol Moderate 14.2–19.4 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Bridelia mollis Hutch Phyllanthaceae [37] South Africa Roots Dichloromethane Very good 3.06 µg/ml IC50 Plasmodium falciparumNF54 Nd
Brucea javanica Simaroubaceae [45] Cambodia Roots Dichloromethane Very good 1.0 µg/ml IC50 Plasmodium falciparum W2 Nd
Bruguiera gymnorhiza Rhizophoraceae [22] South Africa Twigs Dichloromethane/Methanol Moderate 11.7 µg/ml IC50 Plasmodium falciparum D10 Nd
Burchellia bubalina Rubiaceae [22] South Africa Twigs Dichloromethane/Methanol Moderate 18 µg/ml IC50 Plasmodium falciparum D10 Nd
Caesalpinia bonducella Fabaceae [64] Nigeria Aerial Parts Ethyl Acetate Moderate 16 µg/ml EC50 Plasmodium falciparum Yes (SI = 0.29–0.69; mouse mammary tumour [FM3A])
Canthium setosum Rubiaceae [65] Benin Aerial Parts Methylene Chloride Very good 2.77–4.80 µg/ml IC50 Plasmodium falciparum 3D7 & K1 Nd
Capparis tomentosa Lam Capparaceae [37] South Africa Roots Dichloromethane Very good 2.19 µg/ml IC50 Plasmodium falciparum NF54 Nd
Cardiospermum halicacabum Sapindaceae [22] South Africa Whole Plant Dichloromethane/Methanol Moderate 20 µg/ml IC50 Plasmodium falciparum D10 Nd
Carica papaya Caricaceae [66] Nigeria Leaves Ethyl Acetate Very good 2.96 µg/ml IC50 Plasmodium falciparum D10, DD2 No
Carissa edulis Apocynaceae [21] Kenya Root barks Methanol Good 6.41 µg/ml IC50 Plasmodium falciparum D6 No
Carpolobia alba Polygalaceae [53] Nigeria Roots Dichloromethane Good 7.10 µg/ml IC50 Plasmodium falciparum D10 Nd
Cassia abbreviata Fabaceae [60] Malawi Roots Dichloromethane Very Good 2·88 µg/ml IC50 Plasmodium falciparum Vl/S Nd
Cassia alata Fabaceae [67] D.R.Congo Leaves Ethanol, Methanol, Petroleum Ether, Chloroform Very Good  < 0.1—5.4 µg/ml IC50 Plasmodium Falciparum Nd
Senna occidentalis L Fabaceae [68] Mozambique And Portugal Roots N-Hexane Moderate 19.3 µg/ml IC50 Plasmodium falciparum 3D7 Nd
[26] Kenya Root Barks Methanol Moderate 18.8 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[69] D.R. Congo Leaves Petroleum Ether Very Good 1.5 µg/ml IC50 Plasmodium falciparum Nd
[67] D.R. Congo Leaves Ethanol, Methanol, Petroleum Ether, Chloroform Very Good  < 0.1—0.25 µg/ml IC50 Plasmodium falciparum Nd
Cassia siamea Fabaceae [70] Togo Leaves Water Good  < 7 µg/ml IC50 Plasmodium falciparum Nd
[27] Burkina Faso Leaves Crude Alkaloid Good 4–10 µg/ml IC50 Plasmodium falciparum W2 Nd
Cassia tora Fabaceae [23] Sudan Aerial parts Methanol Good 3.3–5.2 µg/ml IC50 Plasmodium falciparum 3D7, Dd2 No
Catha edulis Celastraceae [22] South Africa Roots Dichloromethane Very Good 0.68 µg/ml IC50 Plasmodium falciparum D10 Nd
Cedrelopsis grevei Rutaceae [71] Madagascar Leaves Water Moderate 17.5 mg/L IC50 Plasmodium falciparum Nd
Celtis integrifolia Cannabaceae [52] Burkina Faso Leaves Dichloromethane Very Good 3.7 µg/ml IC50 Plasmodiumfalciparum Yes (SI ≥ 0.5; HepG2 cells)
Centella asiatica Apiaceae [22] South Africa Leaves Dichloromethane/Methanol Good 8.3 µg/ml IC50 Plasmodium falciparum D10 Nd
[72] Kenya Root Barks Dichloromethane Moderate 14.9–15.4 µg/ml IC50 Plasmodium falciparum K1, NF54 Nd
Cephalanthus natalensis Rubiaceae [22] South Africa Twigs Dichloromethane/Methanol Moderate 16.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Ceratotheca sesamoides Pedaliaceae [63] Senegal Leaves Petroleum ether Moderate 15–23 µg/ml IC50 Plasmodium falciparum FcM29, FcB1, Plasmodium vinckei petteri Yes (IC50 = 50 µg/ml; Vero cells)
Chrysophyllum perpulchrum Sapotaceae [43] Ivory Coast Stem Barks Ethanol Moderate 12.8 µg/ml IC50 Plasmodium falciparumFCB1 Nd
Cinchona succirubra Rubiaceae [73] S. Tome´ And Prı ´Ncipe Barks Petroleum Ether, Dichloromethane, Ethyl Acetate, Methanol Good  < 10 µg/ml IC50 Plasmodium falciparum3D7 And Dd2 Nd
Cinnamonum camphora Lauraceae [57] Ivory Coast Cortex Water Moderate 9.37–16.6 µg/ml IC50 Plasmodium falciparumFcb1 & F32 Nd
Cissampelos mucronata Menispermaceae [20] Tanzania Roots Ethyl Acetate Very Good 0.38 µg/ml IC50 Plasmodium falciparumK1 Nd
[26] Kenya Leaves Methanol Very Good 4.4 µg/ml IC50 Plasmodium falciparumD6, W2 Nd
Cissampelos pareira Menispermaceae [24] Kenya Root Barks Methanol Good 5.2–6.5 µg/ml C50 Plasmodium falciparumD6, W2 Nd
[74] Kenya Root Methanol Good 5.85–7.70 µg/ml IC50 Plasmodium falciparumNF54, ENT30 Nd
Cissus populnea Vitaceae [50] Nigeria Ns Methanol, Water, Butanol, Ethyl Acetate Moderate 15.81–19.91 µg/ml IC50 Plasmodium falciparum3D7, K1 Yes (SI ≥ 84, Mouse [NBMH])
Citropsis articulata Rutaceae [75] Uganda Root Barks Ethyl Acetate Nd nd Plasmodium falciparumFcb1 Nd
Clausena anisota Rutaceae [24] Kenya Stem Barks Methanol Good 8.4–9.2 µg/ml C50 Plasmodium falciparumD6, W2 Nd
[22] South Africa Twigs Dichloromethane/Methanol Moderate 18 µg/ml IC50 Plasmodium falciparumD10 Nd
Clematis brachiata Thunb Ranunculaceae [37] South Africa Roots Dichloromethane Good 5.36 µg/ml IC50 Plasmodium falciparumNF54 Nd
[21] Kenya Root Barks Methanol Very Good 4.15 µg/ml IC50 Plasmodium falciparumD6 No
Clerodendrum eriophyllum Lamiaceae [72] Kenya Root Barks Dichloromethane Very Good 2.7–5.3 µg/ml IC50 Plasmodium falciparumK1, NF54 Nd
[24] Kenya Leaves Methanol Very Good  < 1.8–3.9 µg/ml C50 Plasmodium falciparumD6, W2 Nd
Clerodendrum glabrum E. Mey Lamiaceae [37] South Africa Leaves Dicloromethane Good 8.89 µg/ml IC50 Plasmodium falciparumNF54 Nd
Clerodendrum glabrum var. glabrum Lamiaceae [22] South Africa Twigs Dichloromethane/Methanol Moderate 19 µg/ml IC50 Plasmodium falciparumD10 Nd
Clerodendrum johnstonii Lamiaceae [24] Kenya Root Barks Methanol Good 8.5 µg/ml C50 Plasmodium falciparumD6, W2 Nd
Rotheca myricoides Lamiaceae [76] Kenya Root Barks Methanol Good 4.0—8.4 µg/ml IC50 Plasmodium falciparum(K39, ENT30, NF54, V1/S) Nd
[26] Kenya Root Barks Methanol Good 4.7–8.3 µg/ml IC50 Plasmodium falciparumD6, W2 Nd
[20] Tanzania Root Barks Ethyl Acetate Moderate 11 µg/ml IC50 Plasmodium falciparumK1 Nd
[72] Kenya Root Barks Dichloromethane Moderate 10.9–15.8 µg/ml IC50 Plasmodium falciparumK1, NF54 Nd
Clerodendrum rotundifolium Lamiaceae [24] Kenya Leaves Dichloromethane Good  < 3.9–15.7 µg/ml C50 Plasmodium falciparumD6, W2 Nd
[77] Uganda Leaves Ethyl Acetate Very Good 0.03–0.21 µg/ml IC50 Plasmodium falciparumNF54 & FCR3 Nd
Clutia abyssinica Peraceae [24] Kenya Leaves Methanol Moderate 7.8–11.3 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Clutia hirsuta Peraceae [22] South Africa Whole Plant Dichloromethane/Methanol Moderate 15 µg/ml IC50 Plasmodium falciparum D10 Nd
Clutia robusta Peraceae [24] Kenya Leaves Methanol Good 3.4–7.5 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Cochlospermum planchonii Bixaceae [78] Burkina Faso Rhizomes Methanol, Dichloromethane Gooda 2.4–11.5 μg/ml IC50 Plasmodium falciparum 3D7 Nd
[51] Ivory Coast Roots Methylene Chloride Very Good 4.4 µg/ml IC50 Plasmodium falciparum K1 No
Cochlospermum tinctorium Bixaceae [79] Burkina Faso Tubecles Ns Very Good 1–2 µg/ml IC50 Plasmodium falciparum Nd
[79] Burkina Faso Tubercles Water Very Good 0.4–1.56 µg/ml IC50 Plasmodium falciparum Fcbl And F32 Nd
Cola caricaefolia Malvaceae [48] Ivory Coast Leaves Pentane Moderate 11–16 µg/ml IC50 Plasmodium falciparum FCM29, CQ-S (Nigerian) No
Combretum collinum Combretaceae [52] Burkina Faso Leaves Dichloromethane Very Good 0.2 µg/ml IC50 Plasmodiumfalciparum Nd
Combretum micranthum Combretaceae [57] Ivory Coast Stem, Leaves Water Very Good 0.88–1.7 µg/ml IC50 Plasmodium falciparum Fcb1 & F32 Nd
Combretum psidioides subsp. Psilophyllum Combretaceae [20] Tanzania Root Barks Ethyl Acetate Good 6.5 µg/ml IC50 Plasmodium falciparum K1 Nd
Combretum zeyheri Combretaceae [22] South Africa Twigs Dichloromethane/Methanol Moderate 15 µg/ml IC50 Plasmodium falciparum D10 Nd
Commiphora africana Burseraceae [24] Kenya Stem Barks Methanol Good 9.6–10.2 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Commiphora schimperi Burseraceae [26] Kenya Stem Barks Methanol Very Good 3.9–5.2 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[21] Kenya Inner Barks Methanol Very Good 4.63 µg/ml IC50 Plasmodium falciparum D6 No
Conyza albida Asteraceae [22] South Africa Whole Plant Dichloromethane/Methanol Very Good 2 µg/ml IC50 Plasmodium falciparum D10 Nd
Conyza podocephala Asteraceae [22] South Africa Whole Plant Dichloromethane/Methanol Good 6.8 µg/ml IC50 Plasmodium falciparum D10 Nd
Conyza scabrida Asteraceae [22] South Africa Flower Dichloromethane/Methanol Good 7.8 µg/ml IC50 Plasmodium falciparum D10 Nd
Copaifera religiosa Fabaceae [33] Gabon Leaves Dichloromethane Moderate 8.5–13.4 µg/ml IC50 Plasmodium falciparum FCB, 3D7 Yes (CC50 = 4.87 µg/ml; human embryonic lung cells [MRC-5])
Cordia myxa Boraginaceae [52] Burkina Faso Leaves Dichloromethane Good 6.2 µg/ml IC50 Plasmodiumfalciparum Yes (SI = 0.5–0.9; HrpG2 cells)
Coula edulis Olacaceae [80] Cameroon Stem Barks Methanol Good 5.79–13.8 µg/ml IC50 Plasmodium falciparum 3D7, DD2 No
Crossopteryx febrifuga Rubiaceae [27] Burkina Faso Leaves Crude Alkaloid Good 4–10 µg/ml IC50 Plasmodium falciparum W2 Nd
Crotalaria burkeana Fabaceae [22] South Africa Roots Dichloromethane Good 9.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Croton gratissimus var. subgratissimus Euphorbiaceae [22] South Africa Leaves Dichloromethane Very Good 3.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Croton lobatus Euphorbiaceae [65] Benin Roots Methanol Good 2.80–6.56 µg/ml IC50 Plasmodium falciparum 3D7 & K1 Nd
Croton macrostachyus Euphorbiaceae [30] Kenya Leaves, Stems Dichloromethane Very Good 2.72 µg/ml IC50 Plasmodium falciparum W2, D6 Nd
Croton menghartii Euphorbiaceae [22] South Africa Leaves Dichloromethane/Methanol Very Good 1.7 µg/ml IC50 Plasmodium falciparum D10 Nd
Croton pseudopulchellus Euphorbiaceae [25] South Africa Stem Barks Chloroform Very Good 3.45 µg/ml IC50 Plasmodium falciparum UP1 (CQ-R) Nd
Croton zambesicus Euphorbiaceae [55] Cameroon Stem Barks Ethanol, Water, Dichloromethane, Methanol, Hexane Good 0.88–9.14 µg/ml IC50 Plasmodium falciparum W2 Nd
[34] Sudan Fruits Petroleum Ether/Chloroform Very Good  < 5 µg/ml IC50 Plasmodium falciparum Nd
Cryptolepis sanguinolenta Apocynaceae [81] Guinea-Bissau Leaves, Roots Ethanol, Chcl3, Chloroform Very Good 1.79 µg/ml IC50 Plasmodium falciparum K1, T996 Nd
[82] Ghana Roots Ethanol Very gooda 0.031 µg/ml IC50 Plasmodium falciparum K1, Plasmodium berghei Nd
[83] D.R. Congo Root barks Water, ethanol, chloroform Very good 27–41 ng/ml IC50 Plasmodium falciparum D6, K1, W2, Plasmodium berghei yoelii, Plasmodium berghei berghei Nd
[84] Ghana Roots Hexane, ethanol, dichloromethane Very gooda 0.2–0.6 μM IC50 Plasmodium vinckei petteri, Plasmodium berghei ANKA Nd
Cussonia spicata Thunb Araliaceae [22] South Africa Fruits Dichloromethane/Methanol Moderate 14 µg/ml IC50 Plasmodium falciparum D10 Nd
[37] South Africa Root Barks Dichloromethane Very Good 3.25 µg/ml IC50 Plasmodium falciparum NF54 Nd
Cussonia zimmermannii Araliaceae [20] Tanzania Root Barks Petroleum Ether Very Good 3.3 µg/ml IC50 Plasmodium falciparum K1 Nd
Cuviera longiflora Rubiaceae [80] Cameroon Leaves Dichloromethane/Methanol Moderate 13.91–20.24 µg/ml IC50 Plasmodium falciparum 3D7, DD2 No
Cyathala prostate Amaranthaceae [43] Ivory Coast Whole Plant Ethanol Moderate 12.4 µg/ml IC50 Plasmodium falciparum FCB1 Nd
Cyathula schimperiana Amaranthaceae [24] Kenya Root Barks Methanol Moderate 5–17.6 µg/ml C50 Plasmodium falciparum D6, W2 Nd
Cymbopogon validus Poaceae [22] South Africa Whole Plant Dichloromethane/Methanol Good 5.8 µg/ml IC50 Plasmodium falciparum D10 Nd
Cyperus articulatus Cyperaceae [24] Kenya Tubers Methanol Good 4.8–8.7 µg/ml C50 Plasmodium falciparum D6, W2 Nd
[74] Kenya Rhizomes Methanol Good 4.84–8.68 µg/ml IC50 Plasmodium falciparum NF54, ENT30 Nd
Cyphostemma spp Vitaceae [86] Namibia Whole Plant Methanol Very Good 3.276 µg/ml IC50 Plasmodium falciparum 3D7 Nd
Dacryodes edulis Burseraceae [80] Cameroon Leaves Dichloromethane/Methanol Good 6.45–8.62 µg/ml IC50 Plasmodium falciparum 3D7, DD2 No
[85] Cameroon Root Barks Methylene Chloride/Methanol Very Good 0.37 µg/ml IC50 Plasmodiumfalciparum No
Dichapetalum guineense Dichapetalaceae [65] Benin Leaves Methanol Moderate 7.35- > 20 µg/ml IC50 Plasmodium falciparum 3D7 & K1 Nd
Dichrostachys cinerea Wight et Arn Fabaceae [37] South Africa Roots Dichloromethane Very Good 2.1 µg/ml IC50 Plasmodium falciparum NF54 Nd
Dicoma tomentosa Asteraceae [62] Burkina Faso Whole Plant Dichloromethane, Methanol Good 7.04–7.90 µg/ml IC50 Plasmodium falciparum 3D7 & W2 Nd
[87] Burkina Faso Whole plant Dichloromethane Very Good 1.9–3.4 µg/ml IC50 Plasmodium Falcipârum 3D7, W2, Plasmodium berghei Nd
Diospyros abysinica Ebenaceae [75] Uganda Leaves Ethyl Acetate Nd nd Plasmodium falciparum Fcb2 Nd
Diospyros mespiliformis Ebeneceae [86] Namibia Leaves, Roots Methanol Very Good 3.179–3.523 µg/ml IC50 Plasmodium falciparum 3D7 Nd
[37] South Africa Roots Dichloromethane Very Good 4.40 µg/ml IC50 Plasmodium falciparum NF54 Nd
Diospyros monbuttensis Ebenaceae [88] Nigeria Leaves Methanol Very Good 3.2 nM Plasmodium falciparum Nd
Dombeya shupangae Malvaceae [20] Tanzania Root Barks Ethyl Acetate Good 7.5 µg/ml IC50 Plasmodium falciparum K1 Nd
Dorstenia convexa Moraceae [56] Cameroon Twigs Ethanol, Water, Dichloromethane, Methanol, Hexane Good 0.28–8.95 µg/ml IC50 Plasmodium falciparum W2 Nd
Dorstenia klaineana Moraceae [33] Gabon Stems Methanol Moderate 16.7–17.0 µg/ml IC50 Plasmodium falciparum Fcbm, W2 Yes (SI = 16.2–28.89; human embryonic lung cells [MRC-5])
Dracaena cambodiana Asparagaceae [45] Cambodia Stems Dichloromethane Good 8.7 µg/ml IC50 Plasmodium falciparum W2 Nd
Drypetes natalensis Putranjivaceae [31] Tanzania Roots Ethanol Very Good 1.06 µg/ml IC50 Plasmodium falciparum K1 No
Ekebergia capensis Meliaceae [22] South Africa Fruits Dichloromethane/Methanol Moderate 10 µg/ml IC50 Plasmodium falciparum D10 Nd
[76] Kenya Stem Barks Chloroform Good 3.9—13.4 µg/ml IC50 Plasmodium falciparum K39, ENT30, NF54, V1/S Nd
[21] Kenya Inner Barks Methanol Very Good 3.97 µg/ml IC50 Plasmodium falciparum D6 No
[24] Kenya Stem Barks Methanol Moderate 10.5 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Elaeis guineensis Arecaceae [32] Ghana Leaves Ethanol Very Good 1.195 µg/ml IC50 Plasmodium falciparum 3D7 Nd
Elaeodendron buchananii Celastraceae [24] Kenya Stem Barks Methanol Moderate 17.1 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Enantia chlorantha Annonaceae [55] Cameroon Stem Barks Ethanol, Water, Dichloromethane, Methanol, Hexane Good 0.68–14.72 µg/ml IC50 Plasmodium falciparum W2 Nd
[40] DR Congo Stem Barks Water Good 7.77 µg/ml IC50 Plasmodium falciparum K1 Yes (CC50 = 3.0 µg/ml; human embryonic lung cells [MRC-5])
Entandrophragma angolense Meliaceae [89] Cameroon Stem Barks Dichloromethane/Methanol Moderate 18.4 µg/ml IC50 Plasmodium falciparum W2 Nd
Entandrophragma caudatum Meliaceae [25] South Africa Stem Barks Dichloromethane Very Good 2.9 µg/ml IC50 Plasmodium falciparum UP1 (CQ-R) No
Entandrophragma palustre Meliaceae [46] D.R. Congo Stem barks Methanol Moderate 15.84 µg/ml IC50 Plasmodium falciparum 3D7, W2, Plasmodium berghei berghei Nd
Erigeron floribundus Asteraceae [48] Ivory Coast Leaves Pentane Good 4.3-10 µg/ml IC50 Plasmodium falciparum FCM29, Plasmodium falciparum CQ-S (Nigerian) Nd
Erioglossum edule Sapindaceae [45] Cambodia Barks Dichloromethane Very Good 1.7 µg/ml IC50 Plasmodium falciparum W2 Nd
Erythrina abyssinica Fabaceae [75] Uganda Barks Ethyl Acetate Nd nd Plasmodium falciparum Fcb3 Nd
Erythrina lysistemon Fabaceae [25] South Africa Stem Barks Acetone Very Good 4.8 µg/ml IC50 Plasmodium falciparum UP1 (CQ-R) Nd
Erythrina sacleuxii Fabaceae [20] Tanzania Root Barks Ethyl Acetate Very Good 3.0 µg/ml IC50 Plasmodium falciparum K1 Nd
Erythrococca anomala Euphorbiaceae [43] Ivory Coast Leaves Ethanol Moderate 13.1 µg/dl IC50 Plasmodium falciparum FCB1 Nd
Euclea divinorum Ebenaceae [24] Kenya Root Barks Methanol Good 6.9–12.4 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Euclea natalensis Ebenaceae [22] South Africa Twigs Dichloromethane/Methanol Very Good 4.6 µg/ml IC50 Plasmodium falciparum D10 Nd
Eucomis autumnalis Asparagaceae [22] South Africa Bulbs Dichloromethane/Methanol Good 9.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Euphorbia hirta Euphorbiaceae [90] D.R. Congo Aerial Parts Methanol, Hexane: Ethyl Acetate Gooda 1.1—5.4 µg/ml IC50 Plasmodium falciparum No
[70] D.R. Congo Whole Plant Petroleum Ether Very Good 1.2 µg/ml IC50 Plasmodium falciparum Nd
Euphorbia tirucalli Euphorbiaceae [22] South Africa Leaves Dichloromethane Moderate 12 µg/ml IC50 Plasmodium falciparum D10 Nd
Fadogia agrestis Rubiaceae [27] Burkina Faso Leaves Crude Alkaloid Good 4–10 µg/ml IC50 Plasmodium falciparum W2 Nd
Fagara macrophylla Rutaceae [28] Ivory Coast Stem Barks Ethanol Very Good 2.3 µg/ml IC50 Plasmodium falciparum Fcb1/Colombia Strain No
Fagaropsis angolensis Rutaceae [24] Kenya Stem Barks Methanol Good 4.2–6.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Fagraea fragrans Gentianaceae [45] Cambodia Stems Dichloromethane Moderate 12.8 µg/ml IC50 Plasmodium falciparum W2 Nd
Ficus capraefolia Moraceae [52] Burkina Faso Leaves Dichloromethane Very Good 1.8 µg/ml IC50 Plasmodium falciparum Yes (SI = 0.4; HepG2 cells)
Ficus platyhylla Moraceae [50] Nigeria Ns Methanol, Water, Butanol, Ethyl Acetate Moderate 13.77–15.28 µg/ml IC50 Plasmodium falciparum 3D7, K1 Yes (SI ≥ 77; mouse [NBMH])
Ficus sur Moraceae [24] Kenya Stem Barks Methanol Moderate 8.5–15.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[76] Kenya Stem Barks Chloroform, Hexane Moderate 9.0–19.2 µg/ml IC50 Plasmodium falciparum K39 (CQ-S), ENT30, NF54, V1/S Nd
Ficus thonningii Moraceae [29] Republic Of Congo Leaves Methanol, Ethanol Good 9.61 µg/ml IC50 Plasmodium falciparum No
[50] Nigeria Ns Methanol, Water, Butanol, Ethyl Acetate Moderate 14.09–25.06 µg/ml IC50 Plasmodium falciparum 3D7, K1 Yes (SI ≥ 103; mouse [NBMH])
Ficus sycomorus Moraceae [27] Burkina Faso Leaves Crude Alkaloid Good 4–10 µg/ml IC50 Plasmodium falciparum W2 Nd
Flueggea virosa Phyllanthaceae [91] Comoros Leaves Water/Methanol Very Good 2 µg/ml IC50 Plasmodium falciparum W2 No
[26] Kenya Stem Barks Methanol Very Good 2.2–3.6 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[22] South Africa Leaves, Twigs Water Moderate 11.4 µg/ml IC50 Plasmodium falciparum D10 Nd
Fuerstia africana Lamiaceae [92] Rwanda Leaves, Stems Methanol Good 4.1–6.9 µg/ml IC50 Plasmodium falciparum 3D7, W2 Yes (SI = 1.9; human normal foetal lung fibroblast [WI-38)
[21] Kenya Leaves Methanol Very Good 3.76 µg/ml IC50 Plasmodium falciparum D6 No
[24] Kenya Whole Plant Methanol Very Good 0.9–2.4 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Funtumia elastica Apocynaceae [43] Ivory Coast Stem Barks Ethanol Very Good 3.6 µg/ml IC50 Plasmodium falciparum FCB1 Nd
[28] Ivory Coast Stem Barks Ethanol Very Good 3.3 µg/ml IC50 Plasmodium falciparum Fcb1/Colombia Strain No
Funtumia latifolia Apocynaceae [75] Uganda Leaves Ethyl Acetate Nd nd Plasmodium falciparum Fcb4 Nd
Garcinia kola Clusiaceae [67] D.R. Congo Seeds Ethanol, Methanol, Petroleum Ether, Chloroform Good 1.02—15.75 µg/ml IC50 Plasmodium falciparum Nd
[69] D.R. Congo Stem Barks Petroleum Ether Very Good 1.6 µg/ml IC50 Plasmodium falciparum Nd
Gardenia lutea Rubiaceae [23] Sudan Leaves Methanol Good 3.3–5.2 µg/ml IC50 Plasmodium falciparum 3D7, Dd2 No
Gardenia sokotensis Rubiaceae [62] Burkina Faso Leaves Dichloromethane Moderate 14.01 µg/ml IC50 Plasmodium falciparum 3D7 & W2 Nd
Glinus oppositifolius Molluginaceae [93] Mali Aerial parts Chloroform Moderate 15.52–18.70 µg/ml IC50 Plasmodium falciparum W2 & 3D7 No
Gloriosa superba Colchicaceae [22] South Africa Whole plant Dichloromethane/Methanol Moderate 17 µg/ml IC50 Plasmodium falciparum D10 Nd
Gnidia cuneata Thymelaeaceae [22] South Africa Stems Dichloromethane Moderate 15.9 µg/ml IC50 Plasmodium falciparum D10 Nd
Gnidia kraussiana var. kraussiana Thymelaeaceae [22] South Africa Leaves, Twigs Dichloromethane/Methanol Moderate 10.8 µg/ml IC50 Plasmodium falciparum D10 Nd
Gomphrena celosioides Amaranthaceae [65] Benin Aerial Parts Methanol Good 4.26–14.97 µg/ml IC50 Plasmodium falciparum 3D7 & K1 Nd
[70] Togo Aerial Parts Water Moderate  < 15 µg/ml IC50 Plasmodium falciparum Nd
[20] Tanzania Whole plant Ethyl Acetate Moderate 15 µg/ml IC50 Plasmodium falciparum K1 Nd
Guiera senegalensis Combretaceae [57] Ivory Coast Stem, Leave Water Good 0.79–7.03 µg/ml IC50 Plasmodium falciparum Fcb1 & F32 Nd
[94] Mali Roots Chloroform Very Gooda  < 4 µg/ml IC50 Plasmodium falciparum Nd
Gutenbergia cordifolia Asteraceae [21] Kenya Leaves Methanol Very Good 4.40 µg/ml IC50 Plasmodium falciparum D6 No
Gynandropsis gynandra Cleomaceae [20] Tanzania Roots Ethyl Acetate Moderate 14 µg/ml IC50 Plasmodium falciparum K1 Nd
H. suaveolens Lamiaceae [53] Nigeria Leaves Petroleum Ether Very Good 2.54 µg/ml IC50 Plasmodium falciparum D10 Nd
Haplophyllum tuberculatum Rutaceae [23] Sudan Aerial Parts Methanol Very Good 1.2–1.5 µg/ml IC50 Plasmodium falciparum 3D7, Dd2 No
Harrisonia abyssinica Rutaceae [58] Sudan Stem Barks Methanol Good 4.7–10 µg/ml IC50 Plasmodium falciparum 3D7, Dd3 Nd
[72] Kenya Stem Barks Dichloromethane Good 4.4–5.6 µg/ml IC50 Plasmodium falciparum K1, NF54 Nd
[26] Kenya Root Barks Methanol Good 7.8–11.4 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[95] Kenya Barks/Roots/Stem Water Very Good 1.0 µg/ml IC50 Plasmodium Knowlesi Nd
Harrisonia perforata Rutaceae [45] Cambodia StemS Dichloromethane Good 6.0 µg/ml IC50 Plasmodium falciparum W2 Nd
Harungana madagascariensis Hypericaceae [40] D.R.Congo Stem Barks Water Good 9.64 µg/ml IC50 Plasmodium falciparum K1 No
[20] Tanzania Roots Ethyl Acetate Very Good 4.0 µg/ml IC50 Plasmodium falciparum K1 Nd
Helichrysum gymnocephalum Asteraceae [96] Madagascar Leaves Essential Oil In Active 25 mg/l Plasmodium falciparum Fcb1 Nd
Helichrysum cymosum Asteraceae [97] South Africa Leaves Water, Essential Oil Very Gooda 1.25 µg/ml IC50 Plasmodium falciparum FCR-3 Yes
Helichrysum nudifolium Asteraceae [22] South Africa Whole plant Dichloromethane/Methanol Good 6.8 µg/ml IC50 Plasmodium falciparum D10 Nd
Hermannia depressa Malvaceae [22] South Africa Whole plant Dichloromethane/Methanol Good 6.9 µg/ml IC50 Plasmodium falciparum D10 Nd
Hexalobus crispiflorus Annonaceae [98] Cameroon Stem Barks Water Very Gooda 2.0 µg/ml IC50 Plasmodium falciparum W6 Nd
Hippobromus pauciflorus Sapindaceae [22] South Africa Twigs Dichloromethane/Methanol Good 5.9 µg/ml IC50 Plasmodium falciparum D10 Nd
Holarrhena floribunda Apocynaceae [99] Cameroon Stem Barkss Water, Ethanol Good 1.02 − 18.53 μg/mL IC50 Plasmodium falciparum W2,D6, FCR-3, 3D7 Nd
Hoslundia opposita Lamiaceae [20] Tanzania Root Barks Petroleum Ether Moderate 10 µg/ml IC50 Plasmodium falciparum K1 Nd
[26] Kenya Leaves Methanol Moderate 15.2–25.6 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[75] Uganda Leaves Ethyl Acetate Nd nd Plasmodium falciparum Fcb5 Nd
Hunteria eburnea Apocynaceae [43] Ivory Coast Stem Barks Ethanol Very Good 2.2 µg/ml IC50 Plasmodium falciparum FCB1 Nd
Hybanthus enneaspermus Violaceae [65] Benin Aerial Parts Methanol Moderate 2.57- > 20 µg/ml IC50 Plasmodium falciparum 3D7 & K1 Nd
Hymenocardia acida Phyllanthaceae [51] Ivory Coast Leaves Methylene Chloride Good 6.9 µg/ml IC50 Plasmodium falciparum K1 Yes (SI = 6–10; rat skeletal muscle myoblast [L6])
Hypericum aethiopicum Hypericaceae [22] South Africa Leaves/Flowers Dichloromethane/Methanol Very Good 1.4 µg/ml IC50 Plasmodium falciparum D10 Nd
Hypericum lanceolatum Hypericaceae [80] Cameroon Stem Barks Methanol, N-Hexane, Ethyl Acetate, N-Butanol Very Good 3.98 µg/ml IC50 Plasmodium falciparum W2, SHF4 Nd
Hypoestes forskaolii Acanthaceae [24] Kenya Root Barks Methanol Good 4.3–6.7 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Hyptis pectinata Lamiaceae [22] South Africa Leaves, Stem, Flower Dichloromethane/Methanol Moderate 17.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Icacina senegalensis Icacinaceae [100] Senegal Leaves Methanol Good 4.7–8 µg/ml IC50 Plasmodium falciparum 3D7, 7G8 No
Isolona hexaloba Annonaceae [40] D.R. Congo Root Barks Water Moderate 15.28 µg/ml IC50 Plasmodium falciparum K1 No
Khaya grandifoliola Meliaceae [101] Cameroon Barks, Seeds Methanol-Methylene Chloride Gooda 1.25—9.63 μg/ml IC50 Plasmodium falciparum W2 Nd
Khaya senegalensis Meliaceae [50] Nigeria Ns Methanol, Water, Butanol, Ethyl Acetate Moderate 15.46–28.12 µg/ml IC50 Plasmodium falciparum 3D7, K1 Yes (SI ≥ 69; mouse [NBMH])
Kigelia africana Bignoniaceae [24] Kenya Leaves Methanol Moderate 15.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[80] Cameroon Stem Barks Ethyl Acetate Moderate 11.15 μg/mL IC50 Plasmodium falciparum W2 No
Kirkia wilmsii Kirkiaceae [22] South Africa Leaves Dichloromethane/Methanol Very Good 3.7 µg/ml IC50 Plasmodium falciparum D10 Nd
Kniphofia foliosa Xanthorrhoeaceae [102] Ethiopia Roots Dichloromethane Very Good 3.8 µg/mL ED50 Plasmodium falciparum 3D7 No
Landolphia lanceolata Apocynaceae [103] Congo Brazzaville Roots Dichloromethane Moderate 11 µg/ml IC50 Plasmodium falciparum Fcm29-Cameroon Nd
Lannea edulis Anacardiaceae [20] Kenya Whole Plant Ethyl Acetate Moderate 17 µg/ml IC50 Plasmodium falciparum K1 Nd
Lantana camara Verbenaceae [22] South Africa Leaves, Twigs Dichloromethane/Methanol Moderate 11 µg/ml IC50 Plasmodium falciparum D10 Nd
Leonotis mollissima Lamiaceae [20] Tanzania Leaves Ethyl Acetate Good 9 µg/ml IC50 Plasmodium falciparum K1 Nd
Leonotis africana Lamiaceae [33] Gabon Stems Dichloromethane Moderate 15.2–27.1 µg/ml IC50 Plasmodium falciparum Fcbm W2 Yes (SI = 6.07–6.82; human embryonic lung cells [MRC-5])
Leonotis leonurus Lamiaceae [22] South Africa Leaves, Twigs Dichloromethane/Methanol Good 5.4 µg/ml IC50 Plasmodium falciparum D10 Nd
Leonotis nepetifolia Lamiaceae [22] South Africa Whole Plant Dichloromethane/Methanol Moderate 15 µg/ml IC50 Plasmodium falciparum D10 Nd
Leonotis ocymifolia Lamiaceae [22] South Africa Leaves Dichloromethane/Methanol Good 6.1 µg/ml IC50 Plasmodium falciparum D10 Nd
Leptadenia madagascariensis Apocynaceae [91] Comoros Ns Dichloromethane Good 9 µg/ml IC50 Plasmodium falciparum W2 No
Leucas calostachys Lamiaceae [95] Kenya Whole Plant Water Very Good 0.79 µg/ml IC50 Plasmodium Knowlesi Nd
Leucas martinicensis Lamiaceae [22] South Africa Whole Plant Dichloromethane/Methanol Moderate 13.3 µg/ml IC50 Plasmodium falciparum D10 Nd
Lippia javanica Verbenaceae [24] Kenya Root Barks Methanol Good 5.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[104] Kenya Roots Dichloromethane/Ethyl Acetate Moderate 16.7—19.2 µg/ml IC50 Plasmodium falciparum K39, V1/S Nd
[22] South Africa Roots Dichloromethane Very Good 3.8 µg/ml IC50 Plasmodium falciparum D10 Nd
[25] South Africa Leaves Acetone Very Good 4.26 µg/ml IC50 Plasmodium falciparum UP1 (CQ-R) Nd
Lippia multiflora Verbenaceae [57] Ivory Coast Leaves Water Very Good 1.18—2.34 µg/ml IC50 Plasmodium falciparum Fcb1 & F32 Nd
Lophira lanceolata Ochnaceae [52] Burkina Faso Leaves Dichloromethane Very Good 4.7 µg/ml IC50 Plasmodium falciparum Nd
Ludwigia erecta Onagraceae [24] Kenya Whole plant Methanol Very Good 0.9–1.6 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Macrostylis squarrosa Rutaceae [22] South Africa Stems Dichloromethane/Methanol Moderate 16 µg/ml IC50 Plasmodium falciparum D10 Nd
Maesa lanceolata Primulaceae [22] South Africa Twigs Dichloromethane/Methanol Good 5.9 µg/ml IC50 Plasmodium falciparum D10 Nd
Markhamia lutea Bignognaceae [76] Uganda Leaves Ethyl Acetate Nd Nd Plasmodium falciparum Fcb6 Nd
Maytenus heterophylla Celastraceae [24] Kenya Root barks Methanol Very Good 1.8–3.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Maytenus obtusifolia Celastraceae [24] Kenya Root barks Methanol Good  < 1.9–5.8 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Maytenus putterlickioides Celastraceae [26] Kenya Root Barks Methanol Good 4.4–10.2 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Maytenus senegalensis Celastraceae [58] Sudan Stem barks Methanol Nd 3.9–10 µg/ml IC50 Plasmodium falciparum 3D7, Dd9 Nd
[26] Kenya Root barks Methanol Good 4.7–9.8 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[22] South Africa Roots Dichloromethane Moderate 15.5 µg/ml IC50 Plasmodium falciparum D10 Nd
[20] Tanzania Stem barks Ethyl Acetate Very Good 0.16 µg/ml IC50 Plasmodium falciparum K1 Nd
[31] Tanzania Roots Ethanol Very Good 2.05 µg/ml IC50 Plasmodium falciparum K1 No
Maytenus undata Celastraceae [26] Kenya Leaves Water Very Good 0.95–1.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Melia azedarach Meliaceae [46] D.R. Congo Leaves Dichloromethane Moderate 19.14 µg/ml IC50 Plasmodium falciparum 3D7, W2, Plasmodium berghei berghei Nd
Microdesmis keayana Pandaceae [51] Ivory Coast Leaves Methylene Chloride Moderate 12.2 µg/ml IC50 Plasmodium falciparum K1 No
Microglossa pyrifolia Asteraceae [24] Kenya Leaves Methanol Moderate 10.4 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[77] Uganda Leaves Ethyl Acetate Very Good 0.03–0.05 µg/ml IC50 Plasmodium falciparum NF54 & FCR3 Nd
[92] Rwanda Leaves Dichloromethane Very Good 1.5–2.4 µg/ml IC50 Plasmodium falciparum 3D7, W2 Yes (SI = 3.2; human normal foetal lungfibroblast [WI-38])
Mikania cordata Compositae [20] Tanzania Leaves Ethyl Acetate Moderate 14 µg/ml IC50 Plasmodium falciparum K1 Nd
Millettia zechiana Fabaceae [28] Ivory Coast Stem Barks Ethanol Moderate 16.1 µg/ml IC50 Plasmodium falciparum Fcb1/Colombia Strain Nd
[43] Ivory Coast Stem Barks Ethanol Moderate 14.1 µg/ml IC50 Plasmodium falciparum FCB1 Nd
Momordica balsamina Cucurbitaceae [22] South Africa Stems Dichloromethane/Methanol Good 5.3 µg/ml IC50 Plasmodium falciparum D10 Nd
[68] Mozambique Aerial Parts Ns Very Gooda 1 μM Plasmodium berghei, Plasmodium falciparum Nd
Momordica charantia Cucurbitaceae [88] Nigeria Leaves Methanol Very Good 12.5 nM Plasmodium falciparum Nd
Momordica foetida Cucurbitaceae [77] Uganda Leaves Water Good 0.35–6.16 µg/ml IC50 Plasmodium falciparum NF54 & FCR3 Nd
Monodora myristica Annonaceae [33] Gabon Stem Methanol Good 5.5–6.1 µg/ml IC50 Plasmodium falciparum Fcbm W2 No
[49] Cameroon Leaves Methanol Good 9.03 µg/ml IC50 Plasmodium falciparum W2 Nd
Morinda lucida Rubiaceae [74] S. Tome´ And Prı ´Ncipe Barks Ethanol Good  < 10 µg/ml IC50 Plasmodium falciparum 3D7 and Dd2 Nd
[88] Nigeria Leaves Methanol Very Good 25 nM Plasmodium falciparum Nd
[53] Nigeria Roots Dichloromethane Moderate 13.37 µg/ml IC50 Plasmodium falciparum D10 Nd
Morinda morindoides Rubiaceae [43] Ivory Coast Leaves Ethanol Good 9.8 µg/ml IC50 Plasmodium falciparum FCB1 Nd
[28] Ivory Coast Leaves Ethanol Moderate 11.6 µg/ml IC50 Plasmodium falciparum Fcb1/Colombia Strain Nd
Moringa oleifera Moringaceae [26] Kenya Leaves Methanol Moderate 9.8 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Motandra guineensis Apocynaceae [43] Ivory Coast Leaves Ethanol Moderate 16.3 µg/ml IC50 Plasmodium falciparum FCB1 Nd
Mundulea sericea Fabaceae [86] Namibia Leaves, Shoots Methanol Very Good 3.279–3.352 µg/ml IC50 Plasmodium falciparum 3D7 Nd
Mitragyna inermis Rubiaceae [93] Mali Leaves Chloroform Very Good 4.36–4.82 µg/ml IC50 Plasmodium falciparum W2 & 3D7 No
Nauclea latifolia Rubiaceae [93] Mali Barks Chloroform Good 5.36–6.2 µg/ml IC50 Plasmodium falciparum W2 & 3D7 Yes (IC50 = 50 µg/ml; BALB/C mouse)
[28] Ivory Coast Barks Ethanol Good 8.9 µg/ml IC50 Plasmodium falciparum Fcb1/Colombia Strain No
[106] Ivory Coast Roots, Stem Water Good 0.6–7.5 µg/ml IC50 Plasmodium falciparum Fcb1- Colombian And Nigerian Strains Nd
[43] Ivory Coast Root Barks Ethanol Good 7.3 µg/ml IC50 Plasmodium falciparum FCB1 Nd
Nauclea pobeguinii Rubiaceae [107] D.R.Congo Stem Barks Ethanol In Active 32 µg/ml IC50 Plasmodium falciparum, Plasmodium yeolii, Plasmodium berghei No
Neoboutonia glabrescens Euphorbiaceae [55] Cameroon Leaves Ethanol, Water, Dichloromethane, Methanol, Hexane Good 7.56 µg/ml IC50 Plasmodium falciparum W2 Nd
Neorautanenia mitis Fabaceae [31] Tanzania Tubers Ethanol Very Good 1.58 µg/ml IC50 Plasmodium falciparum K1 No
Newbouldia laevis Bignognaceae [108] Togo Leaves Ethanol Moderate 12.6 µg/ml IC50 Plasmodium falciparum Nd
[109] Nigeria Leaves Water Moderate 19.5 µg/ml IC50 Plasmodium falciparum Nd
[53] Nigeria Roots Dichloromethane Good 5.00 µg/ml IC50 Plasmodium falciparum D10 Nd
Ocimum americana Lamiaceae [24] Kenya Whole Plant Methanol Moderate 8.9–12.1 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[22] South Africa Whole Plant Dichloromethane/Methanol Very Good 4.2 µg/ml IC50 Plasmodium falciparum D10 Nd
Ocimum basilicum Lamiaceae [159] D.R. Congo Leaves Ethanol, Methanol, Petroleum Ether, Chloroform Good  < 0.35–18 µg/ml IC50 Plasmodium falciparum Nd
[26] Kenya Leaves Methanol Moderate 16.4 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Ocimum gratissimum Lamiaceae [30] Kenya Leaves, Twigs Dichloromethane Good 8.616 µg/ml IC50 Plasmodium falciparum W2, D6 Nd
[40] DR Congo Leaves Water Good 7.25 µg/ml IC50 Plasmodium falciparum K1 No
[26] Kenya Leaves Methanol Good 5.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Ocimum kilimandscharicum Lamiaceae [30] Kenya Leaves, Twigs Dichloromethane Very Good 0.843–1.547 µg/ml IC50 Plasmodium falciparum W2, D6 Nd
Olax gambecola Olacaceae [43] Ivory Coast Whole Plant Ethanol Good 5.2 µg/ml IC50 Plasmodium falciparum FCB1 Nd
Olea europaea Oleaceae [24] Kenya Stem Barks Methanol Moderate 17.3 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[21] Kenya Inner Barks Methanol Good 9.48 µg/ml IC50 Plasmodium falciparum D6 No
[22] South Africa Leaves Dichloromethane/Methanol Moderate 12 µg/ml IC50 Plasmodium falciparum D10 Nd
Opilia celtidifolia Opiliaceae [52] Burkina Faso Leaves Dichloromethane Very Good 2.8 µg/ml IC50 Plasmodium falciparum Yes (SI = 0.4; HepG2 cells)
Ormocarpum trachycarpum Fabaceae [77] Kenya Stem Barks Dichloromethane/Ethyl Acetate Moderate 17.5—19.6 µg/ml IC50 Plasmodium falciparum K39, V1/S Nd
Osteospermum imbricatum Asteraceae [22] South Africa Stems Dichloromethane/Methanol Good 7.3 µg/ml IC50 Plasmodium falciparum D10 Nd
Phyllanthus amarus Phyllanthaceae [53] Nigeria Leaves Petroleum Ether Very Good 4.99 µg/ml IC50 Plasmodium falciparum D10 Nd
Pachypodanthium confine Annonaceae [98] Cameroon Stem Barks Water Moderatea 16.6 µg/ml IC50 Plasmodium falciparum W3 Nd
Pappea capensis Eckl.& Zeyh Sapindaceae [37] South Africa Twigs Dichloromethane Good 5.47 µg/ml IC50 Plasmodium falciparum NF54 Nd
Parinari curatellifolia Chrysobalanaceae [22] South Africa Roots Dichloromethane Good 5.3 µg/ml IC50 Plasmodium falciparum D10 Nd
[24] Kenya Root Barks Methanol Good 3.9–7.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[37] South Africa Stem Barks Dichloromethane Good 6.99 µg/ml IC50 Plasmodium falciparum NF54 Nd
Parinari excelsa Chrysobalanaceae [20] Tanzania Stem Barks Ethyl Acetate Moderate 10 µg/ml IC50 Plasmodium falciparum K1 Nd
[75] Uganda Barks Ethyl Acetate Nd Nd Plasmodium falciparum Fcb7 Nd
Parkinsonia aculeata Fabaceae [22] South Africa Twigs Dichloromethane/Methanol Good 9 µg/ml IC50 Plasmodium falciparum D10 Nd
Pavetta corymbosa Rubiaceae [65] Benin Aerial parts Methanol Moderate 5.54–20 µg/ml IC50 Plasmodium falciparum 3D7 & K1 Nd
[110] Togo Aerial parts Methanol Very Good 2.042 µg/ml IC50 Plasmodium falciparum Nd
[110] Togo Aerial part Methanol Very Good 2.042 µg/ml IC50 Plasmodium falciparum Nd
Pavetta crassipes Rubiaceae [27] Burkina Faso Leaves Crude Alkaloid Very Good  < 4 µg/ml IC50 Plasmodium falciparum W2 Nd
[71] Togo Aerial parts Water Good  < 7 µg/ml IC50 Plasmodium falciparum Nd
Pelargonium alchemilloides Geraniaceae [22] South Africa Whole plant Dichloromethane/Methanol Moderate 15 µg/ml IC50 Plasmodium falciparum D10 Nd
Pentas lanceolata Rubiaceae [21] Kenya Root barks Methanol Good 5.15 µg/ml IC50 Plasmodium falciparum D6 No
Pentas longiflora Rubiaceae [26] Kenya Root barks Methanol Moderate 13.3 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Pentzia globosa Asteraceae [22] South Africa Roots Dichloromethane Good 8 µg/ml IC50 Plasmodium falciparum D10 Nd
Phyllanthus amarus Phyllanthaceae [111] Ghana Whole Plant Ethanol Moderate 11.7 µg/ml IC50 Plasmodium falciparum Dd2 No
Phyllanthus fraternus Phyllanthaceae [112] Ghana Whole plant Methanol Very Good 0.44 µg/ml IC50 Plasmodium falciparum 3D7, W2 No
Phyllanthus muellerianus Phyllanthaceae [28] Ivory Coast Leaves Ethanol Good 9.4 µg/ml IC50 Plasmodium falciparum Fcb1/Colombia Strain No
[43] Ivory Coast Leaves Ethanol Moderate 10.3 µg/ml IC50 Plasmodium falciparum FCB1 Nd
Phyllanthus niruri Phyllanthaceae [69] D.R.Congo Whole Plant Petroleum Ether Very Good 1.3 µg/ml IC50 Plasmodium falciparum Nd
Phyllanthus urinaria Phyllanthaceae [45] Cambodia Whole Plant Water Very Good 2.4 µg/ml IC50 Plasmodium falciparum W2 Nd
Physalis angulata Solanaceae [28] Ivory Coast Whole Plant Ethanol Good 7.9 µg/ml IC50 Plasmodium falciparum Fcb1/Colombia Strain Nd
[43] Ivory Coast Whole Plant Ethanol Good 7.9 µg/ml IC50 Plasmodium falciparum FCB1 Nd
[44] D.R. Congo Leaves Methanolic and dichloromethane Very good 1.27 µg/ml IC50 Plasmodium falciparum 3D7, W2, Plasmodium berghei berghei No
Picralima nitida Apocynaceae [53] Nigeria Roots Ethanol Good 6.29 µg/ml IC50 Plasmodium falciparum D10 Nd
[113] Nigeria Stems Methanol Good 6.0–6.3 µg/ml IC50 Plasmodium falciparum D6, W2 No
[89] Cameroon Seeds Methanol Moderate 10.9 µg/ml IC50 Plasmodium falciparum W2 Nd
[114] Ivory Coast Root, Stem Barks Ans Fruit Rins Ns Very Good 0.188–1.581 μg/ml IC50 Plasmodium falciparum Nd
Piper capense Piperaceae [91] Comoros Ns Dichloromethane Good 7 µg/ml IC50 Plasmodium falciparum W2 No
Piptadeniastrum africanum Leguminosae [40] D.R. Congo Stem Barks Water Good 6.11 µg/ml IC50 Plasmodium falciparum K1 Yes (SI = 1.4–1.5; human embryonic lung cells [MRC-5])
[40] D.R.Congo Stem Barks Water Good 6.11 µg/ml IC50 Plasmodium falciparum K1 No
Piptostigma calophyllum Annonaceae [49] Cameroon Leaves Methanol Good 6.72 µg/ml IC50 Plasmodium falciparum W2 Nd
Pittosporum viridiflorum Pittosporaceae [24] Kenya Leaves Methanol Moderate 17.6–18.9 µg/ml iC50 Plasmodium falciparum D6, W2 Nd
[22] South Africa Whole Plant Dichloromethane Very Good 3 µg/ml IC50 Plasmodium falciparum D10 Nd
Plumbago zeylanica Plumbaginaceae [22] South Africa Leaves Dichloromethane Very Good 3 µg/ml IC50 Plasmodium falciparum D10 Nd
Podocarpus latifolius Podocarpaceae [21] Kenya Root Barks Methanol Good 6.43 µg/ml IC50 Plasmodium falciparum D6 No
Pollichia campestris Caryophyllaceae [22] South Africa Twigs Dichloromethane/Methanol Good 6.8 µg/ml IC50 Plasmodium falciparum D10 Nd
Polyalthia longifolia Annonaceae [115] Ghana Stem Barks Ethanol, N-Hexane,Dichloromethane, Ethyl Acetate, Methanol-Ethyl Acetate Gooda 3–6 µg/ml IC50 Plasmodium falciparum K1 No
[116] Ghana Stem Barks Methanol, Chloroform, Cyclohexane, Ethyl Acetate Gooda 4.53–10.17 µM IC50 Plasmodium falciparum 3D8 Nd
Polyalthia oliveri Annonaceae [55] Cameroon Stem Barks Ethanol, Water, Dichloromethane, Methanol, Hexane Very Good 4.30 µg/ml IC50 Plasmodium falciparum W2 Nd
[49] Cameroon Stem Barks Methanol Very Good 3.43 µg/ml IC50 Plasmodium falciparum W2 Nd
Polyalthia suaveolens Annonaceae [49] Cameroon Twigs Methanol Very Good 3.23 µg/ml IC50 Plasmodium falciparum W2 Nd
Polygonatum verticillatum Asparagaceae [117] Kenya Rhizome N-Hexane, Chloroform Very Good 2.33—4.62 μg/ml IC50

Plasmodium

falciparum

No
Premna chrysoclada Lamiaceae [26] Kenya Leaves Methanol Moderate 11.1 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Prosopis africana Fabaceae [50] Nigeria Ns Methanol, Water, Butanol, Ethyl Acetate Moderate 14.97–15.28 µg/ml IC50 Plasmodium falciparum 3D7, K1 Yes (SI ≥ 99; mouse heart-derived cells [NBMH])
Prunus africana Rosaceae [24] Kenya Stem Barks Methanol Moderate 17.3 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Pseudospondias microcarpa Anacardiaceae [31] Tanzania Roots Ethanol Very Good 1.13 µg/ml IC50 Plasmodium falciparum K1 No
Psiadia punctulata Asteraceae [22] South Africa Twigs Dichloromethane Good 9 µg/ml IC50 Plasmodium falciparum D10 Nd
Psidium guajava Myrtaceae [40] DR Congo Leaves Water Good 5.46 µg/ml IC50 Plasmodium falciparum K1 No
[20] Tanzania Leaves Ethyl Acetate Moderate 10 µg/ml IC50 Plasmodium falciparum K1 Nd
Psorospermum senegalense Hypericaceae [63] Burkina Faso Leaves Dichloromethane Moderate 10.03 µg/ml IC50 Plasmodium falciparum 3D7 & W2 No
Ptaeroxylon obliquum Rutaceae [22] South Africa Stems Dichloromethane/Methanol Good 5.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Pterocarpus angolensis Fabaceae [22] South Africa Roots Dichloromethane Moderate 10.6 µg/ml IC50 Plasmodium falciparum D10 Nd
Pterocarpus erinaceus Fabaceae [118] Burkina Faso Leaves Ans Barks Ethanol, Chloroform Very Good 1.93 µg/ml IC50 Plasmodium falciparum 3D7 And Dd2 Nd
Pulicaria crispa Asteraceae [34] Sudan Whole Plant Petroleum Ether/Chloroform Very Good  < 5 µg/ml IC50 Plasmodium falciparum Nd
Pycnanthus angolensis Myristicaceae [28] Ivory Coast Stem Barks Ethanol Moderate 18.2 µg/ml IC50 Plasmodium falciparum Fcb1/Colombia Strain Nd
[74] S. Tome´ And Prı ´Ncipe Barks Ethanol Very Good  < 5 µg/ml IC50 Plasmodium falciparum 3D7 And Dd2 Nd
Pyrenacantha grandiflora Baill Icacinaceae [37] South Africa Roots Dichloromethane Good 5.82 µg/ml IC50 Plasmodium falciparum NF54 Nd
Quassia africana Simaroubaceae [103] Congo Brazzaville Leaves Water, Ethanol, Dichloromethane Very Good 0.1–2.2 µg/ml IC50 Plasmodium falciparum Fcm29-Cameroon Yes (IC50 = 6.7 µg/ml; KB cells)
[40] D.R. Congo Root Barks Water Very Good 0.46 µg/ml IC50 Plasmodium falciparum K1 No
Ranunculus multifidus Ranunculaceae [22] South Africa Whole Plant Dichloromethane/Methanol Very Good 2.3 µg/ml IC50 Plasmodium falciparum D10 Nd
Rauvolfia caffra Sond Apocynaceae [37] South Africa Roots Dichloromethane Very Good 2.13 µg/ml IC50 Plasmodium falciparum NF54 Nd
Rauvolfia nombasiana Apocynaceae [26] Kenya Root Barks Methanol Good 9.1 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Rauvolfia vomitoria Apocynaceae [53] Nigeria Roots Dichloromethane Very Good 4.78 µg/ml IC50 Plasmodium falciparum D10 Nd
[28] Ivory Coast Barks Ethanol Very Good 2.5 µg/ml IC50 Plasmodium falciparum Fcb1/Colombia Strain No
[43] Ivory Coast Root Barks Ethanol Very Good 2.5 µg/ml IC50 Plasmodium falciparum FCB1 Nd
Rhamnus prinoides Rhamnaceae [77] Kenya Roots Methanol Moderate 15.1 µg/ml IC50 Plasmodium falciparum K39 (CQ-S), ENT30, NF54, V1/S Nd
[21] Kenya Root Barks Methanol Very Good 3.53 µg/ml IC50 Plasmodium falciparum D6 No
Rhizophora mucronata Rhizophoraceae [22] South Africa Twigs Dichloromethane/Methanol Good 5.6 µg/ml IC50 Plasmodium falciparum D10 Nd
Ricinus communis var. communis Euphorbiaceae [22] South Africa Stems Water Good 8.0 µg/ml IC50 Plasmodium falciparum D10 Nd
Rubia cordifolia Rubiaceae [95] Kenya Leaves/Seeds/Stems Methanol Very Good 1.20 µg/ml IC50 Plasmodium Knowlesi Nd
[24] Kenya Whole Plant Methanol Very Good  < 5 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Rumex abyssinicus Polygonaceae [92] Rwanda Roots Water Very Good 3.1–4.3 µg/ml IC50 Plasmodium falciparum 3D7, W2 Yes (SI = 3.1; human normal foetal lung fibroblast [WI-38])
Rumex crispus Polygonaceae [22] South Africa Roots Dichloromethane Moderate 14 µg/ml IC50 Plasmodium falciparum D10 Nd
Salacia madagascariensis Celastraceae [20] Tanzania Roots Petroleum Ether Very Good 0.8 µg/ml IC50 Plasmodium falciparum K1 Nd
Salvia africana-lutea Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Moderate 15.863 µg/ml IC50 Plasmodium falciparum FCR-3 Nd
Salvia albicaulis Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Moderate 15.833 µg/ml IC50 Plasmodium falciparum FCR-3 Nd
Salvia aurita Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Good 8.923 µg/ml IC50 Plasmodium falciparum FCR-3 Nd
Salvia chamelaeagnea Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Good 8.713 µg/ml IC50 Plasmodium falciparum FCR-3 Nd
Salvia dolomitica Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Good 7.623 µg/ml IC50 Plasmodium falciparum FCR-3 Nd
Salvia garipensis Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Moderate 13.953 µg/ml IC50 Plasmodium falciparum FCR-3 Nd
Salvia muirii Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Moderate 11.873 µg/ml IC50 Plasmodium falciparum FCR-3 Nd
Salvia radula Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Very Good 3.913 µg/ml IC50 Plasmodium falciparum FCR-3 Yes (IC50 = 20.12 µg/ml; Kidney cells)
Salvia repens Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Good 8.253 µg/ml IC50 Plasmodium falciparum FCR-3 Nd
[22] South Africa Whole Plant Dichloromethane/Methanol Moderate 10.8 µg/ml IC50 Plasmodium falciparum D10 Nd
Salvia runcinata Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Moderate 16.613 µg/ml IC50 Plasmodium falciparum FCR-3 Nd
Salvia schlechteri Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Moderate 17.513 µg/ml IC50 Plasmodium falciparum FCR-3 Nd
Salvia stenophylla Lamiaceae [120] South Africa Aerial Parts Methanol/Chloroform Good 6.53 µg/ml IC50 Plasmodium falciparum FCR-3 Yes (IC50 = 12.12 µg/ml; Kidney cells)
Sonchus schweinfurthi Compositae [95] Kenya Barks/Roots Methanol Very Good 2.10 µg/ml IC50 Plasmodium Knowlesi Nd
Scaevola plumieri Goodeniaceae [22] South Africa Twigs Dichloromethane Moderate 11 µg/ml IC50 Plasmodium falciparum D10 Nd
Schefflera umbellifera Araliaceae [22] South Africa Leaves Dichloromethane/Methanol Very Good 3.7 µg/ml IC50 Plasmodium falciparum D10 Nd
Schizozygia coffaeoides Apocynaceae [26] Kenya Leaves Methanol Moderate 10.5 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Schkuhria pinnata Compositae [24] Kenya Whole Plant Methanol Good 1.3–6.8 µg/ml IC50 Plasmodium falciparumD6, W2 Nd
Schrankia leptocarpa Fabaceae [65] Benin Aerial Parts Methanol Moderate 3.38- > 20 µg/ml IC50 Plasmodium falciparum 3D7 & K1 Nd
Sclerocarya birrea Anacardiaceae [24] Kenya Stem Barks Methanol Moderate 5.9–24.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Secamone afzelii Apocynaceae [65] Benin Aerial Parts Methanol Moderate 6.48- > 20 µg/ml IC50 Plasmodium falciparum 3D7 & K1 Nd
Securidaca longipedunculata Polygalaceae [121] Mali Leaves Dichloromethane Good 6.9 µg/ml IC50 Plasmodium falciparum 3D7 Nd
Securinega virosa Phyllanthaceae [52] Burkina Faso Leaves Dichloromethane Good 7.1 µg/ml IC50 Plasmodium falciparum Nd
Senecio oxyriifolius Asteraceae [22] South Africa Whole plant Dichloromethane/Methanol Moderate 13 µg/ml IC50 Plasmodium falciparum D10 Nd
Senecio stuhlmannii Asteraceae [56] Uganda Shoots Ethyl Acetate Moderate 14.0–15.2 µg/ml IC50 Plasmodium falciparum D10, K1 Nd
Senna didymobotrya Fabaceae [22] South Africa Twigs Dichloromethane/Methanol Good 9.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Senna petersiana Fabaceae [22] South Africa Twigs Dichloromethane/Methanol Moderate 13 µg/ml IC50 Plasmodium falciparum D10 Nd
[59] Malawi Leaves Methanol Very Good 2·67 µg/ml IC50 Plasmodium falciparum Vl/S Nd
Sericocomopsis hildebrandtii Amaranthaceae [21] Kenya Root Barks Methanol Very Good 3.78 µg/ml IC50 Plasmodium falciparum D6 No
Setaria megaphylla Poaceae [22] South Africa Whole plant Dichloromethane/Methanol Very Good 4.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Sida acuta Malvaceae [118] Burkina Faso Whole Plant Ethanol, Chloroform, Water Very Good 0.87–0.92 µg/ml IC50 Plasmodium falciparum 3D7 And Dd2 Nd
[38] Ivory Coast Ns Ethanol Good 3.9–5.4 µg/ml IC50 Plasmodium falciparum No
Solanum panduriforme Solanaceae [25] South Africa Leaves Acetone Very Good 3.62 µg/ml IC50 Plasmodium falciparum UP1 (CQ-R) Nd
Solanecio mannii Asteraceae [92] Rwanda Leaves Dichloromethane Moderate 12.7–18.2 µg/ml IC50 Plasmodium falciparum 3D7, W2 No
Spilanthes mauritiana Asteraceae [22] South Africa Stems Dichloromethane/Methanol Good 5.3 µg/ml IC50 Plasmodium falciparum D10 Nd
Staudtia gabonensis Myristicaceae [33] Gabon Stems Methanol Very Good 0.8 µg/ml IC50 Plasmodium falciparum Fcbm W2 No
Stephania abyssinica Menispermaceae [24] Kenya Root Barks Methanol Good 4.7–6.1 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Stephania rotunda Menispermaceae [45] Cambodia Tubers Dichloromethane Very Good 1.0 µg/ml IC50 Plasmodium falciparum W2 Nd
Struchium sparganophorum Asteraceae [73] S. Tome´ And Prı ´Ncipe Leaves Petroleum Ether Good  < 10 µg/ml IC50 Plasmodium falciparum 3D7 And Dd2 Nd
Strychnopsis thouarsii Menispermaceae [122] Madagascar Stem Barks Methanol Very Gooda 3.1—4.2 µM Plasmodium falciparum NF54, Plasmodium yoelli 265 BY No
Strychnos henningsii Loganiaceae [72] Kenya Twigs Methanol Moderate 14.6–17.9 µg/ml IC50 Plasmodium falciparum K1, NF54 Nd
Strychnos pungens Loganiaceae [22] South Africa Leaves Dichloromethane Moderate 12.6 µg/ml IC50 Plasmodium falciparum D10 Nd
Strychnos spinosa Loganiaceae [123] Senegal Leaves, Stem Methanol, Water Moderate 15 µg/ml IC50 Plasmodiumfalciparum Nd
Strychnos icaja Loganiaceae [46] D.R. congo Root barks Methanolic and dichloromethane Very good 0.69 µg/ml IC50 Plasmodium falciparum 3D7, W2, Plasmodium berghei berghei Nd
Suregada zanzibariensis Euphorbiaceae [26] Kenya Leaves Methanol Good 5.8–6.7 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[124] Kenya Leaves Methanol Very Good 1.82–4.66 µg/ml IC50 Plasmodium falciparum D6&W2 Nd
[124] Kenya Leaves Methanol Very Good 1.82–4.66 µg/ml IC50 Plasmodium falciparum D6, W2 No
Syzygium cordatum subsp. cordatum Myrtaceae [22] South Africa Twigs Dichloromethane/Methanol Moderate 14.7 µg/ml IC50 Plasmodium falciparum D10 Nd
[37] South Africa Leaves Dichloromethane Good 6.15 µg/ml IC50 Plasmodium falciparum NF54 Nd
Tabernaemontana elegans Apocynaceae [37] South Africa Roots Dichloromethane Very Good 0.33 µg/ml IC50 Plasmodium falciparum NF54 Nd
Tabernaemontana pachysiphon Apocynaceae [26] Kenya Flower Methanol Very Good 4.4–4.8 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Tagetes minuta Asteraceae [75] Uganda Leaves Ethyl Acetate Nd Nd Plasmodium falciparum Fcb8 Nd
Tamarindus indica Fabaceae [23] Sudan Stem Barks Methanol Moderate 10 µg/ml IC50 Plasmodium falciparum 3D7, Dd2 No
[110] Togo Fruits Water Very Good 4.786 µg/ml IC50 Plasmodium falciparum Nd
Tapinanthus dodoneifolius Loranthaceae [52] Burkina Faso Leaves Methanol Good 5.2 µg/ml IC50 Plasmodium falciparum Nd
Tarchonanthus camphoratus Asteraceae [22] South Africa Whole Plant Dichloromethane/Methanol Good 6 µg/ml IC50 Plasmodium falciparum D10 Nd
Teclea nobilis Rutaceae [24] Kenya Stem Barks Methanol Moderate 3.9–20.4 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[75] Uganda Barks Ethyl Acetate Nd Nd Plasmodium falciparum Fcb9 Nd
Tecoma capensis Bignoniaceae [22] South Africa Twigs Dichloromethane/Methanol Moderate 10.2 µg/ml IC50 Plasmodium falciparum D10 Nd
Tectona grandis Lamiaceae [112] Ghana Leaves Methanol Very Good 0.92 µg/ml IC50 Plasmodium falciparum 3D7, W2 No
Terminalia avicennioides Combretaceae [50] Nigeria Ns Methanol, Water, Butanol, Ethyl Acetate Moderate 12.28–14.09 µg/ml IC50 Plasmodium falciparum 3D7, K1 Yes (SI ≥ 114; mouse heart-derived cells [NBMH])
[52] Burkina Faso Leaves Methanol Very Good 1.9 µg/ml IC50 Plasmodium falciparum Nd
Terminalia glaucescens Combretaceae [39] Ivory Coast Stem, Leave Water, Ethanol, Pentane Very Good 2.34–4.83 µg/ml IC50 Plasmodium falciparum Fcm29, Fcb1, CQ-S (Nigerian) No
Terminalia ivorensis Combretaceae [32] Ghana Stem Barks Ethanol Good 6.949 µg/ml IC50 Plasmodium falciparum 3D7 Nd
[112] Ghana Leaves Methanol Good 5.70 µg/ml IC50 Plasmodium falciparum 3D7, W2 No
Terminalia macroptera Combretaceae [27] Burkina Faso Root Barks Water Very Good 1 µg/ml IC50 Plasmodium falciparum W2 Nd
Terminalia mollis Combretaceae [92] Rwanda Root Barks Methanol Moderate 11.7–26.3 µg/ml IC50 Plasmodium falciparum 3D7, W2 No
Terminalia spinosa Combretaceae [26] Kenya Stem Barks Methanol Good 7.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Tetracera poggei Gilg Dilleniaceae [69] DR Congo Leaves Petroleum Ether Very Good 1.7 µg/ml IC50 Plasmodium falciparum Nd
Tetrapleura tetraptera Fabaceae [33] Gabon Leaves Dichloromethane Moderate 10.1–13.0 µg/ml IC50 Plasmodium falciparum FCB, 3D7 No
Thalia geniculata Marantaceae [65] Benin Roots Methanol Moderate 2.83- > 20 µg/ml IC50 Plasmodium falciparum 3D7 & K1 Nd
Tinospora bakis Menispermaceae [34] Sudan Whole Plant Petroleum Ether/Chloroform Very Good  < 5 µg/ml IC50 Plasmodium falciparum Nd
Tithonia diversifolia Asteraceae [73] S. Tome´ And Prı ´Ncipe Aerial Parts Petroleum Ether, Dichloromethane Good  < 10 µg/ml IC50 Plasmodium falciparum 3D7 And Dd2 Nd
[92] Rwanda Flowers Dichloromethane Very Good 1.0–1.1 µg/ml IC50 Plasmodium falciparum 3D7, W2 No
Toddalia asiatica Rutaceae [26] Kenya Root Barks Methanol Good 6.82–13.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[125] Kenya Root Barks Dichloromethane + Methanol Very Gooda 9 – 100 ng/ml IC50 Plasmodium falciparum Nd
Trichilia emetica Meliaceae [121] Mali Leaves Dichloromethane Moderate 11.9 µg/ml IC50 Plasmodium falciparum 3D7 Nd
[58] Sudan Leaves Methanol Good 2.5–17.5 µg/ml IC50 Plasmodium falciparum 3D7, Dd6 Nd
[24] Kenya Stem Barks Methanol Moderate 13.3 µg/ml C50 Plasmodium falciparum D6, W2 Nd
[25] South Africa Stem Barks Acetone Very Good 3.29 µg/ml IC50 Plasmodium falciparum UP1 (CQ-R) Nd
[22] South Africa Leaves, Twigs Dichloromethane/Methanol Very Good 3.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Triclisia dictyophylla Menispermaceae [40] D.R. Congo Leaves Water Good 5.13 µg/ml IC50 Plasmodium falciparum K1 No
Tridax procumbens Asteraceae [22] South Africa Whole Plant Dichloromethane/Methanol Moderate 17 µg/ml IC50 Plasmodium falciparum D10 Nd
[26] Kenya Whole Plant Methanol Moderate 15.4 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Triumfetta welwitschii var. hirsuta Malvaceae [22] South Africa Leaves Dichloromethane/Methanol Very Good 3.6 µg/ml IC50 Plasmodium falciparum D10 Nd
Turraea floribunda Meliaceae [22] South Africa Leaves Dichloromethane/Methanol Good 8.8 µg/ml IC50 Plasmodium falciparum D10 Nd
[26] Kenya Stem Barks Methanol Good 5.5 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Turraea robusta Meliaceae [72] Kenya Root Barks Methanol Very Good 2.4–3.5 µg/ml IC50 Plasmodium falciparum K1, NF54 Nd
[24] Kenya Stem Barks Methanol Good 2.1–10.3 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Tylosema fassoglensis Fabaceae [30] Kenya Tubers Dichloromethane Very Good 0.77–0.896 µg/ml IC50 Plasmodium falciparum W2, D6 Nd
Uapaca paludosa Phyllanthaceae [103] Congo Brazzaville Barks Dichloromethane Good 8 µg/ml IC50 Plasmodium falciparum Fcm29-Cameroon Nd
Uvaria acuminata Annonaceae [26] Kenya Root Barks Methanol Good 6.9–8.9 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Uvaria scheffleri Annonaceae [26] Kenya Leaves Methanol Good 6.8 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Uvaria afzelii Annonaceae [48] Ivory Coast Roots Pentane Moderate 9–22 µg/ml IC50 Plasmodium falciparum FCM29, CQ-S (Nigerian) No
Uvariastrum zenkeri Annonaceae [49] Cameroon Twigs Ethanol Very Good 1.89 µg/ml IC50 Plasmodium falciparum W2 Nd
Uvariodendron molundense Annonaceae [49] Cameroon Twigs Methanol Very Good 4.79 µg/ml IC50 Plasmodium falciparum W2 Nd
Uvariopsis congolana Annonaceae [55] Cameroon Stems Ethanol, Water, Dichloromethane, Methanol, Hexane Very Good 4.47 µg/ml IC50 Plasmodium falciparum W2 Nd
Vangueria infausta Burch. subsp. Infausta Rubiaceae [37] South Africa Roots Dichloromethane Very Good 1.84 µg/ml IC50 Plasmodium falciparum NF54 Nd
Vepris lanceolata Rutaceae [20] Kenya Root Barks Ethyl Acetate Good 7.0 µg/ml IC50 Plasmodium falciparum K1 Nd
Vernonia amygdalina Asteraceae [74] S. Tome´ And Prı ´Ncipe Leaves Ethyl Acetate Moderate 10 µg/ml IC50 Plasmodium falciparum 3D7 And Dd2 Nd
[80] Cameroon Leaves Dichloromethane Moderate 8.72–11.27 µg/ml IC50 Plasmodium falciparum 3D7, DD2 No
[126] Nigeria Leaves Ethanol Good 9.83 µg/ml IC50 Plasmodium falciparum 3D7, NF-54 Yes (SI = 6.14; C-1008 kidney fibroblast
[26] Kenya Leaves Methanol Good 4.9–7.2 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
[127] Nigeria Leaves Ethanol Moderate 11.2 µg/ml IC50 Plasmodium falciparum Yes (LD50 = 1950 mg/kg; rat)
[69] D.R. Congo Leaves Petroleum Ether Very Good 2.5 µg/ml IC50 Plasmodium falciparum Nd
Vernonia brachycalyx Asteraceae [104] Kenya Leaves Dichloromethane/Ethyl Acetate Good 6.6—8.4 µg/ml IC50 Plasmodium falciparum K39, V1/S Nd
Vernonia cinerea Asteraceae [45] Cambodia Whole Plant Dichloromethane Moderate 18.3 µg/ml IC50 Plasmodium falciparum W2 Nd
Vernonia colorata Asteraceae [57] Ivory Coast Stems, Leaves Water Good 2.35–9.38 µg/ml IC50 Plasmodium falciparum Fcb1 & F32 Nd
[54] Zimbabwe Leaves Petrolether/Ethylacetate Moderate 12.1–17.8 µg/ml IC50 Plasmodium falciparum Pow, Dd2 Nd
[91] Comoros Roots Dichloromethane Very Good 3 µg/ml IC50 Plasmodium falciparum W2 No
[22] South Africa Leaves Dichloromethane/Methanol Very Good 4.7 µg/ml IC50 Plasmodium falciparum D10 Nd
Vernonia fastigiata Asteraceae [22] South Africa Leaves Dichloromethane/Methanol Moderate 10 µg/ml IC50 Plasmodium falciparum D10 Nd
Vernonia guineensis Asteraceae [128] Cameroon Leaves Dichloromethane Very Good 1.635—1.823 µg/ml IC50 Plasmodium falciparum No
Vernonia lasiopus Compositae [12] Kenya Leaves Chloroform, Ethylacetate, Methanol Very Good 1.0–3.2 µg/ml IC50 Plasmodium falciparum K39 (CQ-S), ENT30, NF54, V1/S Nd
[73] Kenya Root Barks Dichloromethane Very Good 4.7–4.9 µg/ml IC50 Plasmodium falciparum K1, NF54 Nd
Vernonia myriantha Asteraceae [22] South Africa Leaves Dichloromethane/Methanol Very Good 3 µg/ml IC50 Plasmodium falciparum D10 Nd
Vernonia oligocephala Asteraceae [22] South Africa Leaves Dichloromethane/Methanol Very Good 3.5 µg/ml IC50 Plasmodium falciparum D10 Nd
Vismia guineensis Hypericaceae [48] Ivory Coast Leaves Pentane Moderate 15–20 µg/ml IC50 Plasmodium falciparum FCM29, CQ-S (Nigerian) Nd
Warburgia ugandensis Canellaceae [72] Kenya Stem Barks Dichloromethane Very Good 1.4–2.2 µg/ml IC50 Plasmodium falciparum K1, NF54 Nd
[24] Kenya Root Barks Methanol Good 4.1–6.1 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Warburgia stuhlmannii Canellaceae [26] Kenya Stem Barks Methanol Very Good 1.8–2.3 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Ximenia americana Olacaceae [57] Ivory Coast Stem, Leave Water Very Good 0.6–2.6 µg/ml IC50 Plasmodium falciparum Fcb1 & F32 Nd
Xylopia aethiopica Annonaceae [98] Cameroon Stem Barks Water Moderatea 17.8 µg/ml IC50 Plasmodium falciparum W5 Nd
[49] Cameroon Leaves Methanol Very Good 3.75 µg/ml IC50 Plasmodium falciparum W2 Nd
Xylopia africana Annonaceae [49] Cameroon Stem Barks Methanol Very Good 1.07 µg/ml IC50 Plasmodium falciparum W2 Nd
Xylopia parviflora (A.Rich.)Benth.Oliv Annonaceae [37] South Africa Roots Dichloromethane Very Good 2.19 µg/ml IC50 Plasmodium falciparum NF54 Nd
[49] Cameroon Leaves Methanol Very Good 3.44 µg/ml IC50 Plasmodium falciparum W2 Nd
Xylopia phloiodora Annonaceae [98] Cameroon Stem Barks Water Moderatea 17.9 µg/ml IC50 Plasmodium falciparum W2 Nd
Xysmalobium undulatum Apocynaceae [22] South Africa Whole Plant Dichloromethane/Methanol Good 6 µg/ml IC50 Plasmodium falciparum D10 Nd
Zanthoxylum chalybeum Rutaceae [137] Kenya Root Barks Water Good 2.32–5.52 µg/ml IC50 Plasmodium falciparum NF54, ENT30 Nd
[77] Uganda Stem Barks Ethyl Acetate Very Good 0.57–3.21 µg/ml IC50 Plasmodium falciparum NF54 & FCR3 Nd
[92] Rwanda Root Barks Methanol Very Good 1.9–4.2 µg/ml IC50 Plasmodium falciparum 3D7, W2 No
[20] Tanzania Root Barks Ethyl Acetate Very Good 4.2 µg/ml IC50 Plasmodium falciparum K1 Nd
[26] Kenya Root Barks Methanol Very Good 2.9–3.7 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Zanthoxylum gilletii Rutaceae [43] Ivory Coast Stem Barks Ethanol Very Good 2.8 µg/ml IC50 Plasmodium falciparum FCB1 Nd
Zanthoxylum heitzii Rutaceae [129] Republic Of Congo Barkss Hexane Very Gooda 0.0089 µg/ml IC50 Plasmodium falciparum, Plasmodium berghei Nd
Zanthoxylum tsihanimposa Rutaceae [130] Madagascar Stem Barks Dichloromethane + Methanol Very Gooda 98.4 µM IC50 Plasmodium falciparum FCM29 Nd
Zanthoxylum usambarense Rutaceae [24] Kenya Root Barks Methanol Good 3.2–5.5 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Zea mays Poaceae [131] Nigeria Leaves Ethanol, ethyl acetate Good 3.69—9.31 µg/ml IC50 Plasmodium falciparum 3D7, INDO, Plasmodium berghei Nd
Zehreria scabra Cucurbitaceae [22] South Africa Whole Plant Dichloromethane/Methanol Good 5.6 µg/ml IC50 Plasmodium falciparum D10 Nd
[26] Kenya Whole Plant Methanol Good 9.8 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Ziziphus abyssica Rhamnaceae [24] Kenya Leaves Methanol Moderate 17.5 µg/ml IC50 Plasmodium falciparum D6, W2 Nd
Ziziphus mucronata Rhamnaceae [22] South Africa Leaves Dichloromethane Moderate 12 µg/ml IC50 Plasmodium falciparum D10 Nd
[25] South Africa Stem Barks Acetone Very Good 4.13 µg/ml IC50 Plasmodium falciparum UP1 (CQ-R) Nd
Ziziphus cambodiana Rhamnaceae [45] Cambodia Stems Dichloromethane Moderate 19.0 µg/ml IC50 Plasmodium falciparum W2 Nd

Nd Not done, Ns Not specified, SI Selectivity index

aActivity determined using pure compounds isolated from plant

Table 2.

In vivo antimalarial activity of African medicinal plants

Plant species Plant family Source Country of study Part of plant used Extraction solvent Antimalarial activity Parasite suppression rate Strain of Plasmodium tested Toxicity (value; assay)
Acacia nilotica Fabaceae [132] Nigeria Roots Water Moderate 79.5% at 400 mg/kg/day Plasmodium berghei NK65 No
[133] Nigeria Roots Methanol Very good 62.59% at 150 mg/kg/day Plasmodium berghei NK65 No
Adansonia digitata Malvaceae [134] Nigeria Stem barks Methanol Moderatea 90.18% at 400 mg/kg/day Plasmodium berghei Nd
[135] Kenya Stem barks Ethanol Very good  > 60% at 100 mg/kg/day Plasmodium berghei No
[135] Kenya Stem barks Water Very good 60.47% at 100 mg/kg/day Plasmodium berghei No
Ageratum conyzoides Asteraceae [136] Nigeria Leaves Water Moderate 89.87% at 400 mg/kg/day Plasmodium berghei NK65 Nd
Albizia gummifera Fabaceae [137] Kenya Root barks Methanol Very gooda 72.9% at 20 mg/kg.day Plasmodium falciparum NF54 and ENT36 Nd
Allophylus africanus Sapindaceae [138] Nigeria Stems, roots Ns Very good 92.82–97.81 at 50 mg/kg/day Plasmodium berghei NK-65 Nd
Aloe pulcherrima Xanthorrhoeaceae [139] Ethiopia Leaves Methanol Gooda 56.2 at 200 mg/kg/day Plasmodium berghei No
Anthocleista djalonensis Gentianaceae [140] Nigeria Roots Chloroform, ethyl acetate, methanol Moderate 64.81–87.66% at 500 mg/kg/day Plasmodium beghei ANKA No
[140] Nigeria Roots Ethanol, chloroform, ethyl acetate, methanol Moderate 67.92% at 500 mg/kg/day Plasmodium berghei ANKA No
Artemisia macivarae Asteraceae [141] Nigeria Whole plant Chloroform Very good 80% at 100 mg/kg Plasmodium berghei Nd
Aspilia africana Asteraceae [142] Nigeria Leaves Ethanol Moderate 92.23% at 400 mg/kg/day Plasmodium berhhei NK65 No
Azadirachta indica Meliaceae [143] Kenya Leaves Methanol Good 83.48% at 250 mg/kg/day Plasmodium falciparum D6 and W2 No
[144] Cameroon Leaves Ethanol Moderate 69.28% at 300 mg/kg/day Plasmodium berghei NK65 No
[145] Nigeria Leaves Methanol Very good 56 – 87% at 50 mg/kg/day Plasmodium berghei ANKA No
Balanites rotundifolia Zygophyllaceae [146] Ethiopia Leaves Methanol Moderate 67% at 400 mg/dl Plasmodium berghei No
Blighia sapida Sapindaceae [147] Nigeria Leaves Ethanol Good 57% at 200 mg/kg/day Plasmodium berghei ANKA No
Bombax buonopozense Malvaceae [148] Nigeria Root barks Water Good 93% at 200 mg/kg/day Plasmodium berghei NK65 Nd
Brassica nigra Brassicaceae [149] Ethiopia Seeds Methanol Moderate 53.13% at 400 mg/kg/day Plasmodium berghei ANKA Nd
Calpurnia aurea Fabaceae [150] Ethiopia Leaves Hydroalcohol Very good 51.15% at 60 mg/kg Plasmodium berghei No
Carica papaya Caricaceae [151] Nigeria Leaves Ethanol Good 59.29% at 200 mg/kg Plasmodim berghei NK65 Nd
Senna occidentalis Fabaceae [152] D.R. Congo Root barks Ethanol Good 68% at 200 mg/kg Plasmodium berghei ANKA No
Cassia sieberiana Fabaceae [153] Nigeria Stems Ethanol Good 63.9% at 300 g/kg/day Plasmodium berghei NK65 No
Cassia singueana Fabaceae [154] Nigeria Root barks Methanol Good 79.06% at 200 mg/kg/day Plasmodium berghei Yes (LD50 = 847 mg/kg; mice)
Chrozophora senegalensis Euphorbiaceae [155] Nigeria Whole plant Methanol Very good 51.8% at 75 mg/kg/day Plasmodium berghei Nd
Chrysophyllum albidum Sapotaceae [156] Nigeria Seeds, pulp juice Ethanol Moderate 72.97% at 500 mg/kg Plasmodium berghei No
Clausena anisota Rutaceae [157] Nigeria Leaves Ethanol Very good 82.02% at 78 mg/kg/day Plasmodium berghei Yes (LD50 = 393.7 mg/kg; albino mice)
Combretum molle Combretaceae [158] Ethiopia Seeds Methanol Good 63.5% at 250 mg/kg/day Plasmodium berghei ANKA Nd
Commiphora africana Burseraceae [159] Tanzania Stem barks Dichloromethane Moderate 64.24% at 400 mg/kg/day Plasmodium falciparum (D6, Dd2), Plasmodium berghei No
Crossopteryx febrifuga Rubiaceae [160] Nigeria Stem barks Ethanol Good 63.65% at 200 mg/kg/day Plasmodium berghei var. ANKA Nd
Croton macrostachyus Euphorbiaceae [161] Kenya Stem barks Ethyl acetate Moderate 82% at 500 mg/kg/day Plasmodium berghei ANKA Nd
Cryptolepis sanguinolenta Apocynaceae [162] Congo Root barks Ethanol Moderate 75.07% at 400 mg/kg/day Plasmodium falciparum, Plasmodium berghei berghei Nd
[84] Ghana Roots Hexane, ethanol, dichloromethane Very good*  > 80% at 2.5 mg/kg/day Plasmodium vinckei petteri, Plasmodium berghei ANKA Nd
Cucumis metuliferus Cucurbitaceae [163] Tanzania Leaves Chloroform Moderate 70.69% at 600 mg/kg/day Plasmodium berghei ANKA Nd
Dichrostachys cinerea Fabaceae [159] Tanzania Stem barks Methanol Moderate 53.12% at 400 mg/kg/day Plasmodium falciparum (D6, Dd2), Plasmodium berghei No
Dodonaea angustifolia Sapindaceae [164] Ethiopia Roots N-butanol Moderate 55.8% at 400 mg/kg/day Plasmodium berghei Nd
Enantia chlorantha Oliv Annonaceae [165] Nigeria Stem barks Ethanol Moderate 75.23% at 500 mg/kg Plasmodium berghei NK-65 Nd
Erigeron floribundus Asteraceae [144] Cameroon Whole plant Ethanol Good 62.4% at 240 mg/kg/day Plasmodium berghei NK65 No
Euphorbia cordifolia Euphorbiaceae [166] Cameroon Whole plant Aqueous Very good 94.70% at 200 mg/kg/day Plasmodium berghei No
Euphorbia hirta L Euphorbiaceae [162] Congo Whole plant Ethanol Moderate 69.44% at 400 mg/kg/day Plasmodium falciparum, Plasmodium berghei berghei Nd
Faidherbia albida Fabaceae [167] Nigeria Stem barks Ethanol Moderate 89.5 at 400 mg/kg/day Plasmodium berghei NK65 Nd
Grewia plagiophylla Malvaceae [143] Kenya Leaves Methanol Moderate 77.9 at 250 mg/kg/day Plasmodium falciparum D6 and W2 Nd
Grewia trichocarpa Malvaceae [168] Kenya Root Water Good 35.8% at 10 mg/kg/day Plasmodium berghei Yes (LD50 = 545.8 µg/ml; brine shrimp)
Garcinia kola Clusiaceae [169] Nigeria Seeds Petroleum ether Very good* 93% at 200 mg/kg/day Plasmodium berghei Nd
Hippocratea africana Celastraceae [170] Nigeria Nd Ethanol Moderate 90.9% at 600 mg/kg/day Plasmodium berghei berghei Yes (LD50 = 2449 mg/kg; mice)
Hoslundia opposita Lamiaceae [143] Kenya Leaves Methanol Moderate 79.67% at 250 mg/kg/day Plasmodium falciparum D6 and W2 Yes (CC50 = 37 µg/ml; Vero E6 cells)
Icacina senegalensis Icacinaceae [171] Nigeria Leaves Methanol Very good 80% at 100 mg/kg/day Plasmodium berghei Yes (LD50 > 2000 mg/kg; mice)
Indigofera spicata Fabaceae [172] Ethiopia Roots Methanol Moderate 53.42% at 600 mg/kg/day Plasmodium berghei ANKA Nd
Lannea schweinfurthii Anacardiaceae [143] Kenya Leaves Methanol Moderate 83.48% at 250 mg/kg/day Plasmodium falciparum D6 and W2 Yes (CC50 = 76 µg/ml; Vero E6 cells)
Lippia kituiensis Verbenaceae [163] Tanzania Leaves Ethyl acetate Moderate 70.14% at 600 mg/kg/day Plasmodium berghei ANKA Nd
Lophira lanceolata Ochnaceae [173] Nigeria Leaves Methanol Moderate 80% at 400 mg/kg/day Plasmodium berghei No
Maerua crassifolia Capparaceae [174] Nigeria Leaves Methanol Moderate 86% at 400 mg/kg/day Plasmodium berghei NK65 No
Maytenus senegalensis Celastraceae [175] Tanzania Root barks Ethanol Very good 98.1% at 100 mg/kg/day Plasmodium berghei No
Morinda morindoides Rubiaceae [152] D.R. Congo Leaves Dichloromethane Good 74% at 200 mg/kg/day Plasmodium berghei ANKA No
Mucuna pruriens Fabaceae [176] Nigeria Leaves Water Good 71.75% at 270 mg/kg/day Plasmodium berghei NK65 No
Nauclea latifolia Rubiaceae [177] Nigeria Leaves Ethanol Moderate 60.63% at 500 mg/kg/day Plasmodium berghei No
[165] Nigeria Roots Ethanol Moderate 71.15% at 500 mg/kg/day Plasmodium berghei NK-65 Nd
Oldenlandia affinis Rubiaceae [178] Nigeria Aerial parts Methanol, water, dichloromethane Moderate 75% at 400 mg/kg/day Plasmodium berghei No
Peschiera fuchsiaefolia Apocynaceae [179] Madagascar Stem barks Ns Good* 43.4% at 10 mg/kg/day Plasmodium yoelii N67, Plasmodium falciparum FMC29 Nd
Phyllanthus amarus Phyllanthaceae [180] Nigeria Whole plant Water and ethanol Good 79% at 1600 mg/kg/day Plasmodium yoelii Nd
Phyllanthus niruri Phyllanthaceae [152] D.R. Congo Whole plant Ethanol Good 73% at 200 mg/kg/day Plasmodium berghei ANKA No
[181] Nigeria Aerial parts Methanol/chloroform Very good 90.48% at 100 mg/kg/day Plasmodium berghei berghei NK 65 Nd
Phytolacca dodecandra Phytolaccaceae [182] Ethiopia Leaves Methanol Moderate 55.24% at 400 mg/kg/day Plasmodium berghei Nd
Picralima nitida Apocynaceae [183] Nigeria Seeds Ethanol Good 73% at 115 mg/kg/day Plasmodium berghei berghei Yes (LD50 = 87.29 µg/ml; albino mice)
Piliostigma thonningii Fabaceae [184] Nigeria Leaves Ethanol Moderate 91% at 400 mg/kg/day Plasmodium berghei NK65 No
Premna chrysoclada Lamiaceae [143] Kenya Leaves Methanol Good 65.08% at 250 mg/kg/day Plasmodium falciparum D6 and W2 Nd
Pseudocedrela kotschyi Meliaceae [185] Nigeria Leaves Ethanol Moderate 90% at 400 mg/kg/day Plasmodium berghei (NK65 No,
Rhus natalensis Anacardiaceae [143] Kenya Leaves Methanol Moderate 82.7% at 250 mg/kg/day Plasmodium falciparum D6 and W2 Nd
Salacia nitida Celastraceae [165] Nigeria Roots Ethanol Moderate 71.15% at 250 mg/kg/day Plasmodium berghei NK-65 Nd
Stachytarpheta cayennensis Verbenaceae [186] Nigeria Leaves Ethanol Good 78.2% at 270 mg/kg/day Plasmodium berghei berghei Yes (LD50 = 938.08 mg/kg; albino mice)
Telfairia occidentalis Cucurbitaceae [187] Nigeria Leaves Water Good 72.17% at 200 mg/kg/day Plasmodium berghei ANKA No
Tithonia diversifolia Asteraceae [160] Nigeria Aerial parts Ethanol Good 74.97% at 200 mg/kg/day Plasmodium berghei var. ANKA I Nd
Toddalia asiatica Rutaceae [188] Kenya Root barks Methanol Moderate 59.3% at 500 mg/kg/day Plasmodium berghei NK66 Nd
Trema orientalis Cannabaceae [189] Nigeria Stem barks Methanol Good 70% at 200 mg/kg/day Plasmodium berghei Nd
Trichilia megalantha Meliaceae [190] Nigeria Stem barks Methanol, chloroform Good 89.1–100% at 200 mg/kg/day Plasmodium berghei berghei ANKA Nd
Triphyophyllum peltatum Dioncophyllaceae [191] Ivory Coast Roots, stem barks Dichloromethane Very good* 99% at 50 mg/kg/day Plasmodium berghei ANKA CRS Nd
Uvaria acuminata Annonaceae [143] Kenya Roots Methanol Good 27.0% at 250 mg/kg/day Plasmodium falciparum D6 and W2 Nd
Uvaria chamae P. Beauv Annonaceae [170] Nigeria Nd Ethanol Moderate 72.2% at 600 mg/kg/day Plasmodium berghei berghei Yes (LD50 = 3464 mg/kg; mice)
Verbena hastata Verbenaceae [192] Nigeria Leaves Ethanol Moderate 70% at 400 mg/kg/day Plasmodium berghei No
Vernonia amygdalina Asteraceae [193] Uganda Leaves Water Good 73% at 200 mg/kg/day Plasmodium berghei No
[194] Nigeria Leaves Water Good 50.78—62.66% at 125 mg/kg/day Plasmodium berghei ANKA Nd
[195] Botswana Leaves and root barks Ethanol Moderate 67% at 500 mg/kg/day Plasmodium berghei Nd
Vernonia lasiopus Asteraceae [188] Kenya Root barks Methanol Moderate 59.3% at 500 mg/kg/day Plasmodium berghei NK67 Nd
Withania somnifera Solanaceae [196] Ethiopia Leaves Methanol Moderate 57% at 300 mg/kg/day Plasmodium berghei ANKA Nd
Xylopia aethiopica Annonaceae [141] Nigeria Fruits Chloroform Very good 60% at 100 mg/kg/day Plasmodium berghei Nd
Artemisia abyssinica Asteraceae [197] Ethiopia Aerial parts Hydroalcohol Good 64.7% at 200 mg/kg/day Plasmodium berghei Nd
Rotheca myricoides Lamiaceae [198] Ethiopia Leaves Methanol Good 54.14% at 200 mg/kg/day Plasmodium berghei No
Dodonaea angustifolia Sapindaceae [198] Ethiopia Roots Methanol Good 57.74% at 200 mg/kg/day Plasmodium berghei No
Clutia abyssinica Peraceae [199] Kenya Leaves Methanol Moderate 40.45% at 100 mg/kg/day Plasmodium falciparum, Plasmodium berghei ANKA No
Pittosporum viridiflorum Pittosporaceae [199] Kenya Leaves Methanol Moderate 54.77% at 100 mg/kg/day Plasmodium falciparum D6 &W2, Plasmodium berghei ANKA Yes (SI = 2.51; Vero E6 cells)

Nd Not done, Ns Not specified, SI Selectivity index

aActivity determined using pure compounds isolated from plant

Table 3.

In vitro and in vivo studies on African medicinal plants

Plant species Plant family Source Country of study Part of plant used Extraction solvent Overall activity In vitro In vivo IC50 or ED50 or LD50 Strain of Plasmodium tested parasite suppression rate Toxicity (value; assay)
Sphaeranthus suaveolens Compositae [199] Kenya Whole plant Methanol Moderate Moderate In active 7.93–56.73 µg/ml IC50 Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA 46.74% at 100 mg/kg/day No
Abutilon grandiflorum Malvaceae [200] Tanzania Roots Ethyl acetate Good Moderate Very good 9–14 µg/mL IC50 Plasmodium falciparum HB3 and FCB, Plasmodium vinckei vinckei 83–87% at 20 ug/ml/day Yes (IC50 = 36 µg/ml; human colon carcinoma cell line [HT29])
Alchornea laxiflora Euphorbiaceae [131] Nigeria Roots Ethyl acetate, dichloromethane Good Inactive Very good 38.44—40.17 µg/ml IC50 Plasmodium falciparum 3Dè, INDO, Plasmodium berghei 65.73% at 150 mg/kg/day Yes (LD50 = 748.33 mg/kg; HeLa cells)
Annona senegalensis Annonaceae [201] Nigeria Leaves Methanol Moderate In active Very good 28.8 µg/ml IC50 Plasmodium berghei  > 57% at 100 mg/kg/day No
Boscia angustifolia Capparaceae [199] Kenya Stem barks Methanol Moderate Moderate Very good 7.43–35.93 µg/ml IC50 Plasmodium falciparum D6 &W2, Plasmodium berghei ANKA 60.12% at 100 mg/kg/day No
Chrozophora senegalensis Euphorbiaceae [64] Senegal Leaves Water Very good Very good Very good 1.6–1.9 µg/ml IC50 Plasmodium falciparum FcM29, FcB1, Plasmodium vinckei petteri 65% at 10 mg/kg/day No
Clerodendrum eriophyllum Lamiaceae [199] Kenya Root barks Methanol Moderate Good Very good 9.51–10.56 µg/ml IC50 Plasmodium falciparum D6 & W2, Plasmodium berghei ANKA 90.13% at 100 mg/kg/day No
Cocos nucifera Arecaceae [202] Nigeria Husk Ethyl acetate Moderate Moderate Very good 10.94 µg/ml IC50 Plasmodium falciparum W2, Plasmodium berghei NK65 98.6% at 125 mg/kg/day Nd
Commiphora africana Burseraceae [159] Tanzania Stem barks Dichloromethane Moderate Very good Moderate 4.54 µg/ml IC50 Plasmodium falciparum D6, Dd2, Plasmodium berghei 64.24% at 400 mg/kg/day No
Ficus thonningii Moraceae [203] Nigeria Whole plant Hexane Moderate Good Moderate 2.7–10.4 µg/ml IC50 Plasmodium falciparum NF54, K1, Plasmodium berghei NK65 84.5% at 500 mg/kg/day No
Flueggea virosa Phyllanthaceae [199] Kenya Leaves Methanol Very good Very good Very good 2.28–3.64 µg/ml IC50 Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA 70.91% at 100 mg/kg/day No
Fuerstia africana Lamiaceae [199] Kenya Whole plant Methanol Very good Very good Very good 0.98–2.40 µg//ml IC50 Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA 61.85% at 100 mg/kg/day No
Harungana madagascariensis Hypericaceae [199] Kenya Leaves Water Moderate Inactive Very good 39.07–43.7 µg/ml IC50 Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA 88.04% at 100 mg/kg/day No
[204] Nigeria Stem barks Ethanol Very good Very good Inactive 0.052—0.517 μg/ml IC50 Plasmodium yoelii nigeriensis N67, Plasmodium falciparum 28.6–44.8% Nd
Lannea schweinfurthii Anacardiaceae [205] Kenya Stem barks Methanol Moderate Moderate Very good 11.38–36.26 µg/ml IC50 Plasmodium falciparum D6, W2, Plasmodium berghei 91.37% at 100 mg/kg/day Yes (SI = 6.21–19.79; Vero cells)
Lophira alata Ochnaceae [203] Nigeria Whole plant Hexane Good Very good Moderate 2.5 µg/ml IC50 Plasmodium falciparum NF54, K1, Plasmodium berghei NK65 74.45% at 500 mg/kg/day No
Ludwigia erecta Onagraceae [199] Kenya Whole plant Water Very good Very good In active 0.93–1.61 µg/ml IC50 Plasmodium falciparum D6 & W2, Plasmodium berghei ANKA 49.64% at 100 mg/kg/day No
Maytenus putterlickioides Celastraceae [199] Kenya Root barks Methanol Good Good Very good 4.41–10.26 µg/ml IC50 Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA 78.66% at 100 mg/kg/day No
Maytenus undata Celastraceae [199] Kenya Leaves Methanol Good Good Very good 7.4–9.89 µg/ml IC50 Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA 76.29% at 100 mg/kg/day No
Mimusops caffra Sapotaceae [206] South Africa Leaves Dichloromethane Good Very good Moderate 2.14 µg/ml IC50 Plasmodium falciparum D10, Plasmodium berghei 94.01% at 400 mg/kg/day Nd
Schkuhria pinnata Compositae [199] Kenya Whole plant Methanol Good Good In actice 1.3–6.83 µg/ml IC50 Plasmodium falciparum D6 & W2, Plasmodium berghei ANKA 49.9% at 100 mg/kg/day No
Sclerocarya birrea Anacardiaceae [205] Kenya Stem barks Methanol Moderate Moderate Very good 5.91–24.96 µg/ml IC50 Plasmodium falciparum D6, W2, Plasmodium berghei 63.49% at 100 mg/kg/day No
Toddalia asiatica Rutaceae [117] Kenya Fruits Ethyl acetate Very good Very good Moderate 1.87 μg/ml IC50 Plasmodium falciparum W2 & D6, Plasmodium berghei 81.34% at 500 mg/kg/day No
Turraea robusta Meliaceae [205] Kenya Root barks Methanol Good Good Very good 2.09–10.32 µg/ml IC50 Plasmodium falciparum D6, W2, Plasmodium berghei 78.2% at 100 mg/kg/day Yes (SI = 2.36–11.67; Vero cells)
Uapaca nitida Phyllanthaceae [207] Tanzania Root barks Ethanol Moderate* Inactive Inactive 19.6—25.9 µg/mL IC50 Plasmodium falciparum K1, T9-96 & Plasmodium berghei poor No
Vernonia ambigua Asteraceae [208] Nigeria Ns Water Very good Inactive Very good 31.26–50 µg/ml IC50 Plasmodium berghei, Plasmodium falciparum 60% at 100 mg/kg/day No
[209] Republic of Congo Leaves Methanol Moderate Very good Moderate 3.58 µg/ml IC50 Plasmodium falciparum. Plasmodium yoelii 61.28% at 500 mg/kg/day No
Warburgia stuhlmannii Camellaceae [199] Kenya Stem barks Water Very good Very good Very good 1.81–2.33 µg/ml IC50 Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA 84.95% at 100 mg/kg/day No
Azadirachta indica Meliaceae [143] Kenya Leaves Methanol Good Good Good 6.24–7.53 µg/ml IC50 Plasmodium falciparum D6 and W2 83.48% at 250 mg/kg/day No
Dichrostachys cinerea Fabaceae [159] Tanzania Stem barks Methanol Moderate Good Moderate 2.37–11.92 µg/ml IC50 Plasmodium falciparum D6, Dd2, Plasmodium berghei 53.12% at 400 mg/kg/day No
Grewia plagiophylla Malvaceae [143] Kenya Leaves Methanol Moderate Moderate Good 13.28–34.2 µg/ml IC50 Plasmodium falciparum D6 and W2 77.9% at 250 mg/kg/day Nd
Hoslundia opposita Lamiaceae [143] Kenya Leaves Methanol Moderate Good Good 12.8–13.22 µg/ml IC50 Plasmodium falciparum D6 and W2 79.67% at 250 mg/kg/day Yes (SI = 0.58; Vero E6 cells)
Lannea schweinfurthii Anacardiaceae [143] Kenya Leaves Methanol Moderate Inactive Good 38.87–54.15 µg/ml IC50 Plasmodium falciparum D6 and W2 83.48% at 250 mg/kg/day Yes (SI = 1.4; Vero E6 cells)
Premna chrysoclada Lamiaceae [143] Kenya Leaves Methanol Good Good Good 7.75–9.02 µg/ml IC50 Plasmodium falciparum D6 and W2 65.08% at 250 mg/kg/day Nd
Rhus natalensis Anacardiaceae [143] Kenya Leaves Methanol Moderate Inactive Good 43.93–51.2 µg/ml IC50 Plasmodium falciparum D6 and W2 82.7% at 250 mg/kg/day Nd
Triphyophyllum peltatum Dioncophyllaceae [191] Ivory coast Roots, stem barks Dichloromethane Very good* Very good Very good 1.90 mg/kg for Dioncophylline C and 10.71 mg/kg for dioncophylline A Plasmodium berghei ANKA CRS 99% at 50 mg/kg/day Nd
Uvaria acuminata Annonaceae [143] Kenya Roots Methanol Good Good In active 6.90–8.89 µg/ml IC50 Plasmodium falciparum D6 and W2 27.0% at 250 mg/kg/day Nd

Nd Not done, Ns Not specified, SI Selectivity index

aActivity determined using pure compounds isolated from plant

Table 4.

Clinical trial on African medicinal plants

Plant species Plant family Source Country of study Part of plant used Extraction solvent Crude extract? Antimalarial activity Parasite suppression rate Strain of Plasmodium tested Toxicity
Cochlospermum planchonii Bixaceae [210] Burkina Faso Roots Ns Yes Moderate 52 at 600 ml/day Plasmodium falciparum No

Nd Not done, Ns Not specified

Fig. 2.

Fig. 2

Distribution of the research articles on the antiplasmodial activity of indigenous plants according to African countries

Family and species distribution of plants evaluated

From 722 studies, the most frequent plant families studied included Fabaceae 47 (6.5%), Euphorbiaceae 45 (6.2%), Annonaceae 37 (5.1%), Rubiaceae 37 (5.1%), Rutaceae 37 (5.1%), Meliaceae 30 (4.2%), and Lamiaceae 12 (1.7%). Five hundred and two (502) plant species were investigated in this study. Of them, the most investigated were: Azadirachta indica, Zanthoxylum chalybeum, Picrilima nitida, and Nauclea latifolia. The most frequent parts of the plants tested were the leaves, roots, root barkss, stems, and the whole plant. A majority of the studies used the crude extracts of the plants compared to pure compounds (95.7% vs. 4.3%). In descending order, methanol 322 (44.7%), dichloromethane 207 (28.7%), ethanol 103 (14.3%), water 85 (11.7%) and ethyl acetate 62 (8.6%) were the most frequent extraction solvent used.

In vitro and in vivo activities of the plants evaluated

Overall, 248 (34.3%) of the studies reported activity that was very good (IC50 values < 5 µg/ml or suppression rate of ≥ 50% at 100 mg/kg body weight/day), 241 (33.4%) reported good activity and 233 (32.3%) reported moderate activity. For the in vitro studies, a majority 228 (38.6%) reported very good activity; 206 (34.9%) reported good activity and 187 (31.6%) reported moderate activity. Meanwhile for the in vivo studies, a majority 19 (21.1%) reported moderate activity, 16 (17.8%) reported very good activity and 13 (14.4%) reported good activity. For studies reporting both the in vitro and in vivo activity, a majority of 17 (42.5%) reported only moderate activity, 13 (32.5%) studies reported very good activity and 10 (25.0%) reported good activity. Among the plants with very good activity, only one species demonstrated very good activity both in vitro and in vivo (Table 3).

Among the studies, the most frequent plant species demonstrating very good antiplasmodial activity were: Alchornea cordifolia [3/3, 100%], Flueggea virosa [3/3, 100%], Cryptolepis sanguinolenta [¾, 75%], Zanthoxylum chalbeum [4/5, 80%] and Maytenus senegalensis [3/6, 50%]. Plant families with the most active species include Rutaceae [13/25, 52.0%], Apocynaceae [13/26, 50%], Celastraceae [7/15, 46.7%], Annonaceae [17/37, 45.9%], Euphorbiaceae [21/48, 43.8], Combretaceae [7/16, 43.8%], Fabaceae [18/47, 38.3%], Lamiaceae [8/23, 34.8%], Asteraceae [23/69, 33.3%], and Rubiaceae [8/37, 21.6%]. The fractions are derived from the count of studies reporting very good antiplasmodial activity (numerator) divided by the total number of studies that assessed the activity of that plant species (denominator).

Azadirachta indica and Vernonia amygdalina were the most frequently reported inactive species (Additional file 1: Table S1). Furthermore, Fabaceae, Rubiaceae, Euphorbiaceae, and Asteraceae were the plant families containing the most frequently reported inactive plants. A majority of 95.7% (691/722) of the studies used the crude extract of the plants. The antiplasmodial and/or anti-malarial activity was significantly higher (p = 0.044) in studies using pure compounds compared to those using crude preparations.

Toxicity of plants evaluated for their antiplasmodial and anti-malarial activity

Out of the 198 plants evaluated in toxicity assays, 52 (26.3%) were found to demonstrate some degree of toxicity. The most frequently reported plants with toxicity were Azadirachta indica and Vernonia amygdalina. Plant families harboring the most toxic species were Lamiaceae, Anacardiaceae, Moraceae, Meliaceae, Asteraceae, and Fabaceae. Approximately 33% of the plants tested demonstrated some toxicity in vitro and 26.7% had some degree of toxicity in vivo. Among plants with very good, good, and moderate antiplasmodial activity, 17.8%, 28.3%, and 35.4% had some degree of toxicity, respectively. The leaf was the plant part with the most frequently reported toxicity. Albino mice and Vero E6 cells were the most commonly used assays for the assessment of the toxicity of the plants.

Discussion

Resistance to the frontline anti-malarial drugs is increasing and is now a global concern. With this rising rate of resistance, there is a need to accelerate research into the discovery and development of new anti-malarial drugs. Unfortunately, from this study, it is evident that the progress into the discovery of a new anti-malarial drug in Africa is slothful. Despite a considerable number of plant species that have demonstrated significant antiplasmodial activity in vitro, fewer plants have been evaluated in vivo and only one clinical trial with Cochlospermum planchonii (Bixaceae) has been conducted so far. This reinforces the need for basic and clinical research in the region. Van Wyk [213] had also arrived at the same conclusion.

This review revealed research articles from 31 African countries. Most of the articles were from Nigeria. This is suggestive that Nigeria is leading the podium in research on anti-malarial drug discovery and development, deservedly so, because she is probably the most affected country in the world. It is noteworthy that South Africa which is generally more technologically advanced than Nigeria had very few (8) articles. The African region is the most affected in the world recording the greatest number of cases and malaria attributed deaths. However, the distribution of malaria in Africa is not even, with sub-Saharan Africa harboring disproportionately the greatest number of cases. This is suggestive that research to identify new anti-malarial drugs may be related to the burden of the disease, thus the government policy to control the disease. There is, therefore, the need for policy-driven research into new anti-malarial all across the African region. In this review, IC50 values of < 20 µg/ml were considered as the cutoff of significant anti-malarial activity. This cutoff is considered the minimum to qualify as a first-pass “hit” in anti-malarial drugs screening [214]. Five hundred and two (502) plant species from 169 families were observed to have moderate to very good anti-malarial activity. The most investigated plant families were Euphorbiaceae, Fabaceae, Rubiaceae, and Annonaceae. However, the plant families containing the most active plants were Apocynaceae, Celestraceae, and Rutaceae. This finding suggests that more emphasis should be given to plants in these families for anti-malarial drug discovery. Besides, the most investigated plant species were Azadirachta indica, Nauclea latifolia, Picralima nitida, and Zanthoxylum chalybeum. Alchornea cordifolia, Flueggea virosa, Crytolepis sanguinolenta, and Zanthoxylum chalybeum were the only plant species with consistently very good antiplasmodial and anti-malarial activities between studies. This is very surprising that no clinical trial using any of these plants has been conducted. Further studies on these plant species should be performed.

This study revealed that overall, a majority of the plants investigated had very good antiplasmodial activity in vitro. That activity decreases as you move to in vivo in most studies, with a majority of plants demonstrating only moderate activity. For example, Gathirwa et al. [146] showed that the activity of Uvaria acuminate decreased from good activity in vitro to inactive in vivo. However, a few studies show that plant activity could also increase from in vitro to in vivo. For example, Ngbolua et al. [211] showed that the activity of Vernonia ambigua increased from in vitro to in vivo analysis. Other examples include studies by Muthaura et al. [20] using Boscia angustifolia, Kweyamba et al. [162] using Commiphora Africana, and Ajaiyeoba et al. [204] using Annona senegalensis. This suggests that plants could still have significant anti-malarial activity in vivo although they failed to in vitro. Most investigators usually progress to in vivo studies only when they observe significant antiplasmodial activity in vitro. This may explain the findings of a smaller number of in vivo studies in the current study. The investigation of the anti-malarial activities of plants should continue in vivo despite the dismal performance of the plants in vitro.

The current study revealed substantial inter-study variation in the antiplasmodial activity of several plant species. For example, considerable variation in the antiplasmodial activity was observed for Senna occidentalis, Adansonia digitata, Acanthospermum hispidum, Rotheca myricoides, Anogeissus leocarpus, Annona muricata, Ageratum conyzoides, Albizia coriaria, Ekebergia capensis, Flueggea virosa, Lippia javanica, Maytenus senegalensis, Morinda lucida, Picralima nitida, Trichilia emetica, Vernonia amydalina, and Vernonia colorata. The factors that could have accounted for these differences may include differences in the extraction solvent thus the extraction yield and extracted metabolite. With dichloromethane, mainly the apolar metabolites are extracted. In contrast, with methanol, from polar to moderate apolar metabolites are extracted.

Most (95.7%) of the studies used crude extract for their investigation and rarely the pure compounds (Additional file 1: Table S2 presents a summary of active compounds that have been identified from some of the plants). The finding of a majority of studies in Africa using only the crude extract of plants may be attributed to the absence of the necessary infrastructure to process the plant materials to get the pure compounds. Furthermore, there may be geographical differences in the areas where the plants were collected and this may also affect the activity of the same plant species. For example, despite using the same extraction solvent, the antiplasmodial activity of Acacia nilotica was moderate in South Africa and very good in Sudan. There was also variation between the different assay types. For example, the activities of Vernonia ambigua [211] and Annona senegalensis [204] have been reported to increase from inactive in vitro to very good in vivo. However, a few plant species including Alchornea cordifolia, and Zanthoxylum chalybeum, were observed to be consistently very good between studies. These plant species should be exploited further for their antiplasmodial activity. The activities of the plants were equally observed to increase with the isolation of the active compounds thus reinforcing the need for research into identifying the active compounds of African medicinal plants. The marked difference in the antiplasmodial activity of the crude extract of Artemisia annua and the pure compounds points out the issue that even the compounds which show only low potency and may be discarded from the initial screen for further development may still have active components with therapeutic potential [215]. The strain of the Plasmodium used may also be another factor accounting for the inter-study variation observed; studies using chloroquine-sensitive strains of the parasite like P. falciparum 3D7, D6, NF54 tend to report higher antiplasmodial activity compared to studies using chloroquine-resistant strains like P. falciparum W2, Dd5, K1 or D10.

This study revealed that only a few (26.3%) of the plants demonstrated some degree of toxicity. The families hosting the most toxic plant species were Lamiaceae, Anacardiaceae, Moraceae, and Meliaceae. The most toxic plants were Azadirachta indica and Vernonia amygdalina. The former [168] is one of the few plant species that demonstrated very good antiplasmodial activity in some studies. Other plants with high toxicity but very good antiplasmodial/anti-malarial activities include Arenga engleri [25], Celtis integrifolia [52], Ficus platyhylla [50], Gutenbergia cordifolia [21], Helchrysum cymosum [97], Microglossa pyrifolia [92], Opilia celtidifolia [52], Quassia Africana [103], Rumex abyssinicus [92], Clausena anisota [157], Icacina senegalensis [171], Abutilon grandiflorum [200], and Lannea schweinfurthii [205]. The isolation of the active compounds, which has to be done, could eliminate the toxicity, if not all, to a certain degree. For example, Salvia radula crude extract (of aerial parts) has been shown to demonstrate some degree of toxicity, but betulafolientriol oxide isolated from the plant was very active with little or no toxicity against human kidney epithelial cells [120]. There was also considerable variation in the toxicity between the assay types (in vitro or in vivo). As many as 32.8% of the plants demonstrated some level of toxicity in vitro meanwhile 26.7% were toxic in vivo. Since it is customary to evaluate toxicity at the in vitro level and toxic plants are discarded before in vivo evaluation, that may explain while fewer plants were toxic in vivo. Toxicity varied within the same plant species from study to study and could be attributed to differences in the study design as well as differences in the parts of the plants used for testing. From this study, the most toxicity was observed with the leaves. Also, a relationship could be established between toxicity and antiplasmodial activity; as the activity of the plant increases, the toxicity, on the other hand, was observed to decrease. Furthermore, albino mice and Vero E6 cells were the most commonly used assays in the evaluation of toxicity. Unfortunately, the authors could nt make a meaningful relationship between the type of assay and toxicity because of the fewer studies assessing the toxicity of the medicinal plants.

This study, however, is limited in that the analyses may have been compounded by the substantial inter-study variation in the methodologies used by different independent studies for the extraction of plant material, the overall extraction yield, the diversity of extracted metabolites as well as the geographical variations in the different sites used in the plant collection. However, the study has provided important baseline data that may be exploited by researchers in the field for the discovery and development of new anti-malarial drugs.

Conclusion

This study has revealed the slothful progress in the discovery and development of new anti-malarial drugs from African medicinal plants. Despite the encouraging activities demonstrated by the plants in vitro, fewer plants have been evaluated in vivo and just one clinical trial has been conducted so far with Cochlospermum planchonii (Bixaceae). The study also revealed considerable inter-study variation in the antiplasmodial activities of the plants, however, the activity of some plants including Alchornea cordifolia, Azadirachta indica, and Zanthoxylum chalybeum was consistently very good. The study demonstrates a relationship between antiplasmodial activity and toxicity whereby the toxicity of the plants decreases as the antiplasmodial activity increases. Besides, the active compounds were identified in just a handful of the plants. Therefore, there is a need for a policy-driven approach in the discovery and development of new anti-malarial drugs to subvert the rising resistance to the frontline anti-malarial drugs in the world.

Supplementary Information

12936_2021_3866_MOESM1_ESM.docx (47.7KB, docx)

Additional file 1: Table S1. In vitro and in vivo studies reporting inactive antiplasmodial or antimalarial activity. Table S2. List of active compounds identified from plants.

Acknowledgements

I would like to express my special appreciation and thanks to Professor Dr. Wanderley de Souza for his helpful comments.

Abbreviations

PRISMA

Preferred Reporting Items for Systematic Reviews and Meta-analysis

Nd

Not done

Ns

Not specified

SI

Selectivity Index

LD50

Median lethal dose

IC50

Half-maximal inhibitory concentration

CC50

50% Cytotoxic concentration

LC50

Lethal concentration

Authors’ contributions

All authors contributed equally to the study. All authors read and approved the manuscript.

Funding

N/A.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.WHO. World malaria report 2019. Geneva: World Health Organization; 2019. Accessed on 28/06/2021 at https://www.who.int/publications-detail/world-malaria-report-2019.
  • 2.Kwenti ET. Malaria and HIV coinfection in sub-Saharan Africa: prevalence, impact, and treatment strategies. Res Rep Trop Med. 2018;9:123–136. doi: 10.2147/RRTM.S154501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Kwenti ET, Kukwah TA, Kwenti TDB, Nyassa BR, Dilonga MH, Enow-Orock G, et al. Comparative analysis of IgG and IgG subclasses against Plasmodium falciparum MSP-119 in children from five contrasting bioecological zones of Cameroon. Malar J. 2019;18:16. doi: 10.1186/s12936-019-2654-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–467. doi: 10.1056/NEJMoa0808859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379:413–431. doi: 10.1016/S0140-6736(12)60034-8. [DOI] [PubMed] [Google Scholar]
  • 6.Nagendrappa PB, Annamalai P, Naik M, Mahajan V, Mathur A, Susanta G, et al. A prospective comparative field study to evaluate the efficacy of a traditional plant-based malaria prophylaxis. J Intercult Ethnopharmacol. 2017;6:36–41. doi: 10.5455/jice.20161112021406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–335. doi: 10.1021/np200906s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009;109:3012–3043. doi: 10.1021/cr900019j. [DOI] [PubMed] [Google Scholar]
  • 9.Willcox ML. A clinical trial of 'AM', a Ugandan herbal remedy for malaria. J Public Health Med. 1999;21:318–324. doi: 10.1093/pubmed/21.3.318. [DOI] [PubMed] [Google Scholar]
  • 10.Suswardany DL, Sibbritt DW, Supardi S, Pardosi JF, Chang S, Adams J. A cross-sectional analysis of traditional medicine use for malaria alongside free antimalarial drugs treatment amongst adults in high-risk malaria endemic provinces of Indonesia. PLoS One. 2017;12:e0173522. doi: 10.1371/journal.pone.0173522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ibrahima HA, Imama IA, Bellob AM, Umara U, Muhammada S, Abdullahia SA. The potential of Nigerian medicinal plants as antimalarial agent: a review. Int J Sci Technol. 2012;2:600–605. [Google Scholar]
  • 12.Zofou D, Kuete V, Titanji VPK. Antimalarial and other antiprotozoal products from African Medicinal plants. In: Medicinal plant research in Africa: pharmacology and chemistry. Kuete V, Ed. Chapt. 17. Amsterdam, Elsevier, 2013;661–709.
  • 13.Lawal B, Shittu OK, Kabiru AY, Jigam AA, Umar MB, Berinyuy EB, et al. Potential antimalarials from African natural products: a review. J Intercult Ethnopharmacol. 2015;4:318–343. doi: 10.5455/jice.20150928102856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Van Wyk BE. A review of commercially important African medicinal plants. J Ethnopharmacol. 2015;176:118–134. doi: 10.1016/j.jep.2015.10.031. [DOI] [PubMed] [Google Scholar]
  • 15.Kaur R, Kaur H. Plant derived antimalarial agents. J Med Plants Studies. 2017;5:346–363. [Google Scholar]
  • 16.Lemma MT, Ahmed AM, Elhady MT, Ngo HT, Vu TL, Sang TK, et al. Medicinal plants for in vitro antiplasmodial activities: a systematic review of literature. Parasitol Int. 2017;66:713–720. doi: 10.1016/j.parint.2017.09.002. [DOI] [PubMed] [Google Scholar]
  • 17.Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. PLoS Med. 2009;6:1000097. doi: 10.1371/journal.pmed.1000097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Deharo E, Bourdy G, Quenevo C, Munoz V, Ruiz G, Sauvain M. A search for natural bioactive compounds in Bolivia through multidisciplinary approach. Part V. Evaluation of the antimalarial activity of plants used by the Tacana Indians. J Ethnopharmacol. 2001;77:91–8. doi: 10.1016/S0378-8741(01)00270-7. [DOI] [PubMed] [Google Scholar]
  • 19.Becker JVW, van der Merwe MM, van Brummelen AC, Pillay P, Crampton BG, Mmutlane EM, et al. In vitro anti-plasmodial activity of Dicoma anomala subsp gerrardii (Asteraceae): identification of its main active constituent, structure-activity relationship studies, and gene expression profiling. Malar J. 2011;10:295. doi: 10.1186/1475-2875-10-295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Gessler MC, Nkunya MH, Mwasumbi LB, Heinrich M, Tanner M. Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop. 1994;56:65–77. doi: 10.1016/0001-706X(94)90041-8. [DOI] [PubMed] [Google Scholar]
  • 21.Koch A, Tamez P, Pezzuto J, Soejarto D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J Ethnopharmacol. 2005;101:95–99. doi: 10.1016/j.jep.2005.03.011. [DOI] [PubMed] [Google Scholar]
  • 22.Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, et al. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol. 2004;92:177–191. doi: 10.1016/j.jep.2004.02.011. [DOI] [PubMed] [Google Scholar]
  • 23.El Tahir A, Satti GM, Khalid SA. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.) Exell. J Ethnopharmacol. 1999;64:227–33. doi: 10.1016/S0378-8741(98)00129-9. [DOI] [PubMed] [Google Scholar]
  • 24.Muthaura CN, Keriko JM, Mutai C, Yenesew A, Gathirwa JW, Irungu BN, et al. Antiplasmodial potential of traditional phytotherapy of some remedies used in treatment of malaria in Meru-Tharaka Nithi County of Kenya. J Ethnopharmacol. 2015;175:315–323. doi: 10.1016/j.jep.2015.09.017. [DOI] [PubMed] [Google Scholar]
  • 25.Prozesky EA, Meyer JJ, Louw AI. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected South African plants. J Ethnopharmacol. 2001;76:239–245. doi: 10.1016/S0378-8741(01)00245-8. [DOI] [PubMed] [Google Scholar]
  • 26.Muthaura CN, Keriko JM, Mutai C, Yenesew A, Gathirwa JW, Irungu BN, et al. Antiplasmodial potential of traditional antimalarial phytotherapy remedies used by the Kwale community of the Kenyan Coast. J Ethnopharmacol. 2015;170:148–157. doi: 10.1016/j.jep.2015.05.024. [DOI] [PubMed] [Google Scholar]
  • 27.Sanon S, Ollivier E, Azas N, Mahiou V, Gasquet M, Ouattara CT, et al. Ethnobotanical survey and in vitro antiplasmodial activity of plants used in traditional medicine in Burkina Faso. J Ethnopharmacol. 2003;86:143–147. doi: 10.1016/S0378-8741(02)00381-1. [DOI] [PubMed] [Google Scholar]
  • 28.Zirihi-Guédé N, Mambu L, Guédé-Guina F, Bodo B, Grellier P. In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J Ethnopharmacol. 2005;98:281–285. doi: 10.1016/j.jep.2005.01.004. [DOI] [PubMed] [Google Scholar]
  • 29.Koukouikila-Koussounda F, Abena AA, Nzoungani A, Mombouli JV, Ouamba JM, Kun J, et al. In vitro evaluation of antiplasmodial activity of extracts of Acanthospermum hispidum DC (Asteraceae) and Ficus thonningii Blume (Moraceae), two plants used in traditional medicine in the Republic of Congo. Afr J Tradit Complement Altern Med. 2012;10:270–276. [PMC free article] [PubMed] [Google Scholar]
  • 30.Owuor BO, Ochanda JO, Kokwaro JO, Cheruiyot AC, Yeda RA, Okudo CA, et al. In vitro antiplasmodial activity of selected Luo and Kuria medicinal plants. J Ethnopharmacol. 2012;144:779–781. doi: 10.1016/j.jep.2012.09.045. [DOI] [PubMed] [Google Scholar]
  • 31.Malebo HM, Tanja W, Cal M, Swaleh SAM, Omolo MO, Hassanali A, et al. Antiplasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzan J Health Res. 2009;11:226–234. doi: 10.4314/thrb.v11i4.50194. [DOI] [PubMed] [Google Scholar]
  • 32.Annan K, Sarpong K, Asare C, Dickson R, Amponsah KI, Gyan B, et al. In vitro anti-plasmodial activity of three herbal remedies for malaria in Ghana: Adenia cissampeloides (Planch.) Harms., Termina liaivorensis A. Chev, and Elaeis guineensis Jacq. Pharmacognosy Res. 2012;4:225–9. doi: 10.4103/0974-8490.102270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Lekana-Douki JB, Liabagui SLO, Bongui JB, Zatra R, Lebibi J, Toure-Ndouo FS. In vitro antiplasmodial activity of crude extracts of Tetrapleura tetraptera and Copaifera religiosa. BMC Res Notes. 2011;4:506. doi: 10.1186/1756-0500-4-506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Ahmed EHM, Nour BYM, Mohammed YG, Khalid HS. Antiplasmodial activity of some medicinal plants used in Sudanese fFolk-medicine. Environ Health Insights. 2010;4:1–6. doi: 10.4137/EHI.S4108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Kuria KA, Chepkwony H, Govaerts C, Roets E, Busson R, De Witte P, et al. The antiplasmodial activity of isolates from Ajuga remota. J Nat Prod. 2002;65:789–793. doi: 10.1021/np0104626. [DOI] [PubMed] [Google Scholar]
  • 36.Lasisi AA, Olayiwola MA, Balogun SA, Akinloye OA, Ojo DA. Phytochemical composition, cytotoxicity and in vitro antiplasmodial activity of fractions from Alafia barteri olive (Hook F. Icon)-Apocynaceae. J Saudi Chem Soc. 2016;20:2–6. doi: 10.1016/j.jscs.2012.05.003. [DOI] [Google Scholar]
  • 37.Bapela MJ, Meyer JJ, Kaiser M. In vitro antiplasmodial screening of ethnopharmacologically selected South African plant species used for the treatment of malaria. J Ethnopharmacol. 2014;156:370–373. doi: 10.1016/j.jep.2014.09.017. [DOI] [PubMed] [Google Scholar]
  • 38.Banzouzi JT, Prado R, Menan H, Valentin A, Roumestan C, Mallie M, et al. In vitro antiplasmodial activity of extracts of Alchornea cordifolia and identification of an active constituent: ellagic acid. J Ethnopharmacol. 2002;81:399–401. doi: 10.1016/S0378-8741(02)00121-6. [DOI] [PubMed] [Google Scholar]
  • 39.Mustofa, Valentin A, Benoit-Vical F, Pélissier Y, Koné-Bamba D, Mallié M. Antiplasmodial activity of plant extracts used in West African traditional medicine. J Ethnopharmacol. 2000;73:145–51. [DOI] [PubMed]
  • 40.Musuyu Muganza D, Fruth BI, Nzunzu Lami J, Mesia GK, Kambu OK, Tona GL, et al. In vitro antiprotozoal and cytotoxic activity of 33 ethonopharmacologically selected medicinal plants from Democratic Republic of Congo. J Ethnopharmacol. 2012;141:301–308. doi: 10.1016/j.jep.2012.02.035. [DOI] [PubMed] [Google Scholar]
  • 41.Abdissa D, Geleta G, Bacha K, Abdissa N. Phytochemical investigation of Aloe pulcherrima roots and evaluation for its antibacterial and antiplasmodial activities. PLoS ONE. 2017;12:e0173882. doi: 10.1371/journal.pone.0173882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Iyiola OA, Tijani AY, Lateef KM. Antimalarial activity of ethanolic stem barks extract of Alstonia boonei in mice. Asian J Biol Sci. 2011;4:235–243. doi: 10.3923/ajbs.2011.235.243. [DOI] [Google Scholar]
  • 43.Zirihi-Guédé N, N’guessan K, Etien Dibié T, Grellier P. Ethnopharmacological study of plants used to treat malaria, in traditional medicine, by Bete populations of Issia (Côte d’Ivoire) J Pharm Sci Res. 2010;2:216–27. [Google Scholar]
  • 44.Lumpu SL, Kikueta CM, Tshodi ME, Mbenza AP, Kambu OK, Mbamu BM, et al. Antiprotozoal screening and cytotoxicity of extracts and fractions from the leaves, stem barks and root barks of Alstonia congensis. J Ethnopharmacol. 2013;148:724–727. doi: 10.1016/j.jep.2013.04.016. [DOI] [PubMed] [Google Scholar]
  • 45.Hout S, Chea A, Bun SS, Elias R, Gasquet M, Timon-David P, et al. Screening of selected indigenous plants of Cambodia for antiplasmodial activity. J Ethnopharmacol. 2006;107:12–18. doi: 10.1016/j.jep.2006.01.028. [DOI] [PubMed] [Google Scholar]
  • 46.Lusakibanza M, Mesia G, Tona G, Karemere S, Lukuka A, Tits M, et al. In vitro and in vivo antimalarial and cytotoxic activity of five plants used in Congolese traditional medicine. J Ethnopharmacol. 2010;129:398–402. doi: 10.1016/j.jep.2010.04.007. [DOI] [PubMed] [Google Scholar]
  • 47.Yamthe LRT, Fokou PVT, Mbouna CDJ, Keumoe R, Ndjakou BL, Djouonzo PT, et al. Extracts from Annona muricata L. and Annona reticulata L. (Annonaceae) potently and selectively inhibit Plasmodium falciparum. Medicines (Basel). 2015;2:55–66. doi: 10.3390/medicines2020055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Ménan H, Banzouzi J-T, Hocquette A, Pélissier Y, Blache Y, Koné M, et al. Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria. J Ethnopharmacol. 2006;105:131–136. doi: 10.1016/j.jep.2005.10.027. [DOI] [PubMed] [Google Scholar]
  • 49.Boyom FF, Fokou PV, Yamthe LR, Mfopa AN, Kemgne EM, Mbacham WF, et al. Potent antiplasmodial extracts from Cameroonian Annonaceae. J Ethnopharmacol. 2011;134:717–724. doi: 10.1016/j.jep.2011.01.020. [DOI] [PubMed] [Google Scholar]
  • 50.Shuaibu MN, Wuyep PA, Yanagi T, Hirayama K, Tanaka T, Kouno I. The use of microfluorometric method for activity-guided isolation of antiplasmodial compound from plant extracts. Parasitol Res. 2008;102:1119–1127. doi: 10.1007/s00436-008-0879-6. [DOI] [PubMed] [Google Scholar]
  • 51.Vonthron-Sénécheau C, Weniger B, Ouattara M, Bi FT, Kamenan A, Lobstein A, et al. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected Ivorian plants. J Ethnopharmacol. 2003;87:221–225. doi: 10.1016/S0378-8741(03)00144-2. [DOI] [PubMed] [Google Scholar]
  • 52.Sanon S, Gansane A, Ouattara LP, Traore A, OueDRaogo IN, Tiono A, et al. In vitro antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso. Afr J Lab Med. 2013;2:81. doi: 10.4102/ajlm.v2i1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Chukwujekwu JC, van Staden J, Smith P, Meyer JJM. Antibacterial, anti-inflammatory, and antimalarial activities of some Nigerian medicinal plants. S Afr J Bot. 2005;71:316–325. doi: 10.1016/S0254-6299(15)30105-8. [DOI] [Google Scholar]
  • 54.Kraft C, Jenett-Siems K, Siems K, Jakupovic J, Mavi S, Bienzle U, et al. In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytother Res. 2003;17:123–128. doi: 10.1002/ptr.1066. [DOI] [PubMed] [Google Scholar]
  • 55.Boyom FF, Kemgne EM, Tepongning R, Ngouana V, Mbacham WF, Tsamo E, et al. Antiplasmodial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon. J Ethnopharmacol. 2009;123:483–488. doi: 10.1016/j.jep.2009.03.008. [DOI] [PubMed] [Google Scholar]
  • 56.Waako PJ, Katuura E, Smith P, Folb P. East African medicinal plants as a source of lead compounds for the development of new antimalarial drugs. Afr J Ecol. 2007;45:102–106. doi: 10.1111/j.1365-2028.2007.00752.x. [DOI] [Google Scholar]
  • 57.Benoit F, Valentin A, Pelissier Y, Diafouka F, Marion C, Kone-Bamba D, et al. In vitro antimalarial activity of vegetal extracts used in West African traditional medicine. Am J Trop Med Hyg. 1996;54:67–71. doi: 10.4269/ajtmh.1996.54.67. [DOI] [PubMed] [Google Scholar]
  • 58.El-Tahir A, Satti GM, Khalid SA. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Acacia nilotica. Phytother Res. 1999;13:474–478. doi: 10.1002/(SICI)1099-1573(199909)13:6&#x0003c;474::AID-PTR482&#x0003e;3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  • 59.MacKinnon S1, Durst T, Arnason JT, Angerhofer C, Pezzuto J, SanchezVindas PE, et al. Antimalarial activity of tropical Meliaceae extracts and Gedunin derivatives. J Nat Prod. 1997;60:336–41. [DOI] [PubMed]
  • 60.Connelly MP, Fabiano E, Patel IH, Kinyanjui SM, Mberu EK, Watkins WM. Antimalarial activity in crude extracts of Malawian medicinal plants. Ann Trop Med Parasitol. 1996;90:597–602. doi: 10.1080/00034983.1996.11813089. [DOI] [PubMed] [Google Scholar]
  • 61.Ngwira KJ, Maharaj VJ, Mgani QA. In vitro antiplasmodial and HIV-1 neutralization activities of root and leaf extracts from Berberis holstii. J Herb Med. 2015;5:30–35. doi: 10.1016/j.hermed.2014.12.001. [DOI] [Google Scholar]
  • 62.Jansen O, Angenot L, Tits M, Nicolas JP, De Mol P, Nikiéma JB, et al. Evaluation of 13 selected medicinal plants from Burkina Faso for their antiplasmodial properties. J Ethnopharmacol. 2010;130:143–150. doi: 10.1016/j.jep.2010.04.032. [DOI] [PubMed] [Google Scholar]
  • 63.Benoit-Vical F, Soh PN, Saléry M, Harguem L, Poupat C, Nongonierma R. Evaluation of Senegalese plants used in malaria treatment: focus on Chrozophora senegalensis. J Ethnopharmacol. 2008;116:43–48. doi: 10.1016/j.jep.2007.10.033. [DOI] [PubMed] [Google Scholar]
  • 64.Ogunlanaa OO, Kimb H-S, Watayab Y, Olagunjuc JO, Akindahunsid AA, Tan NH. Antiplasmodial flavonoid from young twigs and leaves of Caesalpinia bonduc (Linn) Roxb. J Chem Pharm Res. 2015;7:931–937. [Google Scholar]
  • 65.Weniger B, Lagnika L, Vonthron-Sénécheau C, Adjobimey T, Gbenou J, Moudachirou M, et al. Evaluation of ethnobotanically selected Benin medicinal plants for their in vitro antiplasmodial activity. J Ethnopharmacol. 2004;90:279–284. doi: 10.1016/j.jep.2003.10.002. [DOI] [PubMed] [Google Scholar]
  • 66.Melariri P, Campbell W, Etusim P, Smith P. Antiplasmodial properties and bioassay-guided fractionation of ethyl acetate extracts from Carica papaya leaves. J Parasitol Res. 2011;2011:104954. doi: 10.1155/2011/104954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Kayembe JS, Taba KM, Ntumba K, Tshiongo MTC, Kazadi TK. In vitro antimalarial activity of 20 quinones isolated from four plants used by traditional healers in the Democratic Republic of Congo. J Med Plant Res. 2010;4:991–994. [Google Scholar]
  • 68.Ramalhete C, Lopes D, Mulhovo S, Rosário VE, Ferreira MJU. Antimalarial activity of some plants traditionally used in Mozambique. Workshop Plantas Medicinais e Fitoterapêuticas nos Trópicos.IICT /CCCM, 29, 30 e 31 de Outubro de 2008.
  • 69.Tona L, Cimanga RK, Mesia K, Musuamba CT, De Bruyne T, Apers S, et al. In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. J Ethnopharmacol. 2004;93:27–32. doi: 10.1016/j.jep.2004.02.022. [DOI] [PubMed] [Google Scholar]
  • 70.Gbeassor M, Kossou Y, Amegbo K, de Souza C, Koumaglo K, Denke A. Antimalarial effects of eight African medicinal plants. J Ethnopharmacol. 1989;25:115–118. doi: 10.1016/0378-8741(89)90051-2. [DOI] [PubMed] [Google Scholar]
  • 71.Afoulous S, Ferhout H, Raoelison EG, Valentin A, Moukarzel B, Couderc F, et al. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaf essential oil of Cedrelopsis grevei. Food Chem Toxicol. 2013;56:352–362. doi: 10.1016/j.fct.2013.02.008. [DOI] [PubMed] [Google Scholar]
  • 72.Irungu BN, Rukunga GM, Mungai GM, Muthaura CN. In vitro antiplasmodial and cytotoxicity activities of 14 medicinal plants from Kenya. S Afr J Bot. 2007;73:204–207. doi: 10.1016/j.sajb.2006.11.004. [DOI] [Google Scholar]
  • 73.do Céu de Madureira M, Paula Martins A, Gomes M, Paiva J, Proença da Cunha A, do Rosário V. Antimalarial activity of medicinal plants used in traditional medicine in S. Tomé and Príncipe islands. J Ethnopharmacol. 2002;81:23–9. [DOI] [PubMed]
  • 74.Rukunga GM, Gathirwa JW, Omar SA, Muregi FW, Muthaura CN, Kirira PG, et al. Anti-plasmodial activity of the extracts of some Kenyan medicinal plants. J Ethnopharmacol. 2009;121:282–285. doi: 10.1016/j.jep.2008.10.033. [DOI] [PubMed] [Google Scholar]
  • 75.Lacroix D, Prado S, Kamoga D, Kasenene J, Namukobe J, Krief S, et al. Antiplasmodial and cytotoxic activities of medicinal plants traditionally used in the village of Kiohima Uganda. J Ethnopharmacol. 2011;133:850–855. doi: 10.1016/j.jep.2010.11.013. [DOI] [PubMed] [Google Scholar]
  • 76.Muregi FW, Chhabra SC, Njagi EN, Lang'at-Thoruwa CC, Njue WM, Orago AS, et al. Anti-plasmodial activity of some Kenyan medicinal plant extracts singly and in combination with chloroquine. Phytother Res. 2004;18:379–384. doi: 10.1002/ptr.1439. [DOI] [PubMed] [Google Scholar]
  • 77.Adia MM, Emami SN, Byamukama R, Faye I, Borg-Karlson AK. Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants. J Ethnopharmacol. 2016;186:14–19. doi: 10.1016/j.jep.2016.03.047. [DOI] [PubMed] [Google Scholar]
  • 78.Lamien-Meda A, Kiendrebeogo M, Compaoré M, Meda RN, Bacher M, Koenig K, et al. Quality assessment and antiplasmodial activity of West African Cochlospermum species. Phytochemistry. 2015;119:51–61. doi: 10.1016/j.phytochem.2015.09.006. [DOI] [PubMed] [Google Scholar]
  • 79.Benoit F, Valentin A, Pélissier Y, Marion C, Dakuyo Z, Mallié M, et al. Antimalarial activity in vitro of Cochlospermum tinctorium tubercle extracts. Trans R Soc Trop Med Hyg. 1995;89:217–218. doi: 10.1016/0035-9203(95)90502-2. [DOI] [PubMed] [Google Scholar]
  • 80.Zofou D, Kengne ABO, Tene M. Ngemenya MN, Tane P, Titanji VP. In vitro antiplasmodial activity and cytotoxicity of crude extracts and compounds from the stem barks of Kigelia africana (Lam.) Benth (Bignoniaceae). Parasitol Res. 2011;108:1383–90. [DOI] [PubMed]
  • 81.Paulo A, Gomes ET, Houghton PJ. New alkaloids from Cryptolepis sanguinolenta. J Nat Prod. 1995;58:1485–1491. doi: 10.1021/np50124a002. [DOI] [Google Scholar]
  • 82.Kirby GC, Paine A, Warhurst DC, Noamese BK, Phillipson JD. In vitro and in vivo antimalarial activity of cryptolepine, a plant-derived indoloquinoline. Phytother Res. 1995;9:359–363. doi: 10.1002/ptr.2650090510. [DOI] [Google Scholar]
  • 83.Cimanga K, De Bruyne T, Pieters L, Vlietinck AJ, Turger CA. In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinea. J Nat Prod. 1997;60:688–691. doi: 10.1021/np9605246. [DOI] [PubMed] [Google Scholar]
  • 84.Grellier P, Ramiaramanana L, Millerioux V, Deharo E, Schrével J, Frappier F, et al. Antimalarial activity of cryptolepine and isocryptolepine, alkaloids isolated from Cryptolepis sanguinolenta. Phytother Res. 1996;10:317–321. doi: 10.1002/(SICI)1099-1573(199606)10:4&#x0003c;317::AID-PTR858&#x0003e;3.0.CO;2-0. [DOI] [Google Scholar]
  • 85.Zofou D, Tematio EL, Ntie-Kang F, Tene M, Ngemenya MN, Tane P, et al. New antimalarial hits from Dacryodes edulis (Burseraceae) - Part I: Isolation, in vitro activity, in silico “drug-likeness” and pharmacokinetic profiles. PLoS ONE. 2013;8:e79544. doi: 10.1371/journal.pone.0079544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Nafuka SN, Mumbengegwi DR. Phytochemical analysis and in vitro anti-plasmodial activity of selected ethnomedicinal plants used to treat malaria associated symptoms in Northern Namibia. Int Sci Technol J Namibia. 2013;2:78–93. [Google Scholar]
  • 87.Jansen O, Tits M, Nicolas ALJP, De Mol P, Nikiema J-B, Frédérich M. Anti-plasmodial activity of Dicoma tomentosa (Asteraceae) and identification of urospermal A-15-O-acetate as the main active compound. Malar J. 2012;11:289. doi: 10.1186/1475-2875-11-289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Olasehinde GI, Ojurongbe O, Adeyeba AO, Fagade OE, Valecha N, Ayanda IO, et al. In vitro studies on the sensitivity pattern of Plasmodium falciparum to antimalarial drugs and local herbal extracts. Malar J. 2014;13:63. doi: 10.1186/1475-2875-13-63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Bickii J, Tchouya GRF, Tchouankeu JC, Tsamo E. Antimalarial activity in crude extracts of some Cameroonian medicinal plants. Afr J Tradit Complement Altern Med. 2007;4:107–111. doi: 10.4314/ajtcam.v4i1.31200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Liu Y, Murakami N, Ji H, Abreu P, Zhang S. Antimalarial flavonol glycosides from Euphorbiahirta. Pharm Biol. 2007;45:278–281. doi: 10.1080/13880200701214748. [DOI] [Google Scholar]
  • 91.Kaou AM, Mahiou-Leddet V, Hutter S, Aïnouddine S, Hassani S, Yahaya I, et al. Antimalarial activity of crude extracts from nine African medicinal plants. J Ethnopharmacol. 2008;116:74–83. doi: 10.1016/j.jep.2007.11.001. [DOI] [PubMed] [Google Scholar]
  • 92.Muganga R, Angenot L, Tits M, Frédérich M. Antiplasmodial and cytotoxic activities of Rwandan medicinal plants used in the treatment of malaria. J Ethnopharmacol. 2010;128:52–57. doi: 10.1016/j.jep.2009.12.023. [DOI] [PubMed] [Google Scholar]
  • 93.Traore-Keita F, Gasquet M, Di Giorgio C, Ollivier E, Delmas F, Keita A, et al. Antimalarial activity of four plants used in traditional medicine in Mali. Phytother Res. 2000;14:45–47. doi: 10.1002/(SICI)1099-1573(200002)14:1&#x0003c;45::AID-PTR544&#x0003e;3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 94.Ancolio C, Azas N, Mahiou V, Ollivier E, Di Giorgio C, Keita A, et al. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytother Res. 2002;16:646–649. doi: 10.1002/ptr.1025. [DOI] [PubMed] [Google Scholar]
  • 95.Nyambati GK, Lagat ZO, Maranga RO, Samuel M, Ozwara H. In vitro anti-plasmodial activity of Rubia cordifolia, Harrizonia abyssinica, Leucas calostachys Olive and Sanchus schweinfurthii medicinal plants. J Appl Pharm Sci. 2013;3:57–62. [Google Scholar]
  • 96.Afoulous S, Ferhout H, Raoelison EG, Valentin A, Moukarzel B, Couderc F, et al. Helichrysum gymnocephalum essential oil: chemical composition and cytotoxic, antimalarial and antioxidant activities, attribution of the activity origin by correlations. Molecules. 2011;16:8273–8291. doi: 10.3390/molecules16108273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Van Vuuren SF, Viljoen AM, Van Zyl RL, Van Heerden FR, Baser KHC. The antimicrobial, antimalarial and toxicity profiles of helihumulone, Leaf essential oil and extracts of Helichrysum cymosum (L.) D. Don subsp. cymosum. S Afr J Bot. 2006;72:287–290. doi: 10.1016/j.sajb.2005.07.007. [DOI] [Google Scholar]
  • 98.Boyom FF. Composition and anti-plasmodial activities of essential oils from some Cameroonian medicinal plants. Phytochemistry. 2003;64:1269–1275. doi: 10.1016/j.phytochem.2003.08.004. [DOI] [PubMed] [Google Scholar]
  • 99.Fotie J, Bohle DS, Leimanis ML, Georges E, Rukunga G, Nkengfack AE. Lupeol long-chain fatty acid esters with antimalarial activity from Holarrhena floribunda. J Nat Prod. 2006;69:62–67. doi: 10.1021/np050315y. [DOI] [PubMed] [Google Scholar]
  • 100.Sarr SO, Perrotey S, Fall I, Ennahar S, Zhao M, Diop YM, et al. Icacina senegalensis (Icacinaceae), traditionally used for the treatment of malaria, inhibits in vitro Plasmodium falciparum growth without host cell toxicity. Malar J. 2011;10:85. doi: 10.1186/1475-2875-10-85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Bickii J, Njifutie N, Foyere JA, Basco LK, Ringwald P. In vitro antimalarial activity of limonoids from Khaya grandifoliola C.D.C. (Meliaceae) J Ethnopharmacol. 2000;69:27–33. doi: 10.1016/S0378-8741(99)00117-8. [DOI] [PubMed] [Google Scholar]
  • 102.Wube AA, Bucar F, Asres K, Gibbons S, Rattray L, Croft SL. Antimalarial compounds from Kniphofia foliosa roots. Phytother Res. 2005;19:472–476. doi: 10.1002/ptr.1635. [DOI] [PubMed] [Google Scholar]
  • 103.Mbatchi SF, Mbatchi B, Banzouzi JT, Bansimba T, Nsonde Ntandou GF, Ouamba JM, et al. In vitro antiplasmodial activity of 18 plants used in Congo Brazzaville traditional medicine. J Ethnopharmacol. 2006;104:168–174. doi: 10.1016/j.jep.2005.08.068. [DOI] [PubMed] [Google Scholar]
  • 104.Oketch-Rabah HA, Dossaji SF, Mberu EK. Antimalarial activity of some Kenyan medicinal plants. Pharm Biol. 1999;37:329–334. doi: 10.1076/phbi.37.5.329.6053. [DOI] [Google Scholar]
  • 105.Ramalhete C, da Cruz FP, Mulhovo S, Sousa IJ, Fernandes MX, Prudêncio M, et al. Dual-stage triterpenoids from an African medicinal plant targeting the malaria parasite. Bioorg Med Chem. 2014;22:3887–3890. doi: 10.1016/j.bmc.2014.06.019. [DOI] [PubMed] [Google Scholar]
  • 106.BenoitVical F, Valentin A, Cournac V, Pélissier Y, Mallié M, Bastide JM. In vitro antiplasmodial activity of stem and root extracts of Nauclea latifolia S.M. (Rubiaceae) J Ethnopharmacol. 1998;61:173–8. doi: 10.1016/S0378-8741(98)00036-1. [DOI] [PubMed] [Google Scholar]
  • 107.Mesia K, Cimanga RK, Dhooghe L, Cos P, Apers S, Totté J, et al. Antimalarial activity and toxicity evaluation of a quantified Nauclea pobeguinii extract. J Ethnopharmacol. 2010;131:6. doi: 10.1016/j.jep.2010.05.008. [DOI] [PubMed] [Google Scholar]
  • 108.Gbeassor M, Kedjagni AY, Koumaglo K, de Soma C, Agbo K, Aklikokou K, et al. In vitro antimalarial activity of six medicinal plants. Phytother Res. 1990;4:115–117. doi: 10.1002/ptr.2650040309. [DOI] [Google Scholar]
  • 109.Karim T, Béourou S, Touré AO, Ouattara K, Meité S, Ako A, et al. Antioxidant activities and estimation of the phenols and flavonoids content in the extracts of medicinal plants used to treat malaria in Ivory Coast. Int J Curr Microbiol App Sci. 2015;4:862–874. [Google Scholar]
  • 110.Koudouvo K, Karou SD, Ilboudo DP, Kokou K, Essien K, Aklikokou K, et al. In vitro antiplasmodial activity of crude extracts from Togolese medicinal plants. Asian Pac J Trop Med. 2011;4:129–132. doi: 10.1016/S1995-7645(11)60052-7. [DOI] [PubMed] [Google Scholar]
  • 111.Appiah-Opong R, Nyarko AK, Dodoo D, Gyang FN, Koram KA, Ayisi NK. Antiplasmodial activity of extracts of Tridax procumbens and Phyllanthus amarus in in vitro Plasmodium falciparum culture systems. Ghana Med J. 2011;45:143–150. [PMC free article] [PubMed] [Google Scholar]
  • 112.Komlaga G, Cojean S, Dickson RA, Mehdi A, Beniddir MA, SuyyaghAlbouz S, et al. Antiplasmodial activity of selected medicinal plants used to treat malaria in Ghana. Parasitol Res. 2016;115:3185–95. doi: 10.1007/s00436-016-5080-8. [DOI] [PubMed] [Google Scholar]
  • 113.Falodun A, Imieje V, Erharuyi O, Ahomafor J, Jacob MR, Khan SI, et al. Evaluation of three medicinal plant extracts against Plasmodium falciparum and selected microganisms. Afr J Tradit Complement Altern Med. 2014;11:142–146. doi: 10.4314/ajtcam.v11i4.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.François G, Aké Assi L, Holenz J, Bringmann G. Constituents of Picralima nitida display pronounced inhibitory activities against asexual erythrocytic forms of Plasmodium falciparum in vitro. J Ethnopharmacol. 1996;54:113–117. doi: 10.1016/S0378-8741(96)01456-0. [DOI] [PubMed] [Google Scholar]
  • 115.Gbedema SY, Bayor MT, Annan K, Wright CW. Clerodane diterpenes from Polyalthia longifolia (sonn.) Thw. Var. Pendula: potential antimalarial agents for drug resistant Plasmodium falciparum infection. J Ethnopharmacol. 2015;169:176–82. doi: 10.1016/j.jep.2015.04.014. [DOI] [PubMed] [Google Scholar]
  • 116.Annan K, Ekuadzi E, Asare C, Sarpong K, Pistorius D, Oberer L, et al. Antiplasmodial constituents from the stem barks of Polyalthia longifolia var pendula. Phytochem Lett. 2015;11:28–31. doi: 10.1016/j.phytol.2014.10.028. [DOI] [Google Scholar]
  • 117.Orwa JA, Ngeny L, Mwikwabe NM, Ondicho J, Jondiko IJ. Antimalarial and safety evaluation of extracts from Toddalia asiatica (L) Lam. (Rutaceae) J Ethnopharmacol. 2013;145:587–90. doi: 10.1016/j.jep.2012.11.034. [DOI] [PubMed] [Google Scholar]
  • 118.Karou D, Dicko MH, Sanon S, Simpore J, Traore AS. Antimalarial activity of Sida acuta Burm. F. (Malvaceae) and Pterocarpus erinaceus Poir. (Fabaceae) J Ethnopharmacol. 2003;89:291–4. doi: 10.1016/j.jep.2003.09.010. [DOI] [PubMed] [Google Scholar]
  • 119.Muregi FW, Chhabra SC, Njagi EN, Lang'at-Thoruwa CC, Njue WM, Orago AS, et al. In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. J Ethnopharmacol. 2003;84:235–239. doi: 10.1016/S0378-8741(02)00327-6. [DOI] [PubMed] [Google Scholar]
  • 120.Kamatou GPP, Van Zyl RL, Davids H, Van Heerden FR, Lourens ACU, Viljoen AM. Antimalarial and anticancer activities of selected South African Salvia species and isolated compounds from S. radula. S Afr J Bot. 2008;74:238–43. doi: 10.1016/j.sajb.2007.08.001. [DOI] [Google Scholar]
  • 121.Bah S, Jäger AK, Adsersen A, Diallo D, Paulsen BS. Antiplasmodial and GABA(A)-benzodiazepine receptor binding activities of five plants used in traditional medicine in Mali. West Africa J Ethnopharmacol. 2007;110:451–457. doi: 10.1016/j.jep.2006.10.019. [DOI] [PubMed] [Google Scholar]
  • 122.Carraz M, Jossang A, Franetich J-F, Siau A, Ciceron L, Hannoun L, et al. A plant-derived morphinan as a novel lead compound active against malaria liver stages. PLoS Med. 2006;3:e513. doi: 10.1371/journal.pmed.0030513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Niass O, Sarr SO, Dieye B, Diop A, Diop YM. In vitro assessment of the antiplasmodial activity of three extracts used in local traditional medicine in Saloum (Senegal) Eur Sci J. 2016;12:157–165. [Google Scholar]
  • 124.Kigondu EV, Rukunga GM, Keriko JM, Tonui WK, Gathirwa JW, Kirira PG, et al. Anti-parasitic activity and cytotoxicity of selected medicinal plants from Kenya. J Ethnopharmacol. 2009;123:504–509. doi: 10.1016/j.jep.2009.02.008. [DOI] [PubMed] [Google Scholar]
  • 125.Gakunju DM, Mberu EK, Dossaji SF, Gray AI, Waigh RD, Waterman PG, et al. Potent antimalarial activity of the alkaloid nitidine, isolated from a Kenyan herbal remedy. Antimicrob Agents Chemother. 1995;39:2606–2609. doi: 10.1128/AAC.39.12.2606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Omoregie ES, Pal A, Sisodia B. In vitro antimalarial and cytotoxic activities of leaf extracts of Vernonia amygdalina (Del.) Niger J Basic Appl Sci. 2011;19:121–6. [Google Scholar]
  • 127.Shaa KK, Oguche S, Watila IM, Ikpa TF. In vitro antimalarial activity of the extracts of Vernonia amygdalina commonly used in traditional medicine in Nigeria. Sci World J. 2011;6:5–9. [Google Scholar]
  • 128.Toyang NJ, Krause MA, Fairhurst RM, Tane P, Bryant J, Verpoorte R. Antiplasmodial activity of sesquiterpene lactones and a sucrose ester from Vernonia guineensis Benth (Asteraceae) J Ethnopharmacol. 2013;147:618–21. doi: 10.1016/j.jep.2013.03.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Goodman CD, Austarheim I, Mollard V, Mikolo B, Malterud KE, McFadden GI, et al. Natural products from Zanthoxylum heitzii with potent activity against the malaria parasite. Malar J. 2016;15:481. doi: 10.1186/s12936-016-1533-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Randrianarivelojosia M, Rasidimanana VT, Rabarison H, Cheplogoi PK, Ratsimbason M, Mulholland DA, et al. Plants traditionally prescribed to treat tazo (malaria) in the eastern region of Madagascar. Malar J. 2003;2:25. doi: 10.1186/1475-2875-2-25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Okokon JE, Augustine NB, Mohanakrishnan D. Antimalarial, antiplasmodial and analgesic activities of root extract of Alchornea laxiflora. Pharm Biol. 2017;55:1022–1031. doi: 10.1080/13880209.2017.1285947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Alli LA, Adesokan AA, Salawu OA, Akanji MA, Tijani AY. Anti-plasmodial activity of aqueous root extract of Acacia nilotica. Afr J Biochem Res. 2011;5:214–219. [Google Scholar]
  • 133.Jigam AA, Akanya HO, Dauda BEN, Okogun JO. Polygalloyltannin isolated from the roots of Acacia nilotica Del. (Leguminoseae) is effective against Plasmodium berghei in mice. J Med Plant Res. 2010;4:1169–75. [Google Scholar]
  • 134.Adeoye AO, Bewaji CO. Chemopreventive, and remediation effect of Adansonia digitata L Baobab (Bombacaceae) stem barks extracts in mouse model malaria. J Ethnopharmacol. 2018;210:31–8. doi: 10.1016/j.jep.2017.08.025. [DOI] [PubMed] [Google Scholar]
  • 135.Musila MF, Dossaji SF, Nguta JM, Lukhoba CW, Munyao JM. In vivo antimalarial activity, toxicity and phytochemical screening of selected antimalarial plants. J Ethnopharmacol. 2013;146:557–561. doi: 10.1016/j.jep.2013.01.023. [DOI] [PubMed] [Google Scholar]
  • 136.Ukwe VC, Epueke EA, Ekwunife OI, Okoye TC, Akudor GC, Ubaka CM. Antimalarial activity of aqueous extract and fractions of leaves of Ageratum conyzoides in mice infected with Plasmodium berghei. Int J Pharm Sci. 2010;2:33–38. [Google Scholar]
  • 137.Rukunga GM, Muregi FW, Tolo FM, Omar SA, Mwitari P, Muthaura CN, et al. The antiplasmodial activity of spermine alkaloids isolated from Albizia gummifera. Fitoterapia. 2007;78:455–459. doi: 10.1016/j.fitote.2007.02.012. [DOI] [PubMed] [Google Scholar]
  • 138.Oladosu IA, Balogun SO, Ademowo GO. Phytochemical screening, antimalarial and histopathological studies of Allophylus africanus and Tragia benthamii. Chin J Nat Med. 2013;11:371–376. doi: 10.3724/SP.J.1009.2013.00371. [DOI] [PubMed] [Google Scholar]
  • 139.Teka T, Bisrat D, Yeshak MY, Asres K. Antimalarial activity of the chemical constituents of the leaves latex of Aloe pulcherrima Gilbert and Sebsebe. Molecules. 2016;21:1415. doi: 10.3390/molecules21111415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Akpan EJ, Okokon JE, Etuk IC. Antiplasmodial and antipyretic studies on root extracts of Anthocleista djalonensis against Plasmodium berghei. Asian Pac J Trop Dis. 2012;2:36–42. doi: 10.1016/S2222-1808(12)60009-7. [DOI] [Google Scholar]
  • 141.Ene AC, Ameh DA, Kwanashie HO, Agomo PU, Atawodi SE. Preliminary in vivo antimalarial screening of petroleum ether, chloroform, and methanol extracts of fifteen plants grown in Nigeria. J Pharmacol Toxicol. 2008;3:254–260. doi: 10.3923/jpt.2008.254.260. [DOI] [Google Scholar]
  • 142.Christian AG, Mfon AG, Dick EA, David-Oku E, Akpan JL, Chukwuma EB. Antimalarial potency of the leaf extract of Aspilia africana (Pers.) C.D. Adams. Asian Pac J Trop Med. 2012;2:126–9. doi: 10.1016/S1995-7645(12)60010-8. [DOI] [PubMed] [Google Scholar]
  • 143.Gathirwa JW, Rukunga GM, Mwitari PG, Mwikwabe NM, Kimani CW, Muthaura CN, et al. Traditional herbal antimalarial therapy in Kilifi district. Kenya J Ethnopharmacol. 2011;134:434–442. doi: 10.1016/j.jep.2010.12.043. [DOI] [PubMed] [Google Scholar]
  • 144.Tepongning RN, Mbah JN, Avoulou FL, Jerme MM, Ndanga EKK, Fekam FB. Hydroethanolic extracts of Erigeron floribundus and Azadirachta indica reduced Plasmodium berghei parasitemia in Balb/c mice. Evid Based Complement Alternat Med. 2018;2018:5156710. doi: 10.1155/2018/5156710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Akin-Osanaiye BC, Nok AJ, Ibrahim S, Inuwa HM, Onyike E, Amlabu E, et al. Antimalarial effect of neem leaves and neem stem barks extracts on Plasmodium berghei infected in the pathology and treatment of malaria. Int J Res Biochem Biophy. 2013;3:7–14. [Google Scholar]
  • 146.Asrade S, Mengesha Y, Moges G, Gelayee DA. In vivo antiplasmodial activity evaluation of the leaves of Balanites rotundifolia (Van Tiegh) Blatter (Balanitaceae) against Plasmodium berghei. J Exp Pharmacol. 2017;9:59–66. doi: 10.2147/JEP.S130491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Otegbade OO, Ojo JA, Adefokun DI, Abiodun OO, Thomas BN, Ojurongbe O. Ethanol extract of Blighia sapida stem barks show remarkable prophylactic activity in experimental Plasmodium berghei–infected mice. Drug Target Insights. 2017;11:1177392817728725. doi: 10.1177/1177392817728725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Christian AG, Thecla EC, Dick EA, Chile AE, Chimsorom CK, Ckukwu ND, et al. In vivo antiplasmodial activity of Bombax buonopozense root barks aqueous extract in mice infected by Plasmodium berghei. J Tradit Chin Med. 2017;37:431–435. doi: 10.1016/S0254-6272(17)30148-6. [DOI] [PubMed] [Google Scholar]
  • 149.Muluye AB, Melese E, Adinew GM. Antimalarial activity of 80 % methanolic extract of Brassica nigra (L.) Koch. (Brassicaceae) seeds against Plasmodium berghei infection in mice. BMC Compl Alternative Med. 2015;15:367. doi: 10.1186/s12906-015-0893-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Eyasu M, Shibeshi W, Gida M. In vivo antimalarial activity of hydromethanolic leaf extract of Calpurnia aurea (Fabaceae) in mice infected with chloroquine-sensitive Plasmodium berghei. Int J Pharmacol. 2013;2:131–142. [Google Scholar]
  • 151.Onaku LO, Attama AA, Okore VC, Tijani AY, Ngene AA, Esimone CO. Antagonistic antimalarial properties of pawpaw leaf aqueous extract in combination with artesunic acid in Plasmodium berghei-infected mice. J Vector Borne Dis. 2011;48:96–100. [PubMed] [Google Scholar]
  • 152.Tona L, Mesia K, Ngimbi NP, Chrimwami B, Okondahoka, Cimanga K, et al. In vivo antimalarial activity of Cassia Occidentalism, Morinda morindoides and Phyllanthus niruri. Ann Trop Med Parasit. 2001;95:47–57. [PubMed]
  • 153.Abdulrazak N, Asiya UI, Usman NS, Unata IM, Farida A. Anti-plasmodial activity of ethanolic extract of root and stem bark of Cassia sieberiana DC on mice. J Intercult Ethnopharmacol. 2015;4:96–101. doi: 10.5455/jice.20141231014333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Adzu B, Abbah J, Vongtau H, Gamaniel K. Studies on the use of Cassia singueana in malaria ethnopharmacy. J Ethnopharmacol. 2003;88:261–267. doi: 10.1016/S0378-8741(03)00257-5. [DOI] [PubMed] [Google Scholar]
  • 155.Jigam AA, Razaq UTA, Egbuta MN. In vivo antimalarial and toxicological evaluation of Chrozophora senegalensis A. Juss (Euphorbiaceae) extracts. J Appl Pharm Sci. 2011;1:90–4. [Google Scholar]
  • 156.Ihekwereme CP, Okoye FK, Agu SC, Oli AN. Traditional consumption of the fruit pulp of Chrysophyllum albidum (Sapotaceae) in pregnancy may be serving as an intermittent preventive therapy against malaria infection. Anc Sci Life. 2017;36:191–195. doi: 10.4103/asl.ASL_208_16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Okokon JE, Etebong EO, Udobang JA, Essien GE. Antiplasmodial and analgesic activities of Clausena anisate. Asian Pac J Trop Med. 2012;5:214–219. doi: 10.1016/S1995-7645(12)60027-3. [DOI] [PubMed] [Google Scholar]
  • 158.Anato M, Ketema T. Anti-plasmodial activities of Combretum molle (Combretaceae) [Zwoo] seed extract in Swiss albino mice. BMC Res Notes. 2018;11:312. doi: 10.1186/s13104-018-3424-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Kweyamba PA, Zofou D, Efange N, Assob JN, Kitau J, Nyindo M. In vitro and in vivo studies on antimalarial activity of Commiphora africana and Dichrostachys cinerea used by the Maasai in Arusha region. Tanzania Malar J. 2019;18:119. doi: 10.1186/s12936-019-2752-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Elufioye TO, Agbedahunsi JM. Antimalarial activities of Tithonia diversifolia (Asteraceae) and Crossopteryx febrifuga (Rubiaceae) on mice in vivo. J Ethnopharmacol. 2004;93:167–171. doi: 10.1016/j.jep.2004.01.009. [DOI] [PubMed] [Google Scholar]
  • 161.Obey JK, Ngeiywa MM, Kiprono P, Omar S, vonWright A, Kauhanen J, et al. Antimalarial activity of Croton macrostachyus stem barks extracts against Plasmodium berghei in vivo. J Pathog. 2018;2018:393854. doi: 10.1155/2018/2393854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Tona Ngimbi NP, Tsakala M, Mesia K, Cimanga K, Apers S, De Bruyne T, et al. Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa Congo. J Ethnopharmacol. 1999;68:193–203. doi: 10.1016/S0378-8741(99)00090-2. [DOI] [PubMed] [Google Scholar]
  • 163.Mzena T, Swai H, Chacha M. Antimalarial activity of Cucumis metuliferus and Lippia kituiensis against Plasmodium berghei infection in mice. Res Rep Trop Med. 2018;9:81–88. doi: 10.2147/RRTM.S150091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Amelo W, Nagpal P, Makonnen E. Antiplasmodial activity of solvent fractions of methanolic root extract of Dodonaea angustifolia in Plasmodium berghei infected mice. BMC Complement Altern Med. 2014;14:462. doi: 10.1186/1472-6882-14-462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Ogbonna DN, Sokari TG, Agomuoh AA. Antimalarial activities of some selected traditional herbs from South Eastern Nigeria against Plasmodium species. Res J Parasit. 2008;3:25–31. doi: 10.3923/jp.2008.25.31. [DOI] [Google Scholar]
  • 166.Gounoue Kamkumo R, Tsakem Nangap JM, Tchokouaha Yamthe LR, Ngueguim Tsofack F, Tsouh Fokou PV, Tchatat Tali MB, et al. Antimalarial activity of the aqueous extract of Euphorbia cordifolia Elliot in Plasmodium berghei-infected mice. Asian Pac J Trop Med. 2020;13:176–184. doi: 10.4103/1995-7645.280239. [DOI] [Google Scholar]
  • 167.Oluwakanyinsola AS, Adeniyi YT, Babayi H, Angela CN, Anagbogu RA, Agbakwuru VA. Antimalarial activity of ethanolic stem barks extract of Faidherbia albida (Del) a Chev (Mimosoidae) in mice. Arch Appl Sci Res. 2010;2:261–8. [Google Scholar]
  • 168.Nguta JM, Mbaria JM. Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. J Ethnopharmacol. 2013;148:988–992. doi: 10.1016/j.jep.2013.05.053. [DOI] [PubMed] [Google Scholar]
  • 169.Oluwatosin A, Tolulope A, Ayokulehin K, Okorie P, Aderemi K, Falade C, et al. Antimalarial potential of kolaviron, a biflavonoid from Garcinia kola seeds, against Plasmodium berghei infection in Swiss albino mice. Asian Pac J Trop Med. 2014;7:97–104. doi: 10.1016/S1995-7645(14)60003-1. [DOI] [PubMed] [Google Scholar]
  • 170.Okokon JE, Ita BN, Udokpoh AE. The in vivo antimalarial activities of Uvariae chamae and Hippocratea africana. Ann Trop Med Parasitol. 2006;100:585–590. doi: 10.1179/136485906X118512. [DOI] [PubMed] [Google Scholar]
  • 171.David-Oku E, Ifeoma OO, Christian AG, Dick EA. Evaluation of the antimalarial potential of Icacina senegalensis Juss (Icacinaceae) Asian Pac J Trop Med. 2014;7:S469–S472. doi: 10.1016/S1995-7645(14)60276-5. [DOI] [PubMed] [Google Scholar]
  • 172.Birru EM, Geta M, Gurmu AE. Antiplasmodial activity of Indigofera spicata root extract against Plasmodium berghei infection in mice. Malar J. 2017;16:198. doi: 10.1186/s12936-017-1853-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Onyeto CA, Akah PA, Nworu CS, Okoye TC, Okorie NA, Mbaoji FN, et al. Anti-plasmodial and antioxidant activities of methanol extract of the fresh leaves of Lophira lanceolata (Ochnaceae) Afr J Biotechnol. 2014;13:1731–1738. doi: 10.5897/AJB2014.13707. [DOI] [Google Scholar]
  • 174.Christian AG, Akanimo EG, Ahunna AG, Nwakaego EM, Chimsorom CK. Antimalarial potency of the methanol leaf extract of Maerua crassifolia Forssk (Capparaceae) Asian Pac J Trop Dis. 2014;4:35–39. doi: 10.1016/S2222-1808(14)60310-8. [DOI] [Google Scholar]
  • 175.Malebo HM, Tanja W, Cal M, Swaleh SAM, Omolo MO, Hassanali A, et al. Antiplasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzan J Health Res. 2015;4:226–234. doi: 10.4314/thrb.v11i4.50194. [DOI] [PubMed] [Google Scholar]
  • 176.Okafor AI, Nok AJ, Inuwa HM. Antiplasmodial activity of aqueous leaf extract of Mucuna Pruriens Linn in mice infected with Plasmodium berghei (NK-65 Strain) J Appl Pharm Sci. 2013;3(4 Suppl 1):S52–S55. [Google Scholar]
  • 177.Edagha IA, Peter AI, Aquaisua AN. Histopathological effect of Nauclea latifolia ethanolic leaf extract and artemether/lumefantrine on the hippocampus of P berghei-infected mice. Int J Brain Cognitive Sci. 2017;6:9–16. [Google Scholar]
  • 178.Nworu CS, Ejikeme TI, Ezike AC, Ndu O, Akunne TC, Onyeto CA, et al. Anti-plasmodial and anti-inflammatory activities of cyclotide-rich extract and fraction of Oldenlandia affinis (R.& S.) D.C. (Rubiaceae) Afri Health Sci. 2017;17:827–43. doi: 10.4314/ahs.v17i3.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Ramanitrahasimbola D, Rasoanaivo P, Ratsimamanga-Urverg S, Federici E, Palazzino G, Galeffi C, et al. Biological activities of the plant-derived bisindole voacamine with reference to malaria. Phytother Res. 2001;15:30–33. doi: 10.1002/1099-1573(200102)15:1&#x0003c;30::AID-PTR680&#x0003e;3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  • 180.Ajala TO1, Igwilo CI, Oreagba IA, Odeku OA. The antiplasmodial effect of the extracts and formulated capsules of Phyllanthus amarus on Plasmodium yoelii infection in mice. Asian Pac J Trop Med. 2011;4:283–7. [DOI] [PubMed]
  • 181.Ifeoma O, Samuel O, Itohan AM, Adeola SO. Isolation, fractionation and evaluation of the antiplasmodial properties of Phyllanthus niruri resident in its chloroform fraction. Asian Pac J Trop Med. 2013;6:169–175. doi: 10.1016/S1995-7645(13)60018-8. [DOI] [PubMed] [Google Scholar]
  • 182.Adinew GM. Antimalarial activity of methanolic extract of Phytolacca dodecandra leaves against Plasmodium berghei infected Swiss albino mice. Int J Pharmacol Clin Sci. 2014;3:39–45. [Google Scholar]
  • 183.Okokon JE, Antia BS, Igboasoiyi AC, Essien EE, Mbagwu HO. Evaluation of antiplasmodial activity of ethanolic seed extract of Picralima nitida. J Ethnopharmacol. 2007;111:464–467. doi: 10.1016/j.jep.2006.12.016. [DOI] [PubMed] [Google Scholar]
  • 184.Madara AA, Ajayi JA, Salawu OA, Tijani AY. Antimalarial activity of ethanolic leaf extract of Piliostigma thonningii Schum (Caesalpiniacea) in mice infected with Plasmodium berghei berghei. Afr J Biotechnol. 2010;9:3475–80. [Google Scholar]
  • 185.Christian AG, Ahunna AG, Nwakaego EM, Chimsorom CK, Chile AE. Antimalarial potential of the ethanolic leaf extract of Pseudocedrala kotschyi. J Acute Dis. 2015;4:23–27. doi: 10.1016/S2221-6189(14)60077-9. [DOI] [Google Scholar]
  • 186.Okokon JE, Ettebong E, Antia BS. In vivo antimalarial activity of ethanolic leaf extract of Stachytarpheta cayennensis. Indian J Pharmacol. 2008;40:111–113. doi: 10.4103/0253-7613.42303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Adegbolagun OM, Emikpe BO, Woranola IO, Ogunremi Y. Synergistic effect of aqueous extract of Telfaria occidentalis on the biological activities of artesunate in Plasmodium berghei infected mice. Afr Health Sci. 2013;13:970–976. doi: 10.4314/ahs.v13i4.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Muregi FW, Ishih A, Miyase T, Suzuki T, Kino H, Amano T, et al. Antimalarial activity of methanolic extracts from plants used in Kenyan ethnomedicine and their interactions with chloroquine (CQ) against a CQ-tolerant rodent parasite, in mice. J Ethnopharmacol. 2007;111:190–195. doi: 10.1016/j.jep.2006.11.009. [DOI] [PubMed] [Google Scholar]
  • 189.Olanlokun JO, Oluwole MD, Afolayan AJ. In vitro antiplasmodial activity and prophylactic potentials of extract and fractions of Trema orientalis (Linn.) stem barks. BMC Complement Altern Med. 2017;17:407. doi: 10.1186/s12906-017-1914-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Fadare DA, Abiodun OO, Ajaiyeoba EO. In vivo antimalarial activity of Trichilia megalantha harms extracts and fractions in animal models. Parasitol Res. 2013;112:2991–2995. doi: 10.1007/s00436-013-3471-7. [DOI] [PubMed] [Google Scholar]
  • 191.François G, Steenackers T, Timperman G, Aké Assi L, Haller RD, Bär S, et al. Retarded development of exoerythrocytic stages of the rodent malaria parasite Plasmodium berghei in human hepatoma cells by extracts from dioncophyllaceae and ancistrocladaceae species. Int J Parasitol. 1997;27:29–32. doi: 10.1016/S0020-7519(96)00171-3. [DOI] [PubMed] [Google Scholar]
  • 192.Akuodor GC, Idris-Usman M, Anyalewechi N, Odo E, Ugwu CT, Akpan JL, et al. In vivo antimalarial activity of ethanolic leaf extract of Verbena hastata against Plasmodium berghei in mice. J Herb Med Toxicol. 2010;4:17–23. [Google Scholar]
  • 193.Njan AA, Adzu B, Agaba AG, Byarugaba D, Díaz-Llera S, Bangsberg DR. The analgesic and antiplasmodial activities and toxicology of Vernonia amygdalina. J Med Food. 2008;11:574–581. doi: 10.1089/jmf.2007.0511. [DOI] [PubMed] [Google Scholar]
  • 194.Iwalokun BA. Enhanced antimalarial effects of chloroquine by aqueous Vernonia amygdalina leaf extract in mice infected with chloroquine resistant and sensitive Plasmodium berghei strains. Afr Health Sci. 2008;8:25–35. [PMC free article] [PubMed] [Google Scholar]
  • 195.Abosi AO, Raseroka BH. In vivo antimalarial activity of Vernonia amygdalina. Br J Biomed Sci. 2003;60:89–91. doi: 10.1080/09674845.2003.11783680. [DOI] [PubMed] [Google Scholar]
  • 196.Dame ZT, Petros B, Mekonnen Y. Evaluation of anti-Plasmodium berghei activity of crude and column fractions of extracts from Withania somnifera. Turk J Biol. 2013;37:147–150. [Google Scholar]
  • 197.Adugna M, Feyera T, Taddese W, Admasu P. In vivo antimalarial activity of crude extract of aerial part of Artemisia abyssinica against Plasmodium berghei in mice. Glob J Pharmacol. 2014;8:460–468. [Google Scholar]
  • 198.Deressa T, Mekonnen Y, Animut A. In vivo antimalarial activities of Clerodendrum myricoides, Dodonea angustifolia, and Aloe debrana against Plasmodium berghei. Ethiop J Health Dev. 2010;24:25–29. [Google Scholar]
  • 199.Muthaura CN, Rukunga GM, Chhabra SC, Omar SA, Guantai AN, Gathirwa JW, et al. Antimalarial activity of some plants traditionally used in treatment of malaria in Kwale district of Kenya. J Ethnopharmacol. 2007;112:545–551. doi: 10.1016/j.jep.2007.04.018. [DOI] [PubMed] [Google Scholar]
  • 200.Beha E, Jung A, Wiesner J, Rimpler H, Lanzer M, Heinrich M. Antimalarial activity of extracts of Abutilon grandiflorum G Don - a traditional Tanzanian medicinal plant. Phytother Res. 2004;18:236–40. doi: 10.1002/ptr.1393. [DOI] [PubMed] [Google Scholar]
  • 201.Ajaiyeoba EO, Abiodun OO, Falade MO, Ogbole NO, Ashidi JS, Happi CT, et al. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomedicine. 2006;13:295–298. doi: 10.1016/j.phymed.2005.01.015. [DOI] [PubMed] [Google Scholar]
  • 202.Adebayo JO, Balogun EA, Malomo SO, Soladoye AO, Olatunji LA, Kolawole OM, et al. Antimalarial activity of Cocos nucifera Husk fibre: further studes. Evid Based Complement Altern Med. 2013;2013:742476. doi: 10.1155/2013/742476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Falade MO, Akinboye DO, Gbotosho GO, Ajaiyeoba EO, Happi TC, Abiodun OO, et al. In vitro and in vivo antimalarial activity of Ficus thonningii Blume (Moraceae) and Lophira alata Banks (Ochnaceae), identified from the ethnomedicine of the Nigerian middle belt. J Parasit Res. 2014;2014:972853. doi: 10.1155/2014/972853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Iwalewa EO, Omisore NO, Adewunmi CO, Gbolade AA, Ademowo OG, Nneji C, et al. Anti-protozoan activities of Harungana madagascariensis stem barks extract on trichomonads and malaria. J Ethnopharmacol. 2008;117:507–511. doi: 10.1016/j.jep.2008.02.019. [DOI] [PubMed] [Google Scholar]
  • 205.Gathirwa JW, Rukunga GM, Njagi EN, Omar SA, Mwitari PG, Guantai AN, et al. The in vitro anti-plasmodial and in vivo antimalarial efficacy of combinations of some medicinal plants used traditionally for treatment of malaria by the Meru community in Kenya. J Ethnopharmacol. 2008;115:223–231. doi: 10.1016/j.jep.2007.09.021. [DOI] [PubMed] [Google Scholar]
  • 206.Simelane MBC, Shonhai A, Shode FO, Smith P, Singh M, Opoku AR. Anti-plasmodial activity of some Zulu medicinal plants and of some triterpenes isolated from them. Molecules. 2013;18:12313. doi: 10.3390/molecules181012313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Steele JC, Warhurst DC, Kirby GC, Simmonds MSJ. In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother Res. 1999;13:115–119. doi: 10.1002/(SICI)1099-1573(199903)13:2&#x0003c;115::AID-PTR404&#x0003e;3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  • 208.Builders MI, Wannang NN, Ajoku GA, Builders PF, Orisadipe A, Aguiyi JC. Evaluation of the antimalarial potential of Vernonia ambigua Kotschy and Peyr (Asteraceae) Int J Pharmacol. 2011;7:238–247. doi: 10.3923/ijp.2011.238.247. [DOI] [Google Scholar]
  • 209.Ngbolua KN, Rakotoarimanana H, Rafatro H, Ratsimamanga US, Mudogo V, Mpiana PT, et al. Comparative antimalarial and cytotoxic activities of two Vernonia species: Vernonia amygdalina from the Democratic Republic of Congo and Vernonia cinerea subsp vialis endemic to Madagascar. Int J Biol Chem Sci. 2011;5:345–353. [Google Scholar]
  • 210.Benoit-Vical F, Imbert C, Bonfils JP, Sauvaire Y. Antiplasmodial and antifungal activities of iridal, a plant triterpenoid. Phytochemistry. 2003;62:747–751. doi: 10.1016/S0031-9422(02)00625-8. [DOI] [PubMed] [Google Scholar]
  • 211.Applequist WL, Ratsimbason M, Kuhlman A, Ratonandrasana S, Rasamison V, Kingston DG. Antimalarial use of Malagasy plants is poorly correlated with performance in antimalarial bioassays. Econ Bot. 2017;71:75–82. doi: 10.1007/s12231-017-9373-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Thiengsusuk A, Chaijaroenkul W, NaBangchang K. Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine. Parasitol Res. 2013;112:1475. doi: 10.1007/s00436-013-3294-6. [DOI] [PubMed] [Google Scholar]
  • 213.Udobang JA, Nwafor PA, Okokon JE. Analgesic and antimalarial activities of crude leaf extract and fractions of Acalypha wilkensiana. J Ethnopharmacol. 2010;127:373–378. doi: 10.1016/j.jep.2009.10.028. [DOI] [PubMed] [Google Scholar]
  • 214.Mohammed T, Erko B, Giday M. Evaluation of antimalarial activity of leaves of Acokanthera schimperi and Croton macrostachyus against Plasmodium berghei in Swiss albino mice. Compl Altern Med. 2014;14:314. doi: 10.1186/1472-6882-14-314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 215.Kuria KA, De Coster S, Muriuki G, Masengo W, Kibwage I, Hoogmartens J, et al. Antimalarial activity of Ajuga remota Benth (Labiatae) and Caesalpinia Volkensii Harms (Caesalpiniaceae): in vitro confirmation of ethnopharmacological use. J Ethnopharmacol. 2001;74:141–148. doi: 10.1016/S0378-8741(00)00367-6. [DOI] [PubMed] [Google Scholar]
  • 216.Mesfin A, Giday M, Animut A, Teklehaymanot T. Ethnobotanical study of antimalarial plants in Shineile District, Somali Region, Ethiopia, and in vivo evaluation of selected ones against Plasmodium berghei. J Ethnopharmacol. 2012;139:221–227. doi: 10.1016/j.jep.2011.11.006. [DOI] [PubMed] [Google Scholar]
  • 217.Hilou A, Nacoulma OG, Guiguemde TR. In vivo antimalarial activities of extracts from Amaranthus spinosus L. and Boerhaavia erecta L. in mice. J Ethnopharmacol. 2006;103:236–240. doi: 10.1016/j.jep.2005.08.006. [DOI] [PubMed] [Google Scholar]
  • 218.Adebajo AC, Odediran SA, Aliyu FA, Nwafor PA, Nwoko NT, Umana US. In vivo antiplasmodial potentials of the combinations of four Nigerian antimalarial plants. Molecules. 2014;19:13136–13146. doi: 10.3390/molecules190913136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219.Dikasso D, Mekonnen E, Debella A, Abebe D, Urga K, Menonnen W, et al. In vivo antimalarial activity of hydroalcoholic extracts from Asparagus africanus Lam in mice infected with Plasmodium berghei. Ethiop J Health Dev. 2006;20:112–8. [Google Scholar]
  • 220.Yerbanga RS, Lucantoni L, Lupidi G, Dori GU, Tepongning NR, Nikiéma JB, et al. Antimalarial plant remedies from Burkina Faso: their potential for prophylactic use. J Ethnopharmacol. 2012;140:255–260. doi: 10.1016/j.jep.2012.01.014. [DOI] [PubMed] [Google Scholar]
  • 221.Karou SD, Tchacondo T, Ouattara L, Anani K, Savadogo A, Agbonon A, et al. Antimicrobial, antiplasmodial, haemolytic and antioxidant activities of crude extracts from three selected Togolese medicinal plants. Asian Pac J Trop Med. 2011;4:808–813. doi: 10.1016/S1995-7645(11)60199-5. [DOI] [PubMed] [Google Scholar]
  • 222.Bonkian LN, Yerbanga RS, Koama B, Soma A, Cisse M, Valea I, et al. In vivo antiplasmodial activity of two Sahelian plant extracts on Plasmodium berghei ANKA infected NMRI mice. Evid Based Complement Alternat Med. 2018;24:6859632. doi: 10.1155/2018/6859632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Ajaiyeoba E, Ashidi J, Abiodun O, Okpako L, Ogbole O, Akinboye D, et al. Antimalarial ethnobotany: in vitro antiplasmodial activity of seven plants indentified in the Nigerian middle belt. Pharm Biol. 2005;42:588–591. doi: 10.1080/13880200490902455. [DOI] [Google Scholar]
  • 224.Kefe A, Giday M, Mamo H, Erko B. Antimalarial properties of crude extracts of seeds of Brucea antidysenterica and leaves of Ocimum lamiifolium. BMC Complement Altern Med. 2016;16:118. doi: 10.1186/s12906-016-1098-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Innocent E, Moshi MJ, Masimba PJ, Mbwambo ZH, Kapingu MC, Kamuhabwa A. Screening of traditionally used plants for in vivo antimalarial activity in mice. Afr J Tradit Complement Altern Med. 2009;6:163–167. doi: 10.4314/ajtcam.v6i2.57088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Mengiste B, Mekonnen E, Urga K. In vivo animalarial activity of Dodonaea angustifolia seed extracts against Plasmodium berghei in mice model. MEJS. 2012;4:147–163. doi: 10.4314/mejs.v4i1.74056. [DOI] [Google Scholar]
  • 227.Biruksew A, Zeynudin A, Alemu Y, Golassa L, Yohannes M, Debella A, et al. Zingiber officinale Roscoe and Echinops kebericho Mesfin showed antiplasmodial activities against Plasmodium berghei in a dose-dependent manner in Ethiopia. Ethiop J Health Sci. 2018;28:655. doi: 10.4314/ejhs.v28i5.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Agbaje EO, Onabanjo AO. The effects of extracts of Enantia chlorantha in malaria. Ann Trop Med Parasitol. 1991;85:585–590. doi: 10.1080/00034983.1991.11812613. [DOI] [PubMed] [Google Scholar]
  • 229.Ajayi EIO, Adelekeb MA, Adewumia TY, Adeyemia AA. Antiplasmodial activities of ethanol extracts of Euphorbia hirta whole plant and Vernonia amygdalina leaves in Plasmodium berghei-infected mice. J Taibah Univ Sci. 2017;11:831–835. doi: 10.1016/j.jtusci.2017.01.008. [DOI] [Google Scholar]
  • 230.Omole AR, Malebo MH, Nondo SOR, Katani S, Mbugi H, Midiwo J, et al. In vivo anti-plasmodial activity of crude extracts of three medicinal plants used traditionally for malaria treatment in Kenya. Eur J Med Plants. 2018;24:1–7. doi: 10.9734/EJMP/2018/42874. [DOI] [Google Scholar]
  • 231.Nureye D, Assefa S, Nedi T, Engidawork E. In vivo antimalarial activity of the 80% methanolic root barks extract and solvent fractions of Gardenia ternifolia Schumach & Thonn (Rubiaceae) against Plasmodium berghei. Evid Based Complement Alternat Med. 2018;2018:9217835. doi: 10.1155/2018/9217835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Beaufay C, Hérent MF, Quetin-Leclercq J, Bero J. In vivo antimalarial activity and toxicity studies of triterpenic esters isolated from Keetia leucantha and crude extracts. Malar J. 2017;16:406. doi: 10.1186/s12936-017-2054-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Bankole AE, Adekunle AA, Sowemimo AA, Umebese CE, Abiodun O, Gbotosho GO. Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria. Parasitol Res. 2016;115:299–305. doi: 10.1007/s00436-015-4747-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 234.Jansen O, Tchinda AT, Loua J, Esters V, Cieckiewicz E, Ledoux A. Antiplasmodial activity of Mezoneuron benthamianum leaves and identification of its active constituents. J Ethnopharmacol. 2017;203:20–26. doi: 10.1016/j.jep.2017.03.021. [DOI] [PubMed] [Google Scholar]
  • 235.Udobre AS, Udobang JA, Udoh AE, Anah VU, Akpan AE, Charles GE. Effect of methanol leaf extract of Nauclea latifolia on albino mice infected with Plasmodium berghei berghei. Afr J Pharmacol Ther. 2013;2:83–87. [Google Scholar]
  • 236.Mesia K, Tona L, Mampunza MM, Ntamabyaliro N, Muanda T, Muyembe T, et al. Antimalarial efficacy of a quantified extract of Nauclea pobeguinii stem barks in human adult volunteers with diagnosed uncomplicated falciparum malaria .Part 2: a clinical phase IIB trial. Planta Med. 2012;78:853–60. doi: 10.1055/s-0031-1280359. [DOI] [PubMed] [Google Scholar]
  • 237.Okeola VO, Adaramoye OA, Nneji CM, Falade CO, Farombi EO, Ademowo OG. Antimalarial and antioxidant activities of methanolic extract of Nigella sativa seeds (black cumin) in mice infected with Plasmodium yoelii nigeriensis. Parasitol Res. 2011;108:1507–1512. doi: 10.1007/s00436-010-2204-4. [DOI] [PubMed] [Google Scholar]
  • 238.Girma S, Giday M, Erko B, Mamo H. Effect of crude leaf extract of Osyris quadripartita on Plasmodium berghei in Swiss albino mice. BMC Complement Alternative Med. 2015;15:184. doi: 10.1186/s12906-015-0715-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.Kabiru AY, Ibikunle GF, Innalegwu DA, Bola BM, Madaki FM. In vivo antiplasmodial and analgesic effect of crude ethanol extract of Piper guineense leaf extract in Albino Mice. Scientifica (Cairo). 2016: 8687313. [DOI] [PMC free article] [PubMed]
  • 240.Hiben MG, Sibhat GG, Fanta BS, Gebrezgi HD, Tesema SB. Evaluation of Senna singueana leaf extract as an alternative or adjuvant therapy for malaria. J Tradit Complement Med. 2015;6:112–117. doi: 10.1016/j.jtcme.2014.11.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Tadesse SA, Wubneh ZB. Antimalarial activity of Syzygium guineense during early and established Plasmodium infection in rodent models. BMC Complement Alternative Med. 2017;17:21. doi: 10.1186/s12906-016-1538-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Adepiti AO, Iwalewa EO. Evaluation of the combination of Uvaria chamae (P Beauv) and amodiaquine in murine malaria. J Ethnopharmacol. 2016;193:30–5. doi: 10.1016/j.jep.2016.07.035. [DOI] [PubMed] [Google Scholar]
  • 243.Masaba SC. The antimalarial activity of Vernonia amygdalina Del (Compositae) Trans R Soc Trop Med Hyg. 2000;94:694–695. doi: 10.1016/S0035-9203(00)90236-0. [DOI] [PubMed] [Google Scholar]
  • 244.Omoregie ES, Pal A. Antiplasmodial, antioxidant and immunomodulatory activities of ethanol extract of Vernonia amygdalina del. leaves in Swiss mice. Avicenna J Phytomed. 2016;6:236–7. [PMC free article] [PubMed] [Google Scholar]
  • 245.Challand S, Willcox M. A Clinical trial of the traditional medicine Vernonia amygdalina in the treatment of uncomplicated Malaria. J Altern Complement Med. 2009;15:1231–1237. doi: 10.1089/acm.2009.0098. [DOI] [PubMed] [Google Scholar]
  • 246.Ajayi BB, Ogunsola JO, Olatoye OI, Antia RE, Agbedea S. Effects of pituitary extract, ovaprim, and bitter leaves (Vernonia amygdalina) on the histopathology of African catfish (Clarias gariepinus) Aquacult. Fish. 2018;3:232–237. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12936_2021_3866_MOESM1_ESM.docx (47.7KB, docx)

Additional file 1: Table S1. In vitro and in vivo studies reporting inactive antiplasmodial or antimalarial activity. Table S2. List of active compounds identified from plants.

Data Availability Statement

Not applicable.


Articles from Malaria Journal are provided here courtesy of BMC

RESOURCES