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Over the past decades, the spread of antibiotic resistance 
among pathogenic bacteria has become a global threat1. 
Because of comprehensive medical application and exten-

sive use in agriculture, antibiotic resistance has increased steadily2,3. 
The contamination of natural environments with low antibiotic con-
centrations from wastewater might further contribute to resistance 
spread4,5. As a consequence, infections with antibiotic-resistant 
bacteria are predicted to be a major cause of death6 by 2050. 
New approaches in the fight against antibiotic resistance are thus 
desperately needed. Their successful development and imple-
mentation rely on in-depth understanding of the evolution of  
antibiotic resistance.

Evolution of drug resistance is not only influenced by the pres-
ence of the antibiotic per se. It is also affected by the drug concen-
tration and the resulting selective constraints, as well as different 
population-genetic characteristics, such as population size and 
bottlenecks. Surprisingly, the combined influence of these factors 
has been largely neglected in current work on evolution of resis-
tance, despite their likely relevance in vivo7–9. Populations of patho-
genic bacteria undergo severe bottlenecks during an infection of a 
host, imposed by the host immune system, physical properties of 
infected tissues, transmission between hosts and, importantly, as 
a consequence of antibiotic treatment10–13, thereby linking popula-
tion size and antibiotic-induced selection. In the presence of such 
bottlenecks, adaptation is strongly influenced by genetic drift, and 
the first beneficial variants that arise by chance usually face little 
clonal competition and have a higher probability of going to fixa-
tion14,15. Over time, this leads to periodic selection with decreased 
likelihood of parallel evolution16–18. By contrast, higher degrees of 
parallel evolution and clonal interference are expected in the case 

of weaker bottlenecks14,15. As higher genetic diversity is more likely 
to be maintained, the fittest variants tend to occur repeatedly under 
weak bottlenecks and steer the adaptative process19–21. In this con-
text, variation in antibiotic dose alters the degree of selection on 
bacterial populations, often favouring different resistance muta-
tions22,23. This is especially true in the case of trade-offs between 
resistance level or mechanism and competitiveness7.

The aim of our study is to assess to what extent bottleneck size 
and its likely interaction with antibiotic-induced selection affect 
evolution of drug resistance. To address this aim, we combined 
evolution experiments with whole-genome sequencing (WGS) and 
genetic analysis using P. aeruginosa, one of the three World Health 
Organization priority 1 most critical multidrug-resistant patho-
gens24. Experimental evolution was performed by serial dilution, for 
which we developed a protocol that achieves precise control of bot-
tleneck size. P. aeruginosa reference strain PA14 was evolved over 
approximately 100 generations at two regular bottleneck sizes (BN): 
50,000 or 5,000,000 cells, referred to as k50 or M5, respectively—
and at three distinct selection levels (defined by the 0%, 20% or 
80% inhibitory drug concentration: IC0, IC20 or IC80, respectively). 
Evolution experiments were performed for two antibiotics with dif-
ferent modes of action, the aminoglycoside gentamicin (GEN) or 
the fluoroquinolone ciprofloxacin (CIP). Genome sequencing and 
genetic analyses were used to identify the targets of selection and 
assess competitive fitness of the identified variants.

Results
We performed fully independent experiments with the antibiot-
ics GEN and CIP, but otherwise identical experimental design 
(Extended Data Fig. 1). On the basis of cell counts at the beginning 
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and end of each growth period, we calculated the harmonic mean 
of population size and found that the experimentally controlled 
bottleneck size was indeed the main determinant of population-size 
differences among treatments (Extended Data Figs. 2 and 3 and 
Supplementary Table 1), thereby confirming the general suit-
ability of our experimental design for assessing the influence of  

bottlenecks on evolution of resistance. Nevertheless, antibiotic con-
centration has an additional, smaller influence on this integrative 
measure of population size, especially at the beginning of the exper-
iment (Extended Data Figs. 2 and 3). We then studied the evolution-
ary response to antibiotics for two types of traits—bacterial fitness 
and antibiotic resistance—each assessed using two approaches.  
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Fig. 1 | Variation in bottleneck size and drug-induced selection leads to consistent responses across two independent evolution experiments with 
distinct antibiotics. a,b, Results of the GEN experiment, showing changes in overall yield across experimental evolution relative to the no-drug control 
IC0 (a) and changes in overall resistance (b). c,d, Results of the CIP experiment, showing changes in overall yield across experimental evolution (c) and 
variation in resistance (d). The x-axis and colours represent different treatment groups (blue, IC20; red, IC80; light colours, 50k transfers; dark colours, 5 M 
transfers). For each replicate population, overall yield was inferred from counts of viable cells determined by flow cytometry at the end of each transfer 
period and related to the cell counts of the corresponding no-drug control of the same bottleneck size, followed by calculation of the AUC of yield across 
transfer periods of the evolution experiment. Resistance is shown as AUC of a standardized dose–response curve for the bacterial populations from 
the end of the evolution experiment (Methods and Extended Data Fig. 6). For the IC80-k50 treatment of the CIP experiment, only 1 out of 8 replicate 
populations survived, whereas in all other cases all 8 replicate populations per treatment were considered. In all box plots, which the centre line indicates 
the median, the box represents the data between first and third quantiles, the whiskers show the whole data range excluding outliers, and the dots 
indicate outliers (if present). Variation among treatments was evaluated with a general linear model; significant difference between two treatment groups, 
***P < 0.05; Tukey’s honest significant difference (HSD) tests.
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As a proxy for bacterial fitness, we analysed the overall yield rela-
tive to the no-drug IC0 control, inferred from counts of viable cells 
at the end of each growth period across the evolution experiment, 
and growth rates, inferred from continuous optical density (OD) 
measurements throughout the evolution experiments (Methods). 
For resistance analysis, we used an integrative resistance estimate 
for bacterial populations from the end of the evolution experiment, 
measured as area under the curve (AUC) of a standardized dose–
response curve, and proxies for minimum inhibitory concentra-
tions (MIC), inferred from the standardized dose–response curves 
for the final populations (Methods).

Across both evolution experiments, we consistently observed the 
highest overall yields for treatment with weak bottlenecks (that is, 
IC20-M5 and IC80-M5), followed by the IC20-k50 and IC80-k50 treat-
ments (Fig. 1a,c, Extended Data Fig. 4 and Supplementary Tables 
2 and 3). Our analysis of growth rates as an alternative proxy for 
fitness produced a consistent pattern for the CIP experiment 
(Extended Data Fig. 5 and Supplementary Table 4). However, for 
the GEN experiment, growth rates were significantly lower for the 
IC20-M5 treatment, while growth rates for the other treatments did 

not vary from each other (Extended Data Fig. 5 and Supplementary 
Table 4). In this case, the comparatively high yields achieved under 
IC20-M5 cannot rely on growth rate alone. We further consistently 
observed that the variation in overall yield only partially translated 
into final resistance. Irrespective of the drug and the approach used 
for resistance analysis, the highest resistance was always observed 
for the IC20-k50 and IC80-M5 treatments, in contrast to lower resis-
tance in the IC20-M5 and IC80-k50 treatments (Fig. 1b,d, Extended 
Data Fig. 6 and Supplementary Tables 5–8). All antibiotic treat-
ments produced higher resistance than the ancestor or no-drug 
IC0 control (Extended Data Fig. 6 and Supplementary Tables 5–8). 
Together, these data suggest that P. aeruginosa is better able to adapt 
under weak bottlenecks and produce higher bacterial yields, irre-
spective of the applied antibiotic. Interestingly, the ability to pro-
duce high yield is not necessarily the result of evolving higher levels 
of resistance, thus indicating that selection acts distinctly on these 
two parameters.

Our subsequent genome analysis of the populations from the 
GEN experiment revealed that high population variant frequen-
cies were primarily found in two genes (ptsP and pmrB) under 
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Fig. 2 | Weak bottlenecks increase the level of parallel genome evolution in the populations from the end of the evolution experiments. a, Results for 
the populations from the end of the evolution experiment with GEN, in which most mutations were found in two-component regulators and ptsP. All eight 
replicates were used for the different treatments, except for the IC80-M5 G7 population, which could not be recovered. b, Results for final populations 
from the CIP evolution experiment, which mainly harboured mutations in genes affecting multidrug efflux pumps. Results are shown for all eight replicate 
populations of the IC20-k50 and IC80-M5 treatments, and for the only surviving IC80-k50 population; the eight sequenced IC20-M5 populations did not 
harbour any sequence variants. The x-axes show the replicate populations and the coloured boxes show the treatments (light blue, IC20-k50; dark blue, 
IC20-M5; light red, IC80-k50; dark red, IC80-M5). The y-axes show mutated genes, sorted by their function, as indicated on the left. The size of the dots 
denotes the frequency of a particular mutation within a population. Dark dots indicate the presence of more than one mutation per gene.
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weak bottlenecks, but in more genes under strong bottlenecks, and 
distinct variants emerged in environments with different antibi-
otic concentrations (Figs. 2 and 3 and Extended Data Figs. 7–9). 
In detail, we used WGS to identify the possible targets of selection 
and to characterize variant frequencies, either for the final popu-
lations from the evolution experiment (Fig. 2; total of 48 popula-
tions for the two evolution experiments) or across time (Fig. 3 and 
Extended Data Figs. 7 and 8; total of 46 populations, each assessed 
over 7 time points for the two experiments). For the GEN experi-
ment, we found variants in more than a dozen genes with different 
functions. Among these, the most frequently mutated genes were 
the two-component regulatory systems PmrAB, ParRS and PhoPQ, 
as well as the gene ptsP, which is involved in nitrogen metabolism 
(Figs. 2a and 3). Weak bottlenecks led to high-frequency variants in 
only few genes: for IC20-M5, mainly in ptsP, and for IC80-M5, mainly 
in ptsP and pmrB (Supplementary Table 9). Interestingly, variants 
in ptsP emerged and reached detectable frequencies across all rep-
licate populations more frequently than variants in other genes 
(Supplementary Table 9), possibly indicating a mutational bias. 
Nevertheless, this possible bias did not lead to predominance of ptsP 
variants across treatments.

In the GEN experiment, the divergence of favoured gene vari-
ants was higher in the populations that faced strong bottlenecks, 
both at the end of the evolution experiment and across time (Figs. 
2a and 3 and Extended Data Fig. 7). This resulted in consistently 
more strongly differentiated replicate populations compared with 
the populations that experienced weak bottlenecks (indicated by 
higher FST values; Extended Data Fig. 9a). Moreover, variant fre-
quencies increased more slowly when undergoing low-selection 
treatments rather than with high-selection treatments (IC20 com-
pared with IC80 treatments; Fig. 3). Particularly for the low-selection 
and strong-bottleneck treatment IC20-k50, new variants usually did 
not reach detectable frequencies before transfer period 7 or 9, and 
high variant frequencies developed only during the second half of 
the experiment (Fig. 3a). In contrast, the IC80-M5 treatment usu-
ally showed high frequencies of new favoured variants by transfer 
3 (Fig. 3d). In general, more competitive dynamics, consisting of 
more simultaneous variants at particular time points, appear to be 
common in treatments with weak bottlenecks (5 out of 7 replication 
populations each for the IC20-M5 and IC80-M5 treatments; Fig. 3c,d).

In the CIP experiment, only two treatment groups yielded infor-
mation on variant distribution. For these treatments, the genomic 
results appear to be consistent with the GEN experiment. Only 
one population survived the high-selection and strong-bottleneck 
treatment IC80-k50, thus precluding more detailed genome com-
parisons. For the remaining two treatments, we found variants in 
six genes, almost all affecting multidrug efflux (Fig. 2b). The differ-
ent CIP treatment groups appeared to favour variants in different 
genes: mexZ variants occurred exclusively under IC20-k50, whereas 
mexS and nfxB variants occurred primarily under IC80-M5 condi-
tions (Supplementary Table 10). Moreover, weak-bottleneck treat-
ments appeared to produce variants in a smaller number of genes 
(Fig. 2b), which then also reached high frequencies much earlier 
than in strong-bottleneck treatments (Fig. 3e,f and Extended Data 
Fig. 8), resulting in lower FST indices for population differentiation 
(Extended Data Fig. 9b) and low diversity indices (Supplementary 
Table 11). The most important difference between the CIP and GEN 

experiments is that we could not detect any new variants for the 
low-selection and weak-bottleneck treatment IC20-M5. Since identi-
cal methods were used for WGS analysis across treatment groups, 
the genomic response of this treatment is clearly distinct from 
those of the other treatments. This result suggests that the observed 
response in yield under IC20-M5 conditions (Fig. 1c) results from 
phenotypic, non-heritable adaptations.

While ptsP variants emerged and reached detectable frequencies 
more often than variants in other genes across the entire GEN evo-
lution experiment (Supplementary Table 9), they did not predomi-
nate in all treatment groups. For example, pmrB variants appear to 
be at least as strongly favoured as the ptsP variants under IC80-M5 
conditions, especially if temporal dynamics are considered (Figs. 
2a and 3a–d). To further assess the differential success of ptsP and 
pmrB variants, we specifically characterized variants of these genes 
and found opposite effects in resistance and competitive fitness 
(Fig. 4). First, we used a subset of the obtained GEN-resistance data 
(see Fig. 1b) to assess whether populations with high frequencies 
of either pmrB or ptsP variants differ in resistance, revealing that 
variants in pmrB are significantly more resistant than variants in 
ptsP (Fig. 4a and Supplementary Table 12). This suggests that the 
pmrB variants should have been selectively favoured in all treat-
ments with antibiotics, which however was not the case (Figs. 2 
and 3). We then assessed the competitive fitness of individual vari-
ants at different antibiotic concentrations and bottleneck sizes. 
For this, we isolated three strains with a single variant in ptsP and 
three strains with a single variant in pmrB from different evolved 
populations of the same or comparable evolution treatments (in all 
cases, the isolated variants showed high frequencies in the genomic 
analysis; Supplementary Table 13). Additional WGS revealed that 
the isolated strains only varied from the ancestor at the expected 
mutations in either ptsP or pmrB (Methods). These strains with 
either ptsP or pmrB variants were each combined with either the 
ancestral wild-type PA14 reference strain or with each other, always 
in a 1:1 competition ratio and for a single growth period of 12 h, 
followed by variant frequency analysis using amplicon sequenc-
ing. We found that the ptsP variants possessed significantly higher 
competitive fitness than pmrB variants under low antibiotic con-
centrations or absence of drugs (IC0 and IC20 treatments; Fig. 4b, 
Extended Data Fig. 10 and Supplementary Table 14). However, no 
significant difference in pmrB variant frequencies versus ptsP was 
detected under IC80 conditions. In summary, ptsP variant frequen-
cies decreased with increasing antibiotic concentration. The com-
petition against PA14 in drug-free environments showed an equal 
frequency of ptsP and a lower frequency of pmrB variants com-
pared with the ancestor. All resistant strains outcompeted PA14 in 
the treatment groups with antibiotics (Fig. 4b, Extended Data Fig. 
10 and Supplementary Table 14).

Discussion
Bottlenecks occur frequently in natural populations of pathogenic 
bacteria and have a critical role in pathogen adaptation during 
infection and transmission25–27. The interplay of bottlenecks and 
antibiotic-induced selection is therefore likely to be key for evolu-
tion of resistance in vivo, but is widely neglected in the current lit-
erature on antibiotic resistance. Here, using an approach in which 
population bottleneck size is controlled by counting cells with flow 

Fig. 3 | Weak bottlenecks generally lead to early spread of new variants and more competitive dynamics, but only few affected genes across replicate 
populations during the evolution experiments. a–d, Results for replicate populations from the GEN evolution experiment for IC20-k50 (a), IC20-M5 (b), 
IC80-k50 (c) and IC80-M5 (d). The IC20-M5 H2 population and the IC80-M5 G7 population were excluded because they could not be recovered from across 
the evolution experiment. e,f, Results for replicate populations from treatments of the CIP evolution experiment for IC20-k50 (e) and IC80-M5 (f). The 
x-axes represent the transfer period, the y-axes show the relative frequency of gene variants in a population. Population names are shown in the bottom left 
corner of each plot. The main colours denote the most frequently affected genes with variants for each of the two evolution experiments. Different shades 
further indicate different variants of the gene of that colour. Extended Data Figs. 7 and 8 show frequency dynamics of the individual mutations.
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cytometry, we demonstrate a consistent and reproducible inter-
play of the two factors on the dynamics of resistance evolution in 
two independent sets of evolution experiments. By varying both  

factors, we could specifically assess which aspects of bacterial adap-
tation are affected by a strong bottleneck alone. As predicted, we 
found that high resistance emerged when bottlenecks were weak 
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and selection was strong. Surprisingly, however, high resistance 
also repeatedly evolved with strong bottlenecks and weak selec-
tion, most probably because the lower selective constraints reduced 
the bottleneck-induced probability of losing favourable alleles. 
Moreover, in one of the experiments, weak bottlenecks and weak 
selection favoured the spread of variants with low-level antibi-
otic resistance but higher competitive fitness than more resistant 
variants, leading to a low degree of resistance under these condi-
tions. Furthermore, strong bottlenecks increased variation across 
replicate populations, most probably due to high genetic drift, 
resulting in little parallel evolution. Together, our results provide 
evidence for a critical influence of both bottlenecks and the level of 
antibiotic-induced selection on the dynamics of evolution of antibi-
otic resistance.

Our main findings were consistent across the two indepen-
dent sets of evolution experiments, which were performed with 
distinct antibiotics from two different classes, aminoglycosides 
and fluoroquinolones, and with several independent replicates 
per treatment. Across these two sets of experiments, we found 
that the larger starting population size under weak bottlenecks 
often favoured competition between independent mutations, with 
one ultimately being lost, depending on the strength of antibiotic 
selection (Figs. 2 and 3). This observation agrees with the origi-
nal expectation that weak bottlenecks facilitate a higher degree of 
parallel evolution because of the increased probability of the fittest 
mutants occurring and outcompeting others24. In accordance with 
this expectation, populations experiencing weak bottlenecks had 
a comparatively high overall yield (Fig. 1a,c), indicating that the 
bacteria were indeed able to respond to the respective selection 
conditions. By contrast, strong bottlenecks in both sets of evolu-
tion experiments led reproducibly to a comparatively late spread 
of variants and large variation among replicate populations in the 
variant genes, highlighting the strong influence of genetic drift 
under these conditions (Figs. 2 and 3).

There are two important exceptions to the above patterns. First, 
in the CIP experiment, we could not detect any variants spreading 
under weak bottlenecks combined with low selection levels (that is, 
the IC20-M5 treatment), even though populations increased their 
overall yield (Fig. 1c). This result may suggest that the evolutionary 
response is due to genomic rearrangements, which cannot be eas-
ily inferred from the short-read sequencing data obtained for this 
study. As an alternative explanation, phenotypic responses are suf-
ficient to counter the low selective constraints imposed, thus allow-
ing the wild-type bacteria to proliferate (Fig. 1c) and to outcompete 
any low-resistance variants, which were observed to spread in the 
GEN experiment under the IC20-M5 conditions (Figs. 1a, 2a, 3b 
and 4). Second, almost all populations went extinct when experi-
encing strong-bottleneck and high-selection conditions in the CIP 
experiments. This result indicates that this combination of condi-
tions imposed a double constraint on the bacterial populations: the 
high inhibitory concentration of the drug continued to constrain 
population size after the bottleneck—as confirmed by analysis of 
an integrative measure of population size across one growth period, 
especially at the beginning of the evolution experiments (Extended 
Data Figs. 2 and 3)—thus decreasing the probability of favourable 
mutations to arise and reach sufficiently high frequencies. As the 
latter effects were particular to the experiments with CIP, the exact 
causes underlying the generally consistent overall results seen in 
Fig. 1 may vary, depending on the antibiotic and possibly the prob-
ability of resistance mutations arising de novo.

Surprisingly, populations consistently evolved a high yield and 
high resistance under IC20-k50 conditions, especially compared 
with the treatment with a strong bottleneck (IC80-k50; Fig. 1). We 
reason that this is probably because the lower drug concentration 
allows the populations to recover and maintain comparatively 
higher population size than the corresponding higher-drug con-
centration condition, as confirmed for the beginning of the evo-
lution experiments by our analysis of the integrative measure of  
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population size (Extended Data Figs. 2 and 3). During such a recov-
ery phase, a newly arisen resistant variant that survived drift during 
the bottleneck can spread and reach sufficiently high frequencies 
to be maintained over longer time periods or even become fixed 
in the population. Moreover, the larger population size during the 
recovery phase increases the probability of favourable mutations 
occurring, further enhancing the ability of the bacterial populations 
to adapt. Both processes are less likely under the IC80-k50 condi-
tions, where strong bottlenecks combined with high selection levels 
constrain population size over longer time periods (Extended Data 
Fig. 3 and 4).

Unexpectedly, high overall yield in the weak-bottleneck treat-
ments did not directly translate to high antibiotic resistance (Fig. 
1), especially in the GEN evolution experiments, for which this 
treatment consistently resulted in evolutionary changes (con-
firmed by the observed genetic changes; Figs. 2 and 3). Moreover, 
in the IC20-M5 treatment of the GEN experiment, high overall 
yield coincided with low growth rates, suggesting that the high cell 
counts were not caused by the rate of replication alone and there 
was not a simple linear relationship between these two compo-
nents of bacterial fitness (that is, reproductive rate and final popu-
lation size). For a further evaluation of this finding, we performed 
competition experiments among variants in two genes, ptsP and 
pmrB, which were most commonly affected in either IC20-M5 or 
IC80-M5 treatments. These experiments (Fig. 4b) demonstrate that 
the variations in resistance levels and competitive fitness are jointly 
responsible for the evolutionary success of the variants across treat-
ments. PmrB is a sensory kinase of the two-component regulatory 
system PmrAB, which regulates lipopolysaccharide modifications 
of the bacterial outer cell membrane, specifically lipid A28–30. Lipid 
A modification is often found in aminoglycoside-resistant bacte-
ria31. PtsP is a phosphoenolpyruvate-dependent phosphotransfer-
ase that transfers the phosphoryl group from phosphoenolpyruvate 
to the phosphoryl carrier protein (NPr)32. It has an important 
role in the nitrogen cycle and glucose transport in bacteria32,33. 
However, the role of ptsP in aminoglycoside resistance is poorly 
understood34. Deletions of ptsP have been shown to cause over-
production of pyocyanin, a toxin produced by P. aeruginosa that 
oxidizes other molecules35. Moreover, ptsP mutations can increase 
resistance to antimicrobial peptides and expression of the major 
quorum-sensing regulators lasI and rhlI35,36. Our work highlights 
that different variants in ptsP can also confer resistance against 
the aminoglycoside GEN, albeit at a lower level than mutations in 
pmrB. Importantly, the lower resistance levels of the ptsP variants 
were associated with a higher competitive fitness than the pmrB 
variants under low antibiotic concentrations, explaining their pre-
dominance under these conditions. Interestingly, ptsP and pmrB 
variants had similar competitive fitness under high antibiotic dose, 
resulting in variants of either gene going to fixation under these 
conditions (Figs. 2a and 3d).

Our study expands the insights obtained from the few previous 
experiments on the influence of bottlenecks on the evolution of 
antibiotic resistance. For example, a recent study assessed evolu-
tion of Escherichia coli under continuously increasing concentra-
tions of CIP and with three bottleneck sizes, two in the range of the 
inverse of the frequency of drug target mutations (that is, 108 and 
1010 cells), and a third with a single-cell bottleneck12. Even though 
the exact experimental design was different, the results similarly 
highlighted that variation in bottleneck size impacts evolution-
ary trajectories and that weak bottlenecks generally lead to high 
resistance and a high degree of parallel evolution. Interestingly, 
the largest bottleneck size favoured the spread of variants in drug 
target genes, especially gyrA, with apparently no fitness costs, 
whereas the intermediate bottleneck size led to selection of differ-
ent gene variants, all with apparently large fitness costs12. By con-
trast, we did not identify mutations in the drug target genes and no  

substantial differences in growth costs under drug-free conditions 
for the high-resistance variants. A possible reason for the absence 
of drug target gene variants, which are often found in clinical P. 
aeruginosa isolates from patients treated with aminoglycosides and 
fluoroquinolones (for example, in fusA1 or gyrA)37,38, is that we 
used antibiotics at sub-MIC levels, to enable populations to sur-
vive initially and adapt to the imposed treatments. A second exam-
ple previously assessed adaptation of Pseudomonas fluorescens to 
rifampicin under three bottleneck sizes, similarly revealing an 
impact of bottleneck size on the paths of resistance evolution39. In 
particular, variants in the main resistance gene rpoB spread under 
both strong and weak bottlenecks, yielding high levels of resistance 
and a high degree of parallel evolution under these conditions. By 
contrast, intermediate bottleneck sizes favoured mutations in a 
variety of genes, including a regulatory gene, yielding little parallel 
evolution. This study applied relative bottleneck sizes (rather than 
absolute bottleneck sizes, as in our study) and used a higher carry-
ing capacity. As a consequence, the number of generations over the 
course of a growth period, and thus the likelihood of emergence 
and spread of favourable resistance mutations, is increased15,40, 
leading to the observed high resistance and parallel evolution even 
under strong bottlenecks. None of the previous studies assessed an 
interplay of bottlenecks and antibiotic-induced selection. As anti-
biotics themselves affect population size, similar to other environ-
mental stressors, the adaptive consequences of a bottleneck need 
to be related to the relevant selective constraint that challenges the 
evolving populations. By experimentally controlling the interaction 
of both factors, our study allows us to increase the understanding 
of how populations adapt to stressful environments under different 
bottleneck intensities.

Bottlenecks are a characteristic property of the infection pro-
cess10,11,25,27,41–44. Thus, knowledge of their impact on adaptation is 
essential for a full understanding of pathogen evolution and for the 
design of effective therapy. Our study provides a proof of concept 
that the interplay of bottleneck size and antibiotic-induced selec-
tion consistently alters the evolutionary trajectories to resistance 
and competitive fitness of adapting bacteria. Strong bottlenecks, 
which are likely to be prevalent in vivo, lead to more diverse out-
comes under both high and low antibiotic concentrations, making 
predictions on evolution of resistance and the prevailing resistance 
variants exceedingly difficult. This has important consequences for 
the optimization of treatment design, which is unlikely to be uni-
versally applicable for a specific type of infection. Instead, treatment 
would have to be adapted on an individual patient level, taking into 
account the selected resistance mechanism(s) in the pathogen pop-
ulation and, importantly, the associated fitness costs45.

Methods
Materials. All experiments were performed with P. aeruginosa PA1446 and mutants 
thereof, which emerged during the evolution experiments. Bacteria were grown 
in M9 minimal medium, consisting of 7 g l−1 K2HPO4, 2 g l−1 KH2PO4, 0.588 g l−1 
Na3C6H5O7, 1 g l−1 (NH4)2SO4, 0.1 g l−1 MgSO4, and supplemented with 2 g l−1 
glucose and 1 g l−1 casamino acids. Different single colonies from M9 agar plates 
(M9 supplemented with 15 g l−1 agar) were picked to initiate the independent 
replicate populations of the evolution experiments. Exponential phase cultures 
with an OD of 0.1 (equivalent to 104–105 colony-forming units per ml) were used 
as inoculum for resistance assays. For long-time storage, bacterial cultures were 
supplemented with 30% glycerol and frozen at −80 °C.

Flow cytometry. A Guava easyCyte flow cytometer was used to assess cell counts 
of bacterial cultures during the evolution and competition experiments. Cells 
were suspended at an appropriate concentration of <1,500 cells per µl in PBS and 
analysed by flow cytometry using a flow rate of 0.236 µl s−1 for either 30 s or until a 
total cell count of 5,000 cells per sample was reached. Propidium iodide (1.9 mM) 
was used to stain dead cells and thus determine the number of viable cells during 
flow cytometry. For each culture, the total number of cells was calculated from 
the measured cell concentration, adjusted by the number of dead cells, sampling 
volume and dilution factor. These calculations were used to determine the transfer 
volume during the evolution experiment and to infer final yield at the end of each 
season as a proxy for bacterial fitness.
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Dose–response curves and drug concentration determination for the 
ancestral populations. We used dose–response curves in broth cultures and OD 
measurements as a proxy for bacterial growth, consistent with standard diagnostic 
approaches for measurement of antibiotic resistance (for example, the Vitek 2 
approach (bioMérieux)). Bacterial growth was assessed in 100 µl volumes at ten 
different antibiotic concentrations in a 96-well plate using a fully randomized 
design, including eight technical replicates per concentration, eight no-drug 
controls and eight medium-only controls. Growth was measured as OD after 12 h 
at 37 °C under constant shaking (double-orbital, 900 rpm) in Tecan plate readers. 
The lowest antibiotic concentration for which no visible growth was optically 
measurable was taken as the drug’s MIC.

Design and general setup of evolution experiments. We developed a protocol for 
experimental evolution that includes cell counting by flow cytometry to ensure that 
an exact number of cells are transferred across growth periods (Extended Data Fig. 
1). The evolution experiment was run in 96-well plates over 16 growth periods and 
included two distinct transfer bottleneck sizes (BN of 50,000 cells and 5,000,000 
cells) and three inhibitory antibiotic concentrations (IC0, IC20 and IC80), combined 
in a full factorial design. The evolution treatments were randomized across the 
96-well plates using a block design and each included eight fully independent 
replicates. Experimental evolution was performed independently with two distinct 
antibiotics, the aminoglycoside GEN and the fluoroquinolone CIP.

In detail, after each growth period, a 4 µl subsample of each bacterial culture 
was diluted 1:1,000 in PBS in two steps in a new 96-well plate and then used to 
determine the exact cell count by flow cytometry. In parallel, the remainder of the 
bacterial culture was centrifuged at 5,000 rpm for 75 min to remove the old growth 
medium and resuspended in fresh M9 medium. The resuspension volumes were 
calculated individually, on the basis of the flow cytometry results. Resuspension 
volumes were set to achieve a concentration of 5 × 105 cells per μl per culture. The 
plate for the next growth period was prepared accordingly (100 μl per well minus 
the calculated transfer volume) and the respective volumes were then transferred 
to the new plate: 0.1 μl for 50,000 cells and 10 μl for 5,000,000 cells. The freshly 
inoculated plate was sealed with transparent foil and incubated for 9.5 h in a 
Tecan plate reader at 37 °C under constant shaking (double-orbital, 900 rpm). OD 
measurements were taken at 15 min intervals throughout each growth period of 
the evolution experiments and later used for inference of growth rates. After every 
second transfer, a subsample of bacteria from the evolution experiments were 
supplemented with 30% glycerol and frozen at −80 °C for later use.

As the evolutionary potential of the bacteria is influenced by population size 
across entire growth periods and not only by the bottleneck size, we additionally 
assessed variation among treatments for an integrative measure of population size 
across entire growth periods. For this assessment, we calculated the harmonic 
mean of population size, using the cell numbers at the beginning of a growth 
period, which we controlled experimentally through our protocol (either 50,000 
or 5,000,000) and the end-point population size, which we determined through 
flow cytometry, as described above. The AUC of harmonic mean population size 
was calculated and statistically compared with a general linear mixed model and 
Tukey’s HSD post hoc tests.

Assessment of bacterial fitness. We calculated two proxies of bacterial fitness 
during the evolution experiment. First, we used the absolute cell counts, 
determined by flow cytometry at the end of each growth period, to infer final yield 
for each growth period and replicate population, followed by calculation of relative 
yield by dividing the cell counts for each replicate population with that for the 
corresponding no-drug control (either IC0-k50 for strong-bottleneck treatments 
or IC0-M5 for weak-bottleneck treatments). Relative yield was further summarized 
by calculating the AUC of yields across all growth periods of the evolution 
experiment. As final yield was based on absolute cell counts, we consider this 
measure an informative proxy for bacterial fitness, which reflects the number of 
cells achieved by each population under the various treatment conditions. Second, 
we used continuous OD measurements to calculate growth rate for each growth 
period and each replicate population using GrowthRate software47. Although 
these calculations become less reliable if growth rates are generally low, as in some 
treatment groups, we similarly considered growth rate to be an informative proxy 
for bacterial fitness. Growth rate was also summarized by calculating AUC across 
growth periods of the evolution experiment. For both measures, we statistically 
compared treatment groups with a general linear mixed model and Tukey’s HSD 
post hoc tests.

Antibiotic resistance of evolved populations. Populations of the last transfer 
period were challenged with different concentrations of the treatment drug, to 
obtain dose–response curves for the evolved populations. For this assessment, 
all cultures were standardized to the same population size of 500,000 cells. All 
bacterial populations were consistently subjected to eight distinct antibiotic 
concentrations: two below (IC50 and IC80) and six above (2 × MIC, 4 × MIC, 
8 × MIC and 16 × MIC) the MIC of the ancestral population. We specifically chose 
this design to ensure comparability of the experimental procedures for the evolved 
populations. Control measurements were performed in the absence of antibiotics. 
Kinetic OD measurements were performed in Tecan plate readers at 15 min 

intervals. As an integrative measure of antibiotic resistance, we used the end-point 
ODs of all concentrations to calculate the AUC of resistance for each replicate 
population. As an alternative measure of resistance changes, we also determined 
MIC as the lowest concentration for which the measured OD was below 0.01. If 
growth was still observed for the highest antibiotic concentration that was included 
in the experiment, then the MIC was set at this concentration, thereby yielding 
a conservative estimate for resistance increases in this case. For each of the two 
measures of resistance, we statistically compared variation among treatments using 
a general linear model and Tukey’s HSD post hoc tests.

DNA sequencing and genomics. We performed WGS of entire populations, 
because this allows us to describe the overall pattern of allele frequency changes 
within the populations and thus the overall evolutionary response48–50. DNA 
was isolated from experimentally evolved populations and the original starting 
cultures, using an established cetyl trimethylammonium bromide-based extraction 
protocol51. WGS of DNA samples of the last transfer period was performed at the 
Competence Centre for Genomic Analysis. Material for two populations from 
the GEN treatment could not be recovered and was thus excluded from analysis. 
Sequencing libraries were generated with the Nextera DNA Flex library preparation 
kit and sequencing was performed on the Illumina HiSeq 4000 platform using 
the Illumina paired-end technology with read lengths of 150 bp and an average 
base coverage of > 100 (ref. 52). In addition, DNA extracted from transfers 3, 5, 7, 
9, 11 and 13 were sequenced on the Illumina NextSeq platform at the Max Planck 
Institute for Evolutionary Biology (MPI-EB), with read lengths of 150 bp and an 
average base coverage of >40. Sequence reads were provided in the fastq format53. 
We excluded populations IC20-M5 H2 and IC80-M5 G7 from the GEN experiment, 
because material from some transfers could not be recovered. Quality and 
quantity of reads were checked with FastQC54. Trimmomatic was used to remove 
sequencing adapters from the Nextera library and to filter out low-quality reads55. 
High-quality reads were mapped to the UCBPP_PA14 reference genome with the 
software bwa46,56. The generated.bam files were scanned for SNPs, insertions and 
deletions using the variant calling programs FreeBayes, PinDel and VarScan57–59. 
The resulting output files were filtered for duplicates, ancestral variants and 
variants found in the evolved controls using R and additionally checked by visually 
inspecting the called genome positions provided by the.bam file in the IGV 
genome browser60. The detected variants were annotated with the help of SnpEff61 
and the Pseudomonas database (available at http://pseudomonas.com). The R 
package ggmuller was used to generate Muller plots of the evolving populations. 
SNP frequencies were used to calculate FST at every transfer for all treatment groups 
in which high-frequency variants occurred. Haplotype diversity was calculated as

H = 1 −

j∑

i=1
Pi2

where Pi represents the fraction of a haplotype in the population and j represents 
the total number of haplotypes. Haplotype diversity was calculated within 
individual populations of the treatment group (HS) and between the different 
replicates of the treatment group (HT). FST was then calculated as:

FST =

HT − HS
HT

We further performed WGS on the Illumina NextSeq platform of the MPI-EB 
as above to confirm that the isolated clones used in the competition experiments 
contained only a single variant, as expected from the genome data of the evolved 
populations.

Competition assays and clone frequency analysis using amplicon sequencing. 
In total, three pairs of different pmrB and ptsP mutants were competed against 
one another and against the PA14 reference in 96-well plates (Supplementary 
Table 13). As a control, each single strain was incubated in individual wells under 
the same conditions on a separate 96-well plate. The clones were each picked as a 
single colony-forming unit from M9 agar plates, which had been inoculated with 
a cryo-preserved culture of an evolved bacterial population, which should contain 
only a single variant according to the performed WGS of bacterial populations. 
The picked clones were cultivated in 5 ml M9 medium at 37 °C. Cultures of 
competing strains were set to an OD of 0.1 mixed at a 1:1 ratio before inoculation 
of the competition cultures. The cultures were then transferred to 96-well plates. 
Competitions ran with culture volumes of 100 µl at different GEN concentrations 
for 12 h at 37 °C in a Tecan plate reader.

The relative frequency of the competing strains was determined using 
amplification of diagnostic genome regions and sequencing. Bacterial pellets from 
the end of the competition experiments were resuspended in 50 μl nuclease-free 
water and boiled for 15 min. A two-step PCR was subsequently performed to 
amplify the region of interest and to ligate barcodes to the amplicons. In detail, 
1 μl of each lysate was used as a template for PCR amplification of the diagnostic 
loci (primer sequences are shown in Supplementary Table 15). One microlitre of 
each PCR product served as template for the second PCR to attach the individually 
barcoded sequencing primers (Supplementary Table 16). Both rounds of PCR 

Nature Ecology & Evolution | VOL 5 | September 2021 | 1233–1242 | www.nature.com/natecolevol1240

http://pseudomonas.com
http://www.nature.com/natecolevol


ArticlesNaTuRE Ecology & EvoluTion

were run for 15 cycles. DNA concentrations of every final sample were set to 
100 ng μl−1 and 5 μl per sample was pooled in a single Eppendorf tube. The library 
mix was then further purified by gel extraction with the GeneJET gel extraction kit 
(Thermo Fisher Scientific). Sequencing was performed on the Illumina NextSeq 
platform of the MPI-EB. Reads were quality-filtered with Trimmomatic 0.39 and 
subsequently aligned to the PA14 reference genome by using bwa46,55,56. SAMtools 
was used to generate bam files that were evaluated with the Integrative Genomics 
Viewer60,62. The strain frequencies were calculated from the SNP counts. The mean 
frequencies of every biological replicate were calculated and then used to compare 
the frequencies between the three main variants (ptsP, pmrB and wild type) in 
competition with a two-sample t-test (n = 3).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
WGS data for bacterial populations are available from GenBank at the National 
Center for Biotechnology Information under accession numbers PRJNA725112 
and PRJNA725351. The experimental data are available from Dryad (https://doi.
org/10.5061/dryad.dncjsxm06). Source data are provided with this paper.
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Extended Data Fig. 1 | Design of evolution experiment. Numbers mark the succession of steps taken in the experimental protocol. Text in the boxes next 
to the numbers describe the experimental step. Arrows with black fill describe steps that are taken for the experimental cultures. Arrows with white fill 
describe steps that are taken for subsamples of the experimental cultures. The annotated steps were repeated for a total of 16 growth periods.
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Extended Data Fig. 2 | Harmonic means of cell concentrations during the GEN evolution experiment. a, Harmonic means per treatment group over time, 
b, AUC of harmonic means over transfer for weak bottleneck treatments, c, AUC of harmonic means over transfer for strong bottleneck treatments. The 
harmonic mean between starting population size and endpoint population size was calculated per growth period for every population. Panel a shows the 
mean and standard error for every group at every transfer. Panels b and c summarize the AUCs shown in panel a for every group. Blue: IC20 treatments; 
Red: IC80 treatments; light colours: k50 transfers; dark colours: M5 transfers. Significant difference between two treatment groups is indicated by *** 
(always p < 0.05 based on Welch t-test).
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Extended Data Fig. 3 | Harmonic means of cell concentrations during the CIP evolution experiment. a, Harmonic means per treatment group over time, 
b, AUC of harmonic means over transfer for weak bottleneck treatments, c, AUC of harmonic means over transfer for strong bottleneck treatments. The 
harmonic mean between starting population size and endpoint population size was calculated per transfer period for every population. Panel a shows the 
mean and standard error for every group at every transfer. Panels b and c summarize the AUCs shown in panel a for every group. Blue: IC20 treatments; 
Red: IC80 treatments; light colours represent k50 transfers; dark colours represent M5 transfers. Significant difference between two treatment groups is 
indicated by *** (always p < 0.05 based on Welch t-test).
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Extended Data Fig. 4 | Evolutionary yield dynamics of the different treatment groups. a, Gentamicin experiment, b, Ciprofloxacin experiment. X-axes 
represent the time series of the evolution experiment: every point represents the end of a growth period before the next transfer. The Y-axes represent 
the mean yield of the treatments based on the cell counts obtained from flow cytometry. Error bars represent standard error of mean (8 replicates, 1 in 
CIP-IC80-k50). Blue: IC20 treatments; Red: IC80 treatments; light colours represent k50 transfers; dark colours represent M5 transfers.
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Extended Data Fig. 5 | AUC of growth rates across evolution experiments. a, Gentamicin experiment, b, Ciprofloxacin experiment. X-axes represent the 
treatment groups. The Y-axes represent the AUC of growth rates, calculated for each growth period for every population. Error bars represent standard 
error of mean (8 replicates, 1 in CIP-IC80-k50). Blue: IC20 treatments; Red: IC80 treatments; light colours: k50 transfers; dark colours: M5 transfers. 
Significant difference between two treatment groups is indicated by *** (always p < 0.05 based on TukeyHSD tests).
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Extended Data Fig. 6 | Dose response tests of evolved populations. a + c: Gentamicin experiment, b + d: Ciprofloxacin experiment. a, b, Dose Response 
Curves: X-axes represent the levels of tested drug concentrations relative to the PA14 reference. The Y-axes represent the final OD of the tested bacterial 
populations at 600 nm after 12 hours of incubation. Error bars represent standard error of mean (8 replicates). See Extended Data Table A E for summary 
of tested drug concentrations. c, d, Minimum inhibitory concentrations obtained from resistance assays: X-axes represent the treatment groups during the 
evolution experiments and the ancestral wildtype PA14. The Y-axes represent the lowest drug concentration of the resistance assays (ng/ml, logarithmic 
scale), for which growth was no longer detectable. Evolved populations were incubated for 12 hours at antibiotic concentrations summarized in Extended 
Data Table AE. Growth was determined by optical density measurements. Significant difference between two treatment groups is indicated by *** (always 
p < 0.05 based on TukeyHSD). Purple: PA14 ancestor; Grey: evolved no-drug controls; Blue: IC20 treatments; Red: IC80 treatments; light colours represent 
k50 transfers; dark colours represent M5 transfers.
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Extended Data Fig. 7 | Allele dynamics of different treatment groups during the gentamicin evolution experiment. Group names are given on top of the 
graphs. Population names are given in the boxes right of the graphs. The X-axes represent the transfer period. The Y-axes represent the relative frequency 
of alleles in a population. Colours refer to different genes that the mutations appear in (see legend on right). Line annotations refer to the position of the 
mutation in the PA14 genome.
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Extended Data Fig. 8 | Allele dynamics of different treatment groups during the ciprofloxacin evolution experiment. Group names are given on top 
of the graphs. Population names are given in the boxes right of the graphs. The X-axes represent the transfer period. The Y-axes represent the relative 
frequency of alleles in a population. Colours refer to different genes that the mutations appear in (see legend on top right). Line annotations refer to the 
position of the mutation in the PA14 genome.
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Extended Data Fig. 9 | FST dynamics for mutated genes of all treatment groups during experimental evolution. a, FST dynamics of gentamicin evolution 
experiment, b, FST dynamics of ciprofloxacin evolution experiment. The X-axes represent the transfer period. The Y-axes represent the respective FST score. 
Colours refer to different treatment groups: Light blue: IC20-k50, Dark blue: IC20-M5, Light red: IC80-k50, Dark red: IC80-M5.
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Extended Data Fig. 10 | Competition outcomes of the three separate experiments. a, A12 vs D12. Clones originated from the IC80-k50 evolution 
treatment. b, A6 vs B11. Clones originated from the IC20 evolution treatments. c, A5 vs E7. Clones originated from the IC80-M5 evolution treatment. 
Different mutant clones, which evolved in the GEN evolution experiment, competed against one another. Competitions included eight technical replicates 
for every condition. The X-axis indicate the different competition treatment conditions. The Y-axes represent the relative frequency of the clones. Colours 
refer to different clonal variants: Red = Wt, Green = pmrB, Blue = ptsP. Error bars represent the standard error based on five technical replicates for each 
treatment. Asterisks represent significant difference in frequency between two strains (* p < 0.05; two sample t-test).
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