Skip to main content
. 2021 Aug 6;13(16):3978. doi: 10.3390/cancers13163978

Figure 3.

Figure 3

Schematic representation of metabolic pathways targeted by ODCREMP. RNA sequencing and LC-HRMS/MS data revealed a strong impact on metabolic pathways after ODCREMP treatment. These pathways include glycolysis, choline and ceramide metabolism. Enzymes detected to be upregulated after ODCREMP treatment (in italics and orange), downregulated enzymes (in italic and green), and upregulated metabolites (written in red). Pyruvate can be used for the enzymatic conversion of palmitoyl-CoA, which is the primary molecule to initiate the de novo synthesis of ceramide. Molecules of the ceramide class were significantly upregulated, as well as the two enzymes ceramidase 4 and sphingomyelin phosphodiesterase 4. Pyruvate is also the substrate for pyruvate dehydrogenase phosphatase producing acetyl-CoA. This figure was created with BioRender.com. Legend: αKG, α-ketoglutarate; 1/6(bi)p, 1/6 (bis)phosphate; 3PG, 3-phosphoglyceric acid; CDP-choline, cytidine 5′-diphosphocholine; CoA, coenzyme A; DHAP, dihydroxyacetone phosphate; GA3P, glyceraldehyde 3-phosphate; GLUT, glucose transporter; MCT, monocarboxylate transporter; MPC, mitochondrial pyruvate carrier 1; NAD, nicotinamide dinucleotide; OAA, oxaloacetate; SucCoA, succinyl-CoA; TCA, citric acid cycle.