Table 1.
Honey Variety and Geographical Origin | Viscometer/Rheometer Measuring Geometries | Rheological Methods and Variables Range | Measured Rheological Parameters | Main Outcomes | Ref. |
---|---|---|---|---|---|
Argentina: multifloral north (MFN), central (MFC) |
Rheometer PP (gap 1.0 mm) |
Preheating: 45 °C, 1 h SSF : 0.1–400 s−1 T: 283.15–323.15 K DS—SAOS Frequency sweep: 0.4–600 rad s−1, γ 0.5% (LVR) T: 293.15 K |
η, σ G′, G′′, η* |
σ vs. —Newtonian behaviour. G′′ >> G′: viscous nature (except at very high frequencies, G′′ = G′′). η ≅ η* (Cox-Merz rule verified). η, G′′, η* (MFN) > η, G′′, η* (MFC). η vs. T (Arrhenius): Ea: 79.61 (MFN)—82.09 (MFC). η vs. T (WLF, r2 ≥ 0.81 MFN, ≥ 0.91 MFC); C1, C2—“universal” constants: Tg: 224.59 K (MFN), 220.41 K (MFC) (matching Tg from DSC); ηg: 1.32 × 1011 (MFN), 1.18 × 1011 (MFC). η vs. T (WLF with varying C1 and C2 constants and Tg from DSC, r2 ≥ 0.97 MFN; ≥ 0.96 MFC); C1: 13.75 (MFN), 14.63 (MFC); C2: 24.76 (MFN), 27.01 (MFC); ηg: 1.95 × 1018 (MFN)—1.66 × 1020 (MFC). Agreement between rheology and back extrusion assays: hardness (MFC) > hardness (MFN); same consistency and adhesivity (MFN and MFC). Cluster analysis (rheological and textural parameters): weak classification of honeys. |
[41] |
Argentina: “algarrobo” |
Rotational viscometer | SSF T: 278.15–343.15 K |
η | Newtonian behaviour. η vs. T (Arrhenius, r2 = 0.994): Ea: 82.8. η vs. T (WLF, r2 = 0.996); C1 (13.8), C2 (50); ηg: 7.4 × 107; Tg: 227.95 K. η vs. T (VTF, r2 = 0.996); B: 1535. η vs. T (P-L, r2 = 0.998); K: 2.9 × 1014; m: 7.5. WFL equation with C1 and C2 calculated by reduced variables method: the most suitable for modelling viscosity-temperature dependence. |
[18] |
Australia: tulsi (TUL), manuka1 (MH1); USA: alfalfa (ALF); New Zealand: manuka2 (MH2) | Rheometer PP (ϕ 5 mm; gap 1 mm) |
DS Samples equilibrated: 15 °C, 10 min; cooled (sub-zero region), 1 °C/min, 1 rads−1, γ = 0.01% Frequency sweeps: 0.1–100 rad s−1. T: 213.15–253.15 K |
G′, G′′, aT, Tg, fg, αf, Ea | TTSP: production of a set of aT. log aT vs. T (Arrhenius-type fit), Ea = 108 (TUL), 86 (ALF), 81 (MH1), 99 (MH2). At upper temperature of the glass transition, log aT vs. T (WLF fit, modelling free volume): C1 = 10,70 (TUL), 10.85 (ALF), 11.43 (MH1), 11.13 (MH2); C2 = 50; Tg = 226.15 K (TUL), 228.15 K (ALF), 229.15 K (MH1), 227.15 K (MH2); (Tg,DSC = 226.15 K). fg = 0.040 (TUL, ALF), 0.038 (MH1, MH2); αf = 8.0 × 10−4 (TUL, ALF), 7.6 × 10−4 (MH1, MH2). Hbs in intermolecular association amongst monosaccharides generated a semi-crystalline system which allowed the prediction of mechanical Tg, that define the passage liq-like to sol-like at sub-zero temperatures. WLF eq. allowed estimation of free volume parameters for honey vitrification. |
[62] |
Australia: blue top iron bark (BTIB), bloodwood (BDW), gum top (GT), heath (H), narrow leafed iron bark (NLIB), stringy bark NT (STB), tea tree (TT), yapunyah (YAP), yellow box (YB) |
Rheometer with Couette geometry (ϕcup 34 mm; ϕbob 32 mm; Lbob 34 mm; | Preheating 55 °C, kept 30 °C SSF T: 275.15–313.15 K ~0.01–100 s−1 |
η |
η = 1.0 (STB, 313.15 K)–410.7 (YAP, 275.15 K). η vs. T (Arrhenius, r ≥ 0.987): Ea: 99.6 (TT)–106.0 (BDH); ηg: 9.0 × 105 (NLIB)—2.0 × 106 (BTIB, BDW, H, STB). η vs. T (WLF, r ≥ 0.997); C1 (13.7–21.1), C2 (55.9–118.7); ηg: 4.0 × 107 (NLIB)–4.0 × 1020 (YAP). η vs. T (VTF, r ≥ 0.898); B: 4.5 (NLIB)–13.5 (YAP). η vs. T (P-L, r ≥ 0.951); K: 1.1 × 103 (STB)–8.0 × 103 (YAP); m: −2.3 (YAP)–2.2 (BDW). WLF: the most suitable model for viscosity-temperature dependence; constants C1 and C2 calculated from non-linear regression analysis, are valuable for adequate rheology modelling of honeys. |
[8] |
Brazil: Hovenia dulcis from Apis mellifera (Hd1) and Tetragonisca angustula (Hd2) bees |
Rotational viscometer, cylindrical spindles, sample chambers |
SSF : 0–2.5 s−1 T: 303.15–333.15 K |
η, σ |
η (0.1 s−1): 0.08 (Hd2, 333.15 K)–45.50 (Hd1, 303.15 K). η vs. T (Arrhenius): Ea: 52.65 (Hd2)–125.91 (Hd2). σ vs. (P-L), r2 ≥ 0.99; K: 5.22 (Hd2)–421.98 (Hd1); n: 0.88 (Hd1)–1.02 (Hd2). σ vs. (CA), r2 ≥ 0.98; KC: 2.36 (Hd2)–18.96 (Hd1); σC < 1.34. Hd1: Newtonian behaviour (303.15 K); non-Newtonian, shear thinning behaviour (313.15–333.15 K). Hd2: Newtonian behaviour (303.15 K); non-Newtonian, shear-thickening (313.15 K, 323.15 K), shear thinning behaviour (333.15 K). |
[43] |
Brazil: “assa-peixe” (AP), “cipó-uva” (CU), eucalyptus (EU), orange blossom (OB), multifloral—southeast (MF1), south (MF2), northeast (MF3), mid-west (MF4) |
Rheometer PP (ϕ 1 mm; gap 35 mm) |
Preheating 55 °C, kept 30 °C, 48 h SSF : 0.1–100 s−1, 3 cycles T: 238.15–333.15 K DS—SAOS Stress sweeps, 1 Hz f: 0.1–10 Hz T: 283.15–333,15 K |
η G′, G′′, η* |
η: 147.3 (CU, 283.15 K)–0.35 (MF4, 333.15 K). η*: 151.33 (CU, 283.15 K)–0.42 (MF4, 333.15 K). η vs. η*: α ~ 1 (Cox-Merz rule verified), except: OB, MF1. η or η* vs. T (Arrhenius, r2 ≥ 0.994): Ea (η): 84.97 (CU)–92.53 (MF4); Ea (η*): 85.60 (EU)–100.40 (OB). η or η* vs. T (WLF, r2 ≥ 0.9999); with fixed C1 and C2 universal constants); ηg (η) 7.4 × 1011 (MF4)–1.09 × 1012 (CU); Tg (η) 210.47 K (MF4)–215.70 (CU); ηg (η*) 4.98 × 1011 (MF3)–1.63 × 1012 (AP); Tg (η*) 210.44 K (EU)–220.27 (OB); η or η* vs. T (VTF, r2 ≥ 0.9986); B (η): 1352.83 (MF4)–1465.71 (CU); B (η*): 1361.68 (EU)–1581.04 (OB). η or η* vs. T (P-L, r2 ≥ 0.9990); K (η): 1.83 × 1015 (MF4)—1.39 × 1016 (OB), m (η): 7.65 (MF4)–7.98 (OB); K (η*): 3.15 × 1015 (MF4)–6.34 × 1017 (MF1), m (η): 7.53 (EU)–8.63 (OB). η* independent of ω: liquid-like, Newtonian behaviour (293.15–333,15 K). Non-Newtonian, shear-thinning (283.15–288,15 K): WLF: best predictor model for OB, MF1, MF2. Increase in TSS concentration → increase in Ea, Tg (WLF), B (VTF), m (P-L) coefficients. Selection of adequate T and TSS conditions, during processing and storage, are decisive for honey stability. ANN-MLP, input layers T, ω: η (model 1); G′, G′′, η* (model 2-heating; model 3-cooling). Input layers T, w, ω:); G′, G′′, η* (model 4). Potential application of the models (except for G´ in models 3 and 4), for the processing of honey and honey-based products. |
[39,52,71] |
Burkina Faso (north- and central-eastern) | Rheometer PP (ϕ 60 mm; gap 0.5 mm) |
Preheating 55 °C, kept 30 °C DS Stress sweep, 1 Hz Frequency sweep: 0.62–62.83 rad s−1, 1 Pa (LVR) T: 278.15–313,15 K |
G′, G′′, η*, δ |
G′′ >> G′: viscous nature. η* vs. ω: constant function; δ ~90°: Newtonian behaviour. η* vs. T: Ea = 41.07–48.58. G′′ vs. T: Ea = 24.09–48.11. Ea (η*) ≅ Ea (G′′): Newtonian behaviour. Prediction of G′′ and η*: negative linear influence of fructose and temperature, positive linear influence of glucose. |
[15] |
Czech Rep.: blossom-honeydew (BHD), blossom honeydew lime (BHL), blossom honey nectar (BHN) |
Rheometer CP, (ϕ 50 mm; angle 1°). |
Preheating: 55 °C, 1 h; kept: 30 °C, 48 h SSF : 0–100 s−1, T: 287.15–323.15 K |
η, σ |
σ vs. (Newton model): linear function. η (BHL) > η (BHD) > η (BHN) η vs. T (Arrhenius, r2 ≥ 0.9945); Ea: 102.07 (BHN), 104.85 (BHD), 105.9 (BHL). |
[46] |
Egypt: citrus (CIT), clover (CLO), marjoram (MAR) |
Viscometer CC |
SSF : 6.12–122 s−1 T: 298.15 K |
η, σ |
η vs. : shear-thinning behaviour. η: 22.75 (MAR, w 18.10%, F/G 1.33); 12.50 (CLO, w 19.42%, F/G 1.27); 11.40 (CIT, w 19.74%, F/G 1.32). |
[42] |
Ethiopia: acacia (AC), Becium grandiflorum (BG), Croton macrostachyus (CM), Eucalyptus globulus (EUG), Hypoestes (H), Leucas abyssinica (LA), Schefflera abyssinica (SCA), Syzygium guineense (SG), Vernonia amygdalina (VA) |
Rotational viscometer CC (ϕint 10.61 mm) |
Preheating: 45 °C, 3 h + 50 °C, 30 min SSF : 2.58–258.1 s−1 T: 298.15–318.15 K |
η |
σ vs. (Newton, r2 ≥ 0.96), η: 4.73 (CM, 318.15 K)–29.21 (EUG, 298.15 K) Newtonian behaviour. η vs. T (Arrhenius, r2 ≥ 0.96): Ea: 9.859 (VA)–60.042 (EUG). η vs. t: constant function. |
[75] |
Germany: false acacia (FA), heather (H), sunflower (SF), lime (L), rape (R) |
Rheometer CC |
SSF : 0.2–60 s−1 T: 283.15–323.15 K DS γ: 10−3 T: 273.15–348.15 K–273.15 K Heating/cooling rate: 1 K/min |
η, σ G′, G′′, tanδ |
σ vs. (Newton, FA), η = 0.841(323.15 K)–2.31 (313.15 K) σ vs. (P-L), K: 0.69 (SF, 323.15 K)–172.66 (L, 293.15 K); n: 0.800 (R, 303.15 K)–1.002 (R, 313.15 K). σ vs. (HB), K: 13.39 (H, 293.15 K)–620.06 (R, 283.15 K); n: 0.378 (R, 293.15 K)–1.001 (FA, 283.15 K); σy: 0.15 (H, 293.15 K)–137.26 (R, 283.15 K). Newtonian (FA); Non-Newtonian (H, SF, L, R). G′′ >> G′ (FA, SF, L, R): viscous nature. G′ > G′′ (H): viscoelastic nature; heather honey: gel-like system after heating (>1.6% proteins in colloidal form). T = 338.79 K: G′ = 14.31; G′′ = 14.69; tanδ = 2.24. Crystallization of honeys is depended on botanic origin, temperature and storage time. |
[30] |
Greece: pine honeydew (PHD), fir honeydew (FHD), thymus (THY), orange blossom (OB), helianthus (HEL), cotton (COT) |
Rotational viscometer CC, CC (ϕint 19.36 mm; Lint 58.08 mm; ϕext 21 mm |
Preheating: 45 °C, 3 h + 50 °C, 30 min SSF : 5–100 s−1 T: 298.15–318.15 K |
η, σ |
σ vs. —linear regression: Newtonian behaviour. η: 0.421 (COT, 318.15 K, w 21%)–26.52 (FHD, 303.15 K, w 15%). η vs. T (Arrhenius, r2 ≥ 0.9951): Ea: 70.8 (COT, w 21%)–96.3 (FHD, w 15%). |
[31] |
Greece: pine honeydew (PHD), fir honeydew (FHD), multifloral (MF), orange blossom (OB) |
Rheometer CC (ϕcup 28.92 mm; ϕbob 26.66 mm) |
Preheating 50 °C, 1 h SSF T: 293.15–333.15 K : 0.1–500 s−1 DS γ: 0.1% ω: 3–300 rad s−1 T: 293.15 K |
η, σ G′, G′′, η* |
η (293.15 K) = 9.9 (PHD)–200 (FHD). σ vs. , constant viscosity: Newtonian behaviour. G′′ >> G′: viscous nature. G′: 0.15 (OB)–19.10 (FHD). G′′: 64 (OB)–1701 (FHD). η*: 7.7 (PHD)–167.0 (FHD). η and G′′ inversely related to the water content of honey. η vs. T (Arrhenius, r2 > 0.95), Ea: 72.69 (PHD)–93.75 (FHD). η vs. T (WLF with fixed C1 and C2 universal constants, r2 = 0.95–0.99); ηg: 3.3 × 1011 (PHD)—7.8 × 1011 (FHD); Tg: 209.88 K (OB)–230.53 (FHD). η vs. T (WLF with varying C1 and C2 constants and Tg from DSC, r2 = 0.95–0.99); C1: 17.20 (OB)–25.18 (PHD), C2: 13.95 (OB)–30.90 (PHD); ηg: 7.1 × 1012 (OB)–5.2 × 1021 (PHD); Tg (DSC): 225.85 K (PHD)–238.40 (FHD). |
[24] |
India: cotton (COT), coriander (COR), dalbergia (DAL), murraya (MUR) |
Rheometer PP, (ϕ 50 mm; gap 0.5 mm) |
Preheating: 50 °C, 1 h; kept: 30 °C DS Frequency sweep: 0.63–63 rad s−1, γ 0.5% (LVR) T: 278.15–303.15 K |
η, σ G′, G′′ |
η: 3.89 (MUR)–185.13 (COR). η vs. T (Arrhenius, r2 ≥ 0.99); Ea: 94.51 (COT)– 100.19 (COR). G′′: 227.4 (MUR, 303.15 k)–10.553 (COR, 278.15 K). G′′>>G′: viscous nature. G vs. T (Arrhenius; r2≥ 0.99); Ea: 94.27 (COT)– 99.66 (COR). G′′ vs. ω (P-L), r2≥ 0.99; K′′: 3.70 (MUR, 303.15 K)–169.25 (COR, 278.15 K); n′′: 0.99–1. Newtonian behaviour. |
[86] |
India (Kashmir): saffron (SA), apple (AP), cherry (CH), Plectranthus rugosus (PR) |
Rheometer PP, (ϕ 50 mm; gap 0.5 mm) |
Preheating: 50 °C, 1 h, kept 30 °C DS Frequency sweep: 0.63–63 rad s−1, γ 3% (LVR) T: 273.15–303.15 K |
η, G′, G′′ |
η: 0.35 (SA, 303.15 K)–21.97 (PR, 273.15 K). G′′ >> G′, K′′ >> K′: viscous nature. G′: 0.009 (AP, 303.15 K)–85.95 (CH, 273.15 K). G′′: 0.23 (SA, 303.15 K)–1382 (PR, 273.15 K). G′′ vs. ω (P-L), r2 ≥ 0.97; K′′: 0.37 (SA, 303.15 K)–22.02 (PR, 273.15 K); n′′: 0.96 (SA, 303.15 K)–1.00 (PR, 273.15 K). Newtonian behaviour. η vs. T (Arrhenius, r2 = 0.99): Ea: 77.18 (PR)–85.59 (SA); G′′ vs. T (Arrhenius, r2 = 0.99): Ea: 77.80 (PR)–86.88 (SA). |
[25] |
India: acacia (AC), pine honeydew (PHD), multifloral (MF) |
Rheometer PP, (ϕ 50 mm; gap 0.5 mm) |
Preheating: 50 °C, 1 h, kept 30 °C SSF ~0–1.8 s−1 T: 273.15–303.15 K DS Frequency sweep: 0.63–63 rad s−1, γ 3% (LVR) T: 273.15–303.15 K |
η, σ G′, G′′ |
σ vs. : Newtonian behaviour. η: 0.27 (AC, 303.15 K)–17.27 (MF, 273.15 K). G′′ >> G′, K′′ >> K′: viscous nature. G′: 0.01 (AC, 303.15 K)–15.3 (MF, 273.15 K). G′′: 0.19 (AC, 303.15 K)–1085.49 (MF, 273.15 K). G′′ vs. ω (P-L), r2: 0.99; K′′: 0.28 (AC, 303.15 K)–17.30 (MF, 273.15 K); n′′: 1. Newtonian behaviour. η vs. T (Arrhenius, r2 = 0.99): Ea: 62.10 (PHD)–75.87 (AC). |
[60] |
India: multifloral honey, adulterated with jaggery (5–30%, w/w) |
Rheometer PP, (ϕ 20 mm; gap 1 mm) |
SSF : 0–20 s−1, T: 298.15 K σ: 10 Pa, T: 278.15–303.15 K DS Frequency sweep: 0.1–40 Hz, σ 10 Pa, γ 0.409 (LVR) T: 298.15 K |
ηapp, σ G′, G′′ |
ηap: 2.48 (5%)–4.83 (30%). σ vs. (Bingham model). Pure honey: Newtonian. Adulterated honey: non-Newtonian, Bingham plastic, anti-thixotropic. ηapp vs. T (Arrhenius); Ea: 35.48 (0%)–38.48 (30%). G′′>>G′: viscous nature. Adulteration only affected the viscous properties. |
[49] |
Iran: pure honey adulterated with data syrup (DS) and invert sugar syrup (IS)–7%, 15%, 30% |
Rotating viscometer, and spindle Texture analyser; cylindrical probe (ϕ 25 mm; ϕ 6 mm; for adhesion-cohesion) |
SSF T: 293.15 K : 10 rpm T: 295.15 K |
η, Fmax, adhesiveness, stringiness, Surface stickiness, tStart-Stringiness tstringiness |
Samples classification by PCA, LDA. LDA model based on rheological properties, detected and classified correctly 67.65% of honey samples adulterated with complex sugars. |
[78] |
Israel: citrus flower (CIT), wildflower (WF), wildflower-based light (WF-BL), field-flower-based light (FF-BL) |
Rheometer CP, (ϕ 60 mm; angle 4°). |
Preheating: 55 °C, 3 h; kept: 30 °C SSF > 0.001 s−1 M ≤ 40 T: 278.15–308.15 K VPT micro-rheology: Fluorescent, carboxyl-modified, polystyrene particles (ϕ 200 mm) embedded within honey samples |
η |
η vs. –constant function: Newtonian behaviour η (natural honeys): 5.0 (WF, 308.15 K)–558.3 (CIT, 278.15 K). η (reduced calories honeys): 4.2 (FF-BL, 308.15 K)–193.8 (WF-BL, 278.15 K). η vs. T (Arrhenius, r2 ≥ 0.98); Ea: 84.7 (FF-BL)–96.9 (CIT). >90% particles: diffusive motion, αMSD = 1. ηmicrorheology–calculated using the Stokes-Einstein relation. η () matched ηmicrorheology–Newtonian behaviour in both length scales. |
[20] |
Jordan: common black horehound (CBH), globe thistle (GT), squill (Sq) |
Rotational viscometer, CC (ϕ 15.2 mm; L 60 mm; gap width 5.8 mm | SSF : 2.2–219.8 s−1 T: 293.15–323.15 K |
η, σ |
σ vs. (Newton, r2= 0.999), η = 0.84 (GT, 323.15 K)–52.12 (CBH, 293.15 K). η vs. T (Arrhenius, r ≥ 0.998)—Ea: 95.64 (Sq), 97.56 (GT), 97.69 (CBH). η vs. T (WLF, r > 0.9995); C1, C2–“universal” constants: Tg: 223.83 (Sq), 225 (GT), 228.44 (CBH); ηg: 2.21 × 1011 (GT), 2.37 × 1011 (Sq), 2.62 × 1011 (CBH). |
[35] |
Mozambique (south-western): honeydew honey |
Rheometer PP (ϕ 60 mm; gap 0.5 mm) |
DS Stress sweeps, 1 Hz Frequency sweeps: 0.1–10 Hz, 1 Pa (LVR) T: 293.15–313,15 K |
G′, G′′, η* |
G′′ >> G′: viscous nature. G* vs. ω: constant function: Newtonian behaviour. ANN best models for the prediction of rheological parameters as a function of temperature, frequency, and chemical composition: MLP–for G′′ and η* (r2 > 0.950); PNN–for G′(r2 = 0.758). Sensitivity: G′′ and G′ to frequency and moisture; η* to moisture and temperature. |
[69] |
Norway: heather (H) Czech Rep.: lime (L) (H diluted with L, 10–80% w/w) |
Rheometer, CP (ϕcone 50 mm; angle 1°, gap 0.103 mm) |
SSF : 1–100 s−1 T: 298.15 K DS Frequency sweep: 0.1–10 rad s−1, γ 1% (LVR) T: 298.15 K |
η, σ G′, G′′, η* |
σ vs. (P-L), r2 ≥ 0.999; K: 7.91 (L)–74.50 (H); n: 0.9924 (L)–0.6745 (H). σ vs. (HB), r2 ≥ 0.999; K: 8.0 (L)–61.0 (H); n: 0.989 (L)–0.713 (H) σy: (-)1.15 (L)–44.94 (H). σ vs. t (Weltman), r2: 0.55–0.84; B: [-]4.5 (L)–28.0 (H). ϕ ( 50 s−1): 1.0534 (L)–0.7054 (H). C (Equation (35)): [-]1.93 (L)–[-]15.7 (H). Non-linear dependence of rheological parameters (K, n (P-L), K, n (HB), σy, B, ϕ, C) on the degree of dilution with a step change between 40% and 60% (w/w): possible use in the identification of adulterated heather honeys. |
[45] |
Poland: buckwheat (BW), clover (CLO), honeydew (HD) |
Rheometer PP, (ϕ 50 mm; gap 0.5 mm) |
Preheating: 50 °C, 3 h; kept: 30 °C, 24–48 h DS Frequency sweep: 0.1–100 rad s−1, γ 1% (LVR) T: 253.15–343.15 K |
η, G′, G′′ |
η (343.15 K): 13.5 (BW, wt 10.21)–324 (HD, wt 16.72). BW: G′ > G′′ (303.15 K, 313.15 K); G′′ > G′ (263.15 K, 343.15 K); G′ = G′′ (253.15 K, 258.15 K, 283.15 K, 293.15 K, 323.15 K, 333.15 K). CLO: G′′ > G′ (263.15 K, 293.15 K, 333.15 K, 343.15 K); G′ > G′′ (313.15 K, 323.15 K); G′ = G′′ (253.15 K, 258.15 K, 283.15 K, 303.15 K). HD: G′′ > G′ (268.15–293.15 K, 343.15 K); G′ > G′′ (323.15 K, 333.15 K); G′ = G′′ (253.15–263.15 K, 303.15–313.15 K). Rheological parameters of the phenomenological method: Ge, Je, , τm,τ0, ω0, k. High values of (~101−107), ω0 (~10−2−102), k (~100−104): honeys with structure of quasi-solid bodies, tending to form a pseudo-gel (high total elasticity, high cross-linking density and capacity); structure able to damp mechanical vibrations; structure sensitive to changes caused by temperature; structure able to slow down the physical aging of honey systems over time. Usefulness in the design and prediction of processing steps. |
[88] |
Poland: rape (R), multifloral (MF), buckwheat (BW). a) liquefied (55 ºC, 24 h + cooling, RT); b) crystallised |
Rheometer CC (ϕint 26.652 mm; ϕext 28.905 mm; gap 1.127 mm |
T: 293.15 K (a) liquefied SSF—σ: 0–500 Pa DS—ω: 0–250 s−1 (b) crystallised SSF : 0–450 s−1 t: 0–180 s (up- and downward) DS–(the same as in the liquefied samples) |
η G*, δ, η* η, σ G*, δ, η* |
(a) liquefied σ vs. (Newton, r2 = 0.999), η = 6.66 (R), 5.02 (MF), 3.18 (BW). G* vs. ω (r2 > 0.995), G* = 6.889ω (R), 4.794ω (MF), 2.894ω (BW). (b) crystallised Hysteresis area: large (R, MF), insignificant (BW). σ vs. (P-L, r2 ≥ 0.98): K = 36.696 (R), 15.945 (MF), 6.2218 (BW); n = 0.623 (R), 0.706 (MF), 0.854 (BW). G*(MF) > G*(R) > G*(BW). η* vs. (P-L, r2 ≥ 0.900): K = 374.86 (MF), 252.06 (R), 193.81 (BW). SSF results differ from DS measurements. Structural and rheological properties of the final product may be modelled by controlling the crystallization process. |
[11] |
Poland: rape-seed (stored for 18 months) |
Universal Testing Machine with back extrusion cell (ϕ 50 mm; L 60 mm) |
4 cycles: 50–400 mm/min (a) CON; (b) RT, (c) FRO |
η |
η = 33.6 (CON), 78.0 (RT), 280.5 (FRO) Storage temperatures influenced honey viscosity. The higher viscosity of FRO honey is probably a result of a crystallized structure formed by fine crystals. |
[63] |
Poland: heather |
Rheometer PP (ϕ 35 mm; gap 0.5 mm) |
Preheating 40 °C SSF :1–100 s−1 (up- and downward), t = 180 s T: 283.15–313.15 K DS T: 283.15–313,15 K ω: 1–100 rad s−1 γ: 0.03 |
η, σ G′, G′′, η* |
σ vs. (HB), r2 ≥ 0.999; K: 2.0–108.6; n: 0.66–0.90; σy: 2.3–142.2 K vs. T (Arrhenius)—Ea: 47.7–71.7. σ vs. t (Weltman), r2 ≥ 0.96; B [[–]: 10.7–56.7. G′′>>G′: viscous nature. G′′ vs. ω (P-L), r2 ≥ 0.9990; K′′: 2.6–163.4; n′′: 0.78–0.94. η vs. η* (P-L); K: 0.017–0.264; β: 1.39–2.11. Significant dependence of η* on ω: viscoelastic nature. Non-Newtonian, shear-thinning, tendency to yield stress, thixotropic. |
[32] |
Poland: acacia (AC), buckwheat (BW), linden (LI), multifloral (MF), rape (R), honeydew (HD), nectar-honeydew (NHD) |
Rheometer (ϕcup 15.8 mm; ϕbob 14.00 mm) |
Preheating 50 °C, 3 h SSF T: 283.15–313.15 K : 1–100 s−1 Time effect: T: 293.15 K, : 50 s−1 |
η |
η = 1.8 (BW, MF, R–313.15 K)–252.6 (NHD, 283.15 K). η vs. T (Arrhenius, r2 ≥ 0.997): Ea: 92.34 (BW)–105.25 (NHD). η vs. T (WLF, r2 > 0.999); universal constants C1, C2; ηg: 1.88 × 1011 (R)–2.86 × 1011 (BW) Tg: 220.34 K (BW)–228.39 (NHD). |
[23] |
Portugal: heather (H), rosemary (ROM) multifloral (MF) |
Rotational viscometer, CC, spindles (ϕ 1.18 cm; ϕ 0.94 cm) | SSF ~ 0.2–60 s−1 Up- and downward T: 303.15–368.15 K |
η, σ |
σ vs. (HB), r2 ≥ 0.976; K: 0.05 (H, 368.15 K)–136 (MF, 303.15 K); n: 0.852 (ROM,368.15 K)–1.68 (H, 368.15 K); σy
< 8.5 (insignificant effect of microparticles (crystals) in honey. σ vs. (P-L), r2 ≥ 0.956; K: 1.23 (ROM, 343.15 K)–139.8 (MF, 303.15 K); n: 0.849 (ROM,368.15 K)–1.105 (MF, 303.15 K). η = 74 (MF, 368.15 K)–13,678 (MF, 303.15 K). η* vs. T (Arrhenius, r ≥ 0.946), Ea: 57.7 (ROM)–74.5 (MF). η* vs. T ( fit, r2 ≥ 0.9999). Newtonian behaviour, except ROM 368.15 K (slightly shear-thinning). |
[40] |
Romania: honeydew (HD), adulterated with fructose (F), glucose (G), hydrolysed inulin (I), malt wort (M), inverted sugar (IS), (5–50%, w/w). |
Rheometer PP, (ϕ 60 mm; gap 1 mm) |
SSF : 0–100 s−1 (up- and downward) T: 293.15 K DS Stress sweeps: 1 Hz, σ 1 Pa (LVR) ω: 0.62–62.83 rad s−1 T: 293.15 K |
η, σ G′, G′′ |
σ vs. (Newton, r2 ≥ 0.999), Newtonian behaviour. η (HD): 16.64; η (5–50%)—HD+F: 16.02–11.58; HD+G: 17.02–21.94; HD+I: 16.24–21.22; HD+M: 16.64–16.71; HD+IS: 16.63–16.56. η vs. , thixotropic area: increased by M, G, S, IS (highest, HD+M); decreased by F. G′′ >> G′: viscous nature. G′′ vs. ω (P-L), r2 ≥ 0.999; K′′; n′′: 16.78; 0.991 (HD); 16.27–11.76; 0.990–0.988 (HD+F); 17.25–22.15; 0.991–0.993 (HD+G); 16.62–21.40; 0.994–0.995 (HD+I); 17.47–22.92; 0.986–0.951 (HD+M); 16.85–16.70; 0.991–0.996 (HD+IS). Creep phase: 0–180 s. J vs. t (Burgers model, r2 ≥ 0.983): significative influence of F, G, I on η0 (~103–107). Creep start point: F increases, IS decreases. Recovery phase: 180–360 s; J vs. t: Newtonian behaviour; no influence of the adulterants. Honey authentication: PCA (rheological parameters + sugar composition): 100% explanation of total variance. |
[51] |
Romania: linden (LI), black locust (BL), rape (R), sunflower (SF), honeydew (HD), multifloral (MF) |
Rheometer, PP (ϕ 40 mm; angle 2°, gap 1 mm) |
SSF : 0.1–500 s−1 (up- and downward) T: 283.15–313.15 K DS Frequency sweep: 3–300 rad s−1, γ: 3% (LVR) T: 293.15 K |
η, σ G′, G′′, δ |
σ vs. —Newtonian behaviour: LI, BL, SF, MF; non-Newtonian with thixotropy: R, HD. η (293.15 K): 17.2 (HD)–2.7 (LI). G′′ >> G′: viscous nature. G′: 13.8 (LI)–315.6 (SF). G′′: 610 (LI)–2229 (SF). tanδ: 55–161. LDA to predict viscosity based on carbohydrate composition, p-value < 0.05: glucose and fructose; correct classification of 78.8% samples. |
[21] |
Spain: eucalyptus (EU), honeydew (HD), orange (OB), multifloral (MF), rosemary (ROM), summer savoury (SS) |
Rheometer CC. Rheometer PP, (ϕ 60 mm; gap 0.5 mm) |
Preheating: 55 °C; kept: 30 °C SSF : 0–100 s−1 T: 298.15–323.15 K DS Stress sweeps: 1 Hz Frequency sweep: 0.628–62.8 rad s−1, σ 1 Pa (LVR) T: 298.15–323.15 K |
η, σ η* |
σ vs. (Newton, r2 ≥ 0.99), Newtonian behaviour. η: 0.462 (ROM, 323.15 K)–13.970 (HD, 298.15 K). η vs. and η* vs. : constant functions–Newtonian behaviour. η vs. η*, Cox-Merz rule verified (α~1): all honeys at 313.15–323.15 K; except 298.15–303.15 K (α > 1). Prediction of η and η* from each other, through a modified Cox-Merz rule. η vs. T (Arrhenius, r2 ≥ 0.998); Ea: 84.07 (ROM)–91.35 (HD). η vs. T (VTF), r2 = 0.999); B: 1595 (OB)–1954 (HD). η vs. °Brix and T: P-L and exponential models (r2: 0.733, 0.822); Ea: 73.317, 82.773. |
[38] |
Spain: honeydew (HD), orange (OB), multifloral (MF), rosemary (ROM) |
Rheometer PP, (ϕ 60 mm; gap 0.5 mm) |
Preheating: 55 °C; kept: 30 °C DS Stress sweeps: 1 Hz Frequency sweep: 0.1–10 Hz, σ 1 Pa (LVR) T: 278.15–313.15 K |
G′, G′′, η* |
G′′>>G′: viscous nature. η* vs. ω: constant function–Newtonian behaviour. G′′ vs. ω (P-L), r2 ≥ 0.99; K′′: 1.13 (ROM, 313.15 K)–215.74 (HD, 273.15 K); n′′: 0.99–1.05. Application of TTSP to viscoelastic properties: obtention of a viscoelastic model (4th grade polynomial equation, r2 > 0.99), suitable for all honeys. |
[54] |
Spain: rosemary (RO) (a) liquefaction by heating (HT) (b) liquefaction by ultrasound (US)+HT |
Viscometer, disc-type | HT: 313.15–333.15 K, 60 min US: 40 Hz, 313.15–333.15 K, 60 min. : 2.5–20 rpm t: 20–60 min |
η |
σ vs. , constant viscosity: Newtonian behaviour. η (HT) = 333 (333.15 K, 60 min)–3240 (313.15 K, 10 min). η (US) = 206 (333.15 K, 60 min)–3080 (313.15 K, 10 min). η vs. T (Arrhenius)—Ea (HT): 64; (US): 59. HT/US, 60 min—η: 1494/833 (313.5 K); 726/290 (323.5 K); 333/206 (333.5 K). At a same temperature and after a certain period of time, η of US samples are lower; honey can be liquefied by US, without the need to increase temperature up to 323.15 K or higher temperatures. |
[13] |
Spain: “Miel de Galicia” |
Rotational viscometer CC |
Preheating: 55 °C; kept 30 °C. SSF : 0.3–2 s−1 (up- and downward) T: 298.15 K T: 280.15–328.15 K : 1.4 s−1 |
η, σ |
σ vs. (P-L): K = 7.887 × 10−3– 14.279 × 10−3; n = 0.933–0.969. Shear-thinning behaviour (at low values). η vs. T (Arrhenius; the best regression): Ea: 83.880–96.631. η vs. T (WLF); C1 [-] 54.4–32.2), C2 73.1–194.0; ηg: 1.1 × 106—1.2 × 109 η vs. T (VTF), r2 = 0.996); B: 875.85–992.09. η vs. T (P-L); K: 4.96 × 1016–1.83 × 1018 -; m [-]: 9.25–8.57. Temperature effect more relevant in the low range of temperature. |
[2,58] |
Tunisia: eucalyptus (EU), orange (OB), rosemary (ROM), thyme (TH), mint (MI), horehound (HH) |
Rheometer CP, (ϕ 35 mm; gap 0.14 mm) |
SSF : 0.01–500 s−1 T: 293.15 K DS Frequency sweep: 0.1–100 rad s−1, σ 0.001 Pa T: 293.15–323.15 K |
η, σ G′, G′′, η* |
σ vs. (HB, r2 ≥ 0.99), K: 8.47 (HH)–36.23 (TH); n: 0.68 (TH)–0.86 (HH); σy: 3.72 (HH)–41.18 (TH). Non-Newtonian, shear-thinning behaviour. ηapp vs. T (: 10 s−1, Arrhenius, r2 ≥ 0.97); Ea: 21.23 (HH)–34.91 (TH). σ vs. t (Weltman, r2 ≥ 0.97); B: 8.64 (HH)–21.10 (TH). G′′>G′: viscous nature. G′′ vs. ω (P-L), r2 ≥ 0.96; K′′: 0.65 (HH, 323.15 K)–143.10 (TH, 293.15 K); n′′: 0.79 (TH, 323.15 K)–0.91 (TH, 293.15 K); non-Newtonian behaviour. |
[33] |
Turkey: creamed honey |
Rheometer PP, (ϕ 50 mm; gap 0.5 mm) |
SSF : 1–70 s−1, T: 283.15 K : 1–100 s−1, T: 298.15–313.15 K; (up- and downward) DS Frequency sweep: 0.1–10 Hz, γ 0.5% (LVR) T: 283.15–313.15 K Temperature sweeps: γ 0.5% (LVR), 1 Hz, T: 278.15–323.15 K Thermal Loop 11 thermal cycles: 278.15–323.15 K, 10 rad s−1, γ 0.5% |
ηapp, σ G′, G′′, η* |
σ vs. (P-L), r2 ≥ 0.9993; K: 269.7 (283.15 K)–10 (313.15 K); n: 0.7641 (283.15 K)–0.8124 (313.15 K). Hysteresis Area: 51,713 (283.15 K)–1129 (313.15 K). ηapp,50 s−1 vs. T (Arrhenius, r2 ≥ 0.9188); Ea: 36.62. G′′>>G′: viscous nature. G′′ vs. T (Arrhenius, r2 ≥ 0.8565); Ea: 41.71. G′′ vs. t (Weltman), r2≥ 0.9541; [-] B: 298.7 (283.15 K)–17.1 (313.15 K G′′ vs. ω (P-L), r2≥ 0.9926; K′′: 273.4 (283.15 K)–4.0 (313.15 K); n′′: 0.881 (283.15 K)–1.033 (313.15 K). Non-Newtonian shear-thinning thixotropic behaviour. Δmin (G′′): 1.00 (cycle 1)–0.566 (cycle 11). Creamed honey with low thermal stability: great structural change by thermal stress. |
[29] |
Turkey: natural honey adulterated with saccharose (HAS) and fructose (HAF) syrups (0–50%, w/w) |
Rheometer PP (ϕ 50 mm; gap 0.5 mm) |
SSF : 0.1–100 s−1, T: 298.15 K DS T: 298.15 K Amplitude sweep test, 1 Hz, γ: 0.1–100% Frequency sweep test, 1% (LVR), 0.1–10 Hz Temperature sweep test, 278.15–323.15 K, 1 Hz, 50 s−1 Creep phase: 0–150 s; recovery phase: 150–300 s |
η, σ G′, G′′, G* |
σ vs. (Newton), r2 ≥ 0.996 (HAS), r2 ≥ 0.997 (HAF): Newtonian behaviour. η = HAS: 6.531 (0%)—2.019 (50%); HAF: 6.531 (0%)–1.085 (50%). G′′ >> G′: viscous nature. G′′ vs. ω (HAS, r2 = 0.999; HAF, r2 ≥ 0.998); Newtonian behaviour K′′ = HAS: 6.367 (0%)–2.234 (50%); HAF: 6.367 (0%)–1.111 (50%); good indicator to detect honey adulteration at levels 10–50%, within a 278.15–323.15 K range. K*: same results as K′′; natural honey with the highest total resistance to deformation. J vs. t (Burgers model: r2 = 0.999 (HAS, HAF); η0 = HAS: 2.0–7.0; HAF: 1.1–7.0. G0, G1, η1: no consistent trend with increasing adulterant level; cannot be used to detect adulteration. η, G′′, η*, η0: potential to be good indicators of adulteration with saccharose and fructose, at specified ratios. 93.879% of the total variance in data set was described by four Principal Components, regarding physicochemical and rheological properties of natural and adulterated honeys. |
[56] |
ANN, artificial neural networks; aT, vertical shift factor; bT, horizontal shift factor; B, constant of the VTF model for temperature dependence (K); C, parameter in Equation (35); C, concentration; C1, coefficient in the WLF model; C2, coefficient in the WLF model (K); CA, Casson model; CC, concentric cylinders; CP, cone-and-plate; CON, control (fresh honey); D, diffusion coefficient; DSR, dynamic shear rheology; Ea, Arrhenius activation energy for flow (kJ mol−1); F/G, fructose/glucose ratio; Fmax, maximum force required to separate the probe from the sample; f, frequency (Hz); fg, fractional free volume at Tg (WLF equation); FRO, in freezer (−20 °C); G0, instantaneous elastic modulus of the Maxwell unit, in the Burgers model; G1, shear modulus of the Kelvin-Voigt unit, in the Burgers model; G′, storage modulus (Pa); G′′, loss modulus (Pa); G* complex modulus (Pa); Ge, equilibrium modulus (modulus of elasticity in the steady state, Pa); , the viscoelastic plateau modulus (power of crosslinking of the structure, Pa); HB, Herschel-Bulkley model; HBs, Hydrogen bonds; J (t), creep compliance (shear); Je, limit susceptibility in the equilibrium state (Pa−1); K, consistency in Power-law model for viscosity (Pa sn); K, constant of the P-L model for temperature dependence (Pa.s); K′, elastic intercept in power law model (Pa sn); K′′, viscous intercept in power law model (Pa sn); KC, Casson plastic viscosity; k, mechanical vibration damping factor; LAOS, large amplitude oscillatory shear; LDA, linear discriminant analysis; LVR, linear viscoelastic region; m, constant of the P-L model for temperature dependence; M, torque (N m); MLP, multilayer perceptron; MSD, mean-square displacement; n, flow behaviour index in power law model for viscosity; n′, elastic slope in power law model; n′′, viscous slope in power law model; NH, natural honey; PCA, principal component analysis; P-L, power-law model; PNN, probabilistic neural network; PP, parallel-plates; PS, polystyrene; R, gas constant (kJ mol−1 K−1); RCH, reduced calorie honey; rpm, revolutions per minute; RT, room temperature (20–26 °C); SAOS, small amplitude oscillatory shear; SSF, steady shear flow; tanδ, loss tangent; t, shearing time (s); tStart-Stringiness, time from withdrawal until the string tore; tstringiness, time corresponding to the distance the probe moved away from the sample surface before the force dropped to 2.5 g; T, absolute temperature (K); TTS, total soluble solids (°Brix); TTSP, time–temperature superposition principle; VTF, Vogel–Tamman–Fulcher model; VPT, video particle tracking; w, weight; WLF, Williams-Landel-Ferry model; wt, water content. α, shift factor (Cox-Merz rule); αf, thermal expansion coefficient (deg−1) above Tg (WLF equation); αMSD, MSD scaling exponent; β, constant of the Power-law function; δ, phase angle; Δ, relative structural index; η (), steady shear viscosity; η0, zero-shear viscosity; η0 is the viscosity of the liquid filling the dashpot of the Maxwell element in the Burgers model (Pa s); η1, viscosity of the liquid filling the dashpot of the Kelvin-Voigt element, in Burgers model (Pa s), ηapp, apparent viscosity; ηg, viscosity at Tg (Pa.s); η*, complex viscosity; ϕ, diameter; ϕ, proportion of the ηapp in the 1st second of the assay (Pa.s) and the ηapp in the 300th second of the assay (Pa.s); γ, shear strain; , shear rate (s−1); σ, shear stress (Pa); σC, Casson yield stress (Pa); σy, yield stress (Pa); τ0, number average relaxation time (s);τm, weight average relaxation time (s); ω, angular frequency (rad s−1); ω0, cross-linking density of the structure (rad s−1).