Skip to main content
. 2021 Jul 23;10(8):1709. doi: 10.3390/foods10081709

Table 1.

Rheological properties of honeys from different locations and botanical sources covered in this review.

Honey Variety and Geographical Origin Viscometer/Rheometer Measuring Geometries Rheological Methods and Variables Range Measured Rheological Parameters Main Outcomes Ref.
Argentina:
multifloral north (MFN), central (MFC)
Rheometer
PP (gap 1.0 mm)
Preheating: 45 °C, 1 h
SSF
γ˙: 0.1–400 s−1
T: 283.15–323.15 K
DS—SAOS
Frequency sweep: 0.4–600 rad s−1, γ 0.5% (LVR)
T: 293.15 K
η, σ
G′, G′′, η*
σ vs. γ˙—Newtonian behaviour.
G′′ >> G: viscous nature (except at very high frequencies, G′′ = G′′).
ηη* (Cox-Merz rule verified).
η, G′′, η* (MFN) > η, G′′, η* (MFC).
η vs. T (Arrhenius): Ea: 79.61 (MFN)—82.09 (MFC).
η vs. T (WLF, r2 ≥ 0.81 MFN, ≥ 0.91 MFC); C1, C2—“universal” constants:
Tg: 224.59 K (MFN), 220.41 K (MFC) (matching Tg from DSC); ηg: 1.32 × 1011 (MFN), 1.18 × 1011 (MFC).
η vs. T (WLF with varying C1 and C2 constants and Tg from DSC, r2 ≥ 0.97 MFN; ≥ 0.96 MFC); C1: 13.75 (MFN), 14.63 (MFC); C2: 24.76 (MFN), 27.01 (MFC); ηg: 1.95 × 1018 (MFN)—1.66 × 1020 (MFC).
Agreement between rheology and back extrusion assays: hardness (MFC) > hardness (MFN); same consistency and adhesivity (MFN and MFC).
Cluster analysis (rheological and textural parameters): weak classification of honeys.
[41]
Argentina:
“algarrobo”
Rotational viscometer SSF
T: 278.15–343.15 K
η Newtonian behaviour.
η vs. T (Arrhenius, r2 = 0.994): Ea: 82.8.
η vs. T (WLF, r2 = 0.996); C1 (13.8), C2 (50); ηg: 7.4 × 107; Tg: 227.95 K.
η vs. T (VTF, r2 = 0.996); B: 1535.
η vs. T (P-L, r2 = 0.998); K: 2.9 × 1014; m: 7.5.
WFL equation with C1 and C2 calculated by reduced variables method: the most suitable for modelling viscosity-temperature dependence.
[18]
Australia: tulsi (TUL), manuka1 (MH1); USA: alfalfa (ALF); New Zealand: manuka2 (MH2) Rheometer
PP (ϕ 5 mm; gap 1 mm)
DS
Samples equilibrated: 15 °C, 10 min; cooled (sub-zero region), 1 °C/min, 1 rads−1, γ = 0.01%
Frequency sweeps: 0.1–100 rad s−1.
T: 213.15–253.15 K
G′, G′′, aT, Tg, fg, αf, Ea TTSP: production of a set of aT.
log aT vs. T (Arrhenius-type fit), Ea = 108 (TUL), 86 (ALF), 81 (MH1), 99 (MH2).
At upper temperature of the glass transition, log aT vs. T (WLF fit, modelling free volume): C1 = 10,70 (TUL), 10.85 (ALF), 11.43 (MH1), 11.13 (MH2); C2 = 50; Tg = 226.15 K (TUL), 228.15 K (ALF), 229.15 K (MH1), 227.15 K (MH2); (Tg,DSC = 226.15 K).
fg = 0.040 (TUL, ALF), 0.038 (MH1, MH2); αf = 8.0 × 10−4 (TUL, ALF), 7.6 × 10−4 (MH1, MH2).
Hbs in intermolecular association amongst monosaccharides generated a semi-crystalline system which allowed the prediction of mechanical Tg, that define the passage liq-like to sol-like at sub-zero temperatures.
WLF eq. allowed estimation of free volume parameters for honey vitrification.
[62]
Australia:
blue top iron bark (BTIB), bloodwood (BDW), gum top (GT), heath (H), narrow leafed iron bark (NLIB), stringy bark NT (STB), tea tree (TT), yapunyah (YAP), yellow box (YB)
Rheometer with Couette geometry (ϕcup 34 mm; ϕbob 32 mm; Lbob 34 mm; Preheating 55 °C, kept 30 °C
SSF
T: 275.15–313.15 K
γ˙~0.01–100 s−1
η η = 1.0 (STB, 313.15 K)–410.7 (YAP, 275.15 K).
η vs. T (Arrhenius, r ≥ 0.987): Ea: 99.6 (TT)–106.0 (BDH); ηg: 9.0 × 105 (NLIB)—2.0 × 106 (BTIB, BDW, H, STB).
η vs. T (WLF, r ≥ 0.997); C1 (13.7–21.1), C2 (55.9–118.7); ηg: 4.0 × 107 (NLIB)–4.0 × 1020 (YAP).
η vs. T (VTF, r ≥ 0.898); B: 4.5 (NLIB)–13.5 (YAP).
η vs. T (P-L, r ≥ 0.951); K: 1.1 × 103 (STB)–8.0 × 103 (YAP); m: −2.3 (YAP)–2.2 (BDW).
WLF: the most suitable model for viscosity-temperature dependence; constants C1 and C2 calculated from non-linear regression analysis, are valuable for adequate rheology modelling of honeys.
[8]
Brazil:
Hovenia dulcis from Apis mellifera (Hd1) and Tetragonisca angustula (Hd2) bees
Rotational viscometer,
cylindrical spindles, sample chambers
SSF
γ˙: 0–2.5 s−1
T: 303.15–333.15 K
η, σ η (0.1 s−1): 0.08 (Hd2, 333.15 K)–45.50 (Hd1, 303.15 K).
η vs. T (Arrhenius): Ea: 52.65 (Hd2)–125.91 (Hd2).
σ vs. γ˙ (P-L), r2 ≥ 0.99; K: 5.22 (Hd2)–421.98 (Hd1); n: 0.88 (Hd1)–1.02 (Hd2).
σ vs. γ˙ (CA), r2 ≥ 0.98; KC: 2.36 (Hd2)–18.96 (Hd1); σC < 1.34.
Hd1: Newtonian behaviour (303.15 K); non-Newtonian, shear thinning behaviour (313.15–333.15 K).
Hd2: Newtonian behaviour (303.15 K); non-Newtonian, shear-thickening (313.15 K, 323.15 K), shear thinning behaviour (333.15 K).
[43]
Brazil:
“assa-peixe” (AP), “cipó-uva” (CU), eucalyptus (EU), orange blossom (OB), multifloral—southeast (MF1), south (MF2), northeast (MF3), mid-west (MF4)
Rheometer
PP (ϕ 1 mm; gap 35 mm)
Preheating 55 °C, kept 30 °C, 48 h
SSF
γ˙: 0.1–100 s−1, 3 cycles
T: 238.15–333.15 K
DS—SAOS
Stress sweeps, 1 Hz
f: 0.1–10 Hz
T: 283.15–333,15 K
η
G′, G′′, η*
η: 147.3 (CU, 283.15 K)–0.35 (MF4, 333.15 K).
η*: 151.33 (CU, 283.15 K)–0.42 (MF4, 333.15 K).
η vs. η*: α ~ 1 (Cox-Merz rule verified), except: OB, MF1.
η or η* vs. T (Arrhenius, r2 ≥ 0.994): Ea (η): 84.97 (CU)–92.53 (MF4); Ea (η*): 85.60 (EU)–100.40 (OB).
η or η* vs. T (WLF, r2 ≥ 0.9999); with fixed C1 and C2 universal constants); ηg (η) 7.4 × 1011 (MF4)–1.09 × 1012 (CU); Tg (η) 210.47 K (MF4)–215.70 (CU);
ηg (η*) 4.98 × 1011 (MF3)–1.63 × 1012 (AP); Tg (η*) 210.44 K (EU)–220.27 (OB);
η or η* vs. T (VTF, r2 ≥ 0.9986); B (η): 1352.83 (MF4)–1465.71 (CU); B (η*): 1361.68 (EU)–1581.04 (OB).
η or η* vs. T (P-L, r2 ≥ 0.9990); K (η): 1.83 × 1015 (MF4)—1.39 × 1016 (OB), m (η): 7.65 (MF4)–7.98 (OB); K (η*): 3.15 × 1015 (MF4)–6.34 × 1017 (MF1), m (η): 7.53 (EU)–8.63 (OB).
η* independent of ω: liquid-like, Newtonian behaviour (293.15–333,15 K).
Non-Newtonian, shear-thinning (283.15–288,15 K):
WLF: best predictor model for OB, MF1, MF2.
Increase in TSS concentration → increase in Ea, Tg (WLF), B (VTF), m (P-L) coefficients. Selection of adequate T and TSS conditions, during processing and storage, are decisive for honey stability.
ANN-MLP, input layers T, ω: η (model 1); G′, G′′, η* (model 2-heating; model 3-cooling). Input layers T, w, ω:); G′, G′′, η* (model 4).
Potential application of the models (except for G´ in models 3 and 4), for the processing of honey and honey-based products.
[39,52,71]
Burkina Faso (north- and central-eastern) Rheometer
PP (ϕ 60 mm; gap 0.5 mm)
Preheating 55 °C, kept 30 °C
DS
Stress sweep, 1 Hz
Frequency sweep: 0.62–62.83 rad s−1, 1 Pa (LVR)
T: 278.15–313,15 K
G′, G′′, η*, δ G′′ >> G′: viscous nature.
η* vs. ω: constant function; δ ~90°: Newtonian behaviour.
η* vs. T: Ea = 41.07–48.58.
G′′ vs. T: Ea = 24.09–48.11.
Ea (η*) ≅ Ea (G′′): Newtonian behaviour.
Prediction of G′′ and η*: negative linear influence of fructose and temperature, positive linear influence of glucose.
[15]
Czech Rep.:
blossom-honeydew (BHD), blossom honeydew lime (BHL), blossom honey nectar (BHN)
Rheometer
CP, (ϕ 50 mm; angle 1°).
Preheating: 55 °C, 1 h; kept: 30 °C, 48 h
SSF
γ˙: 0–100 s−1,
T: 287.15–323.15 K
η, σ σ vs. γ˙ (Newton model): linear function.
η (BHL) > η (BHD) > η (BHN)
η vs. T (Arrhenius, r2 ≥ 0.9945); Ea: 102.07 (BHN), 104.85 (BHD), 105.9 (BHL).
[46]
Egypt:
citrus (CIT), clover (CLO), marjoram (MAR)
Viscometer
CC
SSF
GN0: 6.12–122 s−1
T: 298.15 K
η, σ η vs. GN0: shear-thinning behaviour.
η: 22.75 (MAR, w 18.10%, F/G 1.33); 12.50 (CLO, w 19.42%, F/G 1.27); 11.40 (CIT, w 19.74%, F/G 1.32).
[42]
Ethiopia:
acacia (AC), Becium grandiflorum (BG), Croton macrostachyus (CM), Eucalyptus globulus (EUG), Hypoestes (H), Leucas abyssinica (LA), Schefflera abyssinica (SCA), Syzygium guineense (SG), Vernonia amygdalina (VA)
Rotational viscometer
CC (ϕint 10.61 mm)
Preheating:
45 °C, 3 h + 50 °C, 30 min
SSF
GN0: 2.58–258.1 s−1
T: 298.15–318.15 K
η σ vs. GN0 (Newton, r2 ≥ 0.96), η: 4.73 (CM, 318.15 K)–29.21 (EUG, 298.15 K)
Newtonian behaviour.
η vs. T (Arrhenius, r2 ≥ 0.96): Ea: 9.859 (VA)–60.042 (EUG).
η vs. t: constant function.
[75]
Germany:
false acacia (FA), heather (H), sunflower (SF), lime (L), rape (R)
Rheometer
CC
SSF
GN0: 0.2–60 s−1
T: 283.15–323.15 K
DS
γ: 10−3
T: 273.15–348.15 K–273.15 K
Heating/cooling rate: 1 K/min
η, σ
G′, G′′, tanδ
σ vs. GN0 (Newton, FA), η = 0.841(323.15 K)–2.31 (313.15 K)
σ vs. GN0 (P-L), K: 0.69 (SF, 323.15 K)–172.66 (L, 293.15 K); n: 0.800 (R, 303.15 K)–1.002 (R, 313.15 K).
σ vs. GN0 (HB), K: 13.39 (H, 293.15 K)–620.06 (R, 283.15 K); n: 0.378 (R, 293.15 K)–1.001 (FA, 283.15 K); σy: 0.15 (H, 293.15 K)–137.26 (R, 283.15 K).
Newtonian (FA); Non-Newtonian (H, SF, L, R).
G′′ >> G′ (FA, SF, L, R): viscous nature.
G′ > G′′ (H): viscoelastic nature; heather honey: gel-like system after heating (>1.6% proteins in colloidal form).
T = 338.79 K: G′ = 14.31; G′′ = 14.69; tanδ = 2.24.
Crystallization of honeys is depended on botanic origin, temperature and storage time.
[30]
Greece:
pine honeydew (PHD), fir honeydew (FHD), thymus (THY), orange blossom (OB), helianthus (HEL), cotton (COT)
Rotational viscometer
CC, CC (ϕint 19.36 mm; Lint 58.08 mm; ϕext 21 mm
Preheating:
45 °C, 3 h + 50 °C, 30 min
SSF
GN0: 5–100 s−1
T: 298.15–318.15 K
η, σ σ vs. GN0—linear regression: Newtonian behaviour.
η: 0.421 (COT, 318.15 K, w 21%)–26.52 (FHD, 303.15 K, w 15%).
η vs. T (Arrhenius, r2 ≥ 0.9951): Ea: 70.8 (COT, w 21%)–96.3 (FHD, w 15%).
[31]
Greece:
pine honeydew (PHD), fir honeydew (FHD), multifloral (MF), orange blossom (OB)
Rheometer
CC (ϕcup 28.92 mm; ϕbob 26.66 mm)
Preheating 50 °C, 1 h
SSF
T: 293.15–333.15 K
GN0: 0.1–500 s−1
DS
γ: 0.1%
ω: 3–300 rad s−1
T: 293.15 K
η, σ
G′, G′′, η*
η (293.15 K) = 9.9 (PHD)–200 (FHD).
σ vs. GN0, constant viscosity: Newtonian behaviour.
G′′ >> G′: viscous nature.
G′: 0.15 (OB)–19.10 (FHD).
G′′: 64 (OB)–1701 (FHD).
η*: 7.7 (PHD)–167.0 (FHD).
η and G′′ inversely related to the water content of honey.
η vs. T (Arrhenius, r2 > 0.95), Ea: 72.69 (PHD)–93.75 (FHD).
η vs. T (WLF with fixed C1 and C2 universal constants, r2 = 0.95–0.99); ηg: 3.3 × 1011 (PHD)—7.8 × 1011 (FHD); Tg: 209.88 K (OB)–230.53 (FHD).
η vs. T (WLF with varying C1 and C2 constants and Tg from DSC, r2 = 0.95–0.99); C1: 17.20 (OB)–25.18 (PHD), C2: 13.95 (OB)–30.90 (PHD); ηg: 7.1 × 1012 (OB)–5.2 × 1021 (PHD); Tg (DSC): 225.85 K (PHD)–238.40 (FHD).
[24]
India:
cotton (COT), coriander (COR), dalbergia (DAL), murraya (MUR)
Rheometer
PP, (ϕ 50 mm; gap 0.5 mm)
Preheating: 50 °C, 1 h; kept: 30 °C
DS
Frequency sweep: 0.63–63 rad s−1, γ 0.5% (LVR)
T: 278.15–303.15 K
η, σ
G′, G′′
η: 3.89 (MUR)–185.13 (COR).
η vs. T (Arrhenius, r2 ≥ 0.99); Ea: 94.51 (COT)– 100.19 (COR).
G′′: 227.4 (MUR, 303.15 k)–10.553 (COR, 278.15 K).
G′′>>G′: viscous nature.
G vs. T (Arrhenius; r2≥ 0.99); Ea: 94.27 (COT)– 99.66 (COR).
G′′ vs. ω (P-L), r2≥ 0.99; K′′: 3.70 (MUR, 303.15 K)–169.25 (COR, 278.15 K); n′′: 0.99–1.
Newtonian behaviour.
[86]
India (Kashmir):
saffron (SA), apple (AP), cherry (CH), Plectranthus rugosus (PR)
Rheometer
PP, (ϕ 50 mm; gap 0.5 mm)
Preheating:
50 °C, 1 h, kept 30 °C
DS
Frequency sweep: 0.63–63 rad s−1, γ 3% (LVR)
T: 273.15–303.15 K
η, G′, G′′ η: 0.35 (SA, 303.15 K)–21.97 (PR, 273.15 K).
G′′ >> G′, K′′ >> K: viscous nature.
G′: 0.009 (AP, 303.15 K)–85.95 (CH, 273.15 K).
G′′: 0.23 (SA, 303.15 K)–1382 (PR, 273.15 K).
G′′ vs. ω (P-L), r2 ≥ 0.97; K′′: 0.37 (SA, 303.15 K)–22.02 (PR, 273.15 K); n′′: 0.96 (SA, 303.15 K)–1.00 (PR, 273.15 K).
Newtonian behaviour.
η vs. T (Arrhenius, r2 = 0.99): Ea: 77.18 (PR)–85.59 (SA); G′′ vs. T (Arrhenius, r2 = 0.99): Ea: 77.80 (PR)–86.88 (SA).
[25]
India:
acacia (AC), pine honeydew (PHD), multifloral (MF)
Rheometer
PP, (ϕ 50 mm; gap 0.5 mm)
Preheating:
50 °C, 1 h, kept 30 °C
SSF
GN0~0–1.8 s−1
T: 273.15–303.15 K
DS
Frequency sweep: 0.63–63 rad s−1, γ 3% (LVR)
T: 273.15–303.15 K
η, σ
G′, G′′
σ vs. GN0: Newtonian behaviour.
η: 0.27 (AC, 303.15 K)–17.27 (MF, 273.15 K).
G′′ >> G′, K′′ >> K: viscous nature.
G′: 0.01 (AC, 303.15 K)–15.3 (MF, 273.15 K).
G′′: 0.19 (AC, 303.15 K)–1085.49 (MF, 273.15 K).
G′′ vs. ω (P-L), r2: 0.99; K′′: 0.28 (AC, 303.15 K)–17.30 (MF, 273.15 K); n′′: 1.
Newtonian behaviour.
η vs. T (Arrhenius, r2 = 0.99): Ea: 62.10 (PHD)–75.87 (AC).
[60]
India:
multifloral honey, adulterated with jaggery (5–30%, w/w)
Rheometer
PP, (ϕ 20 mm; gap 1 mm)
SSF
GN0: 0–20 s−1,
T: 298.15 K
σ: 10 Pa,
T: 278.15–303.15 K
DS
Frequency sweep: 0.1–40 Hz, σ 10 Pa, γ 0.409 (LVR)
T: 298.15 K
ηapp, σ
G′, G′′
ηap: 2.48 (5%)–4.83 (30%).
σ vs. GN0 (Bingham model).
Pure honey: Newtonian.
Adulterated honey: non-Newtonian, Bingham plastic, anti-thixotropic.
ηapp vs. T (Arrhenius); Ea: 35.48 (0%)–38.48 (30%).
G′′>>G′: viscous nature.
Adulteration only affected the viscous properties.
[49]
Iran:
pure honey adulterated with data syrup (DS) and invert sugar syrup (IS)–7%, 15%, 30%
Rotating viscometer, and spindle
Texture analyser;
cylindrical probe (ϕ 25 mm; ϕ 6 mm; for adhesion-cohesion)
SSF
T: 293.15 K
GN0: 10 rpm
T: 295.15 K
η, Fmax, adhesiveness, stringiness,
Surface stickiness,
tStart-Stringiness
tstringiness
Samples classification by PCA, LDA.
LDA model based on rheological properties, detected and classified correctly 67.65% of honey samples adulterated with complex sugars.
[78]
Israel:
citrus flower (CIT), wildflower (WF), wildflower-based light (WF-BL), field-flower-based light (FF-BL)
Rheometer
CP, (ϕ 60 mm; angle 4°).
Preheating: 55 °C, 3 h; kept: 30 °C
SSF
GN0 > 0.001 s−1
M ≤ 40
T: 278.15–308.15 K
VPT micro-rheology: Fluorescent, carboxyl-modified, polystyrene particles (ϕ 200 mm) embedded within honey samples
η η vs. GN0–constant function: Newtonian behaviour
η (natural honeys): 5.0 (WF, 308.15 K)–558.3 (CIT, 278.15 K).
η (reduced calories honeys): 4.2 (FF-BL, 308.15 K)–193.8 (WF-BL, 278.15 K).
η vs. T (Arrhenius, r2 ≥ 0.98); Ea: 84.7 (FF-BL)–96.9 (CIT).
>90% particles: diffusive motion, αMSD = 1.
ηmicrorheology–calculated using the Stokes-Einstein relation.
η (GN0) matched ηmicrorheology–Newtonian behaviour in both length scales.
[20]
Jordan:
common black horehound (CBH), globe thistle (GT), squill (Sq)
Rotational viscometer, CC (ϕ 15.2 mm; L 60 mm; gap width 5.8 mm SSF
GN0: 2.2–219.8 s−1
T: 293.15–323.15 K
η, σ σ vs. GN0 (Newton, r2= 0.999), η = 0.84 (GT, 323.15 K)–52.12 (CBH, 293.15 K).
η vs. T (Arrhenius, r ≥ 0.998)—Ea: 95.64 (Sq), 97.56 (GT), 97.69 (CBH).
η vs. T (WLF, r > 0.9995); C1, C2–“universal” constants:
Tg: 223.83 (Sq), 225 (GT), 228.44 (CBH); ηg: 2.21 × 1011 (GT), 2.37 × 1011 (Sq), 2.62 × 1011 (CBH).
[35]
Mozambique (south-western):
honeydew honey
Rheometer
PP (ϕ 60 mm; gap 0.5 mm)
DS
Stress sweeps, 1 Hz
Frequency sweeps: 0.1–10 Hz, 1 Pa (LVR)
T: 293.15–313,15 K
G′, G′′, η* G′′ >> G′: viscous nature.
G* vs. ω: constant function: Newtonian behaviour.
ANN best models for the prediction of rheological parameters as a function of temperature, frequency, and chemical composition: MLP–for G′′ and η* (r2 > 0.950); PNN–for G′(r2 = 0.758).
Sensitivity: G′′ and G′ to frequency and moisture; η* to moisture and temperature.
[69]
Norway:
heather (H)
Czech Rep.: lime (L)
(H diluted with L, 10–80% w/w)
Rheometer, CP
(ϕcone 50 mm; angle 1°, gap 0.103 mm)
SSF
GN0: 1–100 s−1
T: 298.15 K
DS
Frequency sweep: 0.1–10 rad s−1, γ 1% (LVR)
T: 298.15 K
η, σ
G′, G′′, η*
σ vs. GN0 (P-L), r2 ≥ 0.999; K: 7.91 (L)–74.50 (H); n: 0.9924 (L)–0.6745 (H).
σ vs. GN0 (HB), r2 ≥ 0.999; K: 8.0 (L)–61.0 (H); n: 0.989 (L)–0.713 (H) σy: (-)1.15 (L)–44.94 (H).
σ vs. t (Weltman), r2: 0.55–0.84; B: [-]4.5 (L)–28.0 (H).
ϕ (GN0 50 s−1): 1.0534 (L)–0.7054 (H).
C (Equation (35)): [-]1.93 (L)–[-]15.7 (H).
Non-linear dependence of rheological parameters (K, n (P-L), K, n (HB), σy, B, ϕ, C) on the degree of dilution with a step change between 40% and 60% (w/w): possible use in the identification of adulterated heather honeys.
[45]
Poland:
buckwheat (BW), clover (CLO), honeydew (HD)
Rheometer
PP, (ϕ 50 mm; gap 0.5 mm)
Preheating: 50 °C, 3 h; kept: 30 °C, 24–48 h
DS
Frequency sweep: 0.1–100 rad s−1, γ 1% (LVR)
T: 253.15–343.15 K
η, G′, G′′ η (343.15 K): 13.5 (BW, wt 10.21)–324 (HD, wt 16.72).
BW: G′ > G′′ (303.15 K, 313.15 K); G′′ > G′ (263.15 K, 343.15 K); G′ = G′′ (253.15 K, 258.15 K, 283.15 K, 293.15 K, 323.15 K, 333.15 K).
CLO: G′′ > G′ (263.15 K, 293.15 K, 333.15 K, 343.15 K); G′ > G′′ (313.15 K, 323.15 K); G′ = G′′ (253.15 K, 258.15 K, 283.15 K, 303.15 K).
HD: G′′ > G′ (268.15–293.15 K, 343.15 K); G′ > G′′ (323.15 K, 333.15 K); G′ = G′′ (253.15–263.15 K, 303.15–313.15 K).
Rheological parameters of the phenomenological method: Ge, Je, GN0, τm,τ0, ω0, k.
High values of GN0 (~101−107), ω0 (~10−2−102), k (~100−104): honeys with structure of quasi-solid bodies, tending to form a pseudo-gel (high total elasticity, high cross-linking density and capacity); structure able to damp mechanical vibrations; structure sensitive to changes caused by temperature; structure able to slow down the physical aging of honey systems over time.
Usefulness in the design and prediction of processing steps.
[88]
Poland:
rape (R), multifloral (MF), buckwheat (BW).
a) liquefied (55 ºC, 24 h + cooling, RT);
b) crystallised
Rheometer
CC (ϕint 26.652 mm; ϕext 28.905 mm; gap 1.127 mm
T: 293.15 K
(a) liquefied
SSF—σ: 0–500 Pa
DS—ω: 0–250 s−1
(b) crystallised
SSF
GN0: 0–450 s−1
t: 0–180 s (up- and downward)
DS–(the same as in the liquefied samples)
η
G*, δ, η*
η, σ
G*, δ, η*
(a) liquefied
σ vs. GN0 (Newton, r2 = 0.999), η = 6.66 (R), 5.02 (MF), 3.18 (BW).
G* vs. ω (r2 > 0.995), G* = 6.889ω (R), 4.794ω (MF), 2.894ω (BW).
(b) crystallised
Hysteresis area: large (R, MF), insignificant (BW).
σ vs. GN0 (P-L, r2 ≥ 0.98):
K = 36.696 (R), 15.945 (MF), 6.2218 (BW); n = 0.623 (R), 0.706 (MF), 0.854 (BW).
G*(MF) > G*(R) > G*(BW).
η* vs. GN0 (P-L, r2 ≥ 0.900): K = 374.86 (MF), 252.06 (R), 193.81 (BW).
SSF results differ from DS measurements. Structural and rheological properties of the final product may be modelled by controlling the crystallization process.
[11]
Poland:
rape-seed
(stored for 18 months)
Universal Testing Machine with back extrusion cell
(ϕ 50 mm; L 60 mm)
4 cycles:
50–400 mm/min
(a) CON;
(b) RT,
(c) FRO
η η = 33.6 (CON), 78.0 (RT), 280.5 (FRO)
Storage temperatures influenced honey viscosity.
The higher viscosity of FRO honey is probably a result of a crystallized structure formed by fine crystals.
[63]
Poland:
heather
Rheometer
PP (ϕ 35 mm; gap 0.5 mm)
Preheating 40 °C
SSF
γ˙:1–100 s−1 (up- and downward), t = 180 s
T: 283.15–313.15 K
DS
T: 283.15–313,15 K
ω: 1–100 rad s−1
γ: 0.03
η, σ
G′, G′′, η*
σ vs. γ˙ (HB), r2 ≥ 0.999; K: 2.0–108.6; n: 0.66–0.90; σy: 2.3–142.2
K vs. T (Arrhenius)—Ea: 47.7–71.7.
σ vs. t (Weltman), r2 ≥ 0.96; B [[–]: 10.7–56.7.
G′′>>G′: viscous nature.
G′′ vs. ω (P-L), r2 ≥ 0.9990; K′′: 2.6–163.4; n′′: 0.78–0.94.
η vs. η* (P-L); K: 0.017–0.264; β: 1.39–2.11.
Significant dependence of η* on ω: viscoelastic nature.
Non-Newtonian, shear-thinning, tendency to yield stress, thixotropic.
[32]
Poland:
acacia (AC), buckwheat (BW), linden (LI), multifloral (MF), rape (R), honeydew (HD), nectar-honeydew (NHD)
Rheometer
(ϕcup 15.8 mm; ϕbob 14.00 mm)
Preheating 50 °C, 3 h
SSF
T: 283.15–313.15 K
γ˙: 1–100 s−1
Time effect:
T: 293.15 K, γ˙: 50 s−1
η η = 1.8 (BW, MF, R–313.15 K)–252.6 (NHD, 283.15 K).
η vs. T (Arrhenius, r2 ≥ 0.997): Ea: 92.34 (BW)–105.25 (NHD).
η vs. T (WLF, r2 > 0.999); universal constants C1, C2; ηg: 1.88 × 1011 (R)–2.86 × 1011 (BW) Tg: 220.34 K (BW)–228.39 (NHD).
[23]
Portugal:
heather (H), rosemary (ROM)
multifloral (MF)
Rotational viscometer, CC, spindles (ϕ 1.18 cm; ϕ 0.94 cm) SSF
γ˙ ~ 0.2–60 s−1
Up- and downward
T: 303.15–368.15 K
η, σ σ vs. γ˙ (HB), r2 ≥ 0.976; K: 0.05 (H, 368.15 K)–136 (MF, 303.15 K); n: 0.852 (ROM,368.15 K)–1.68 (H, 368.15 K); σy < 8.5 (insignificant effect of microparticles (crystals) in honey.
σ vs. γ˙ (P-L), r2 ≥ 0.956; K: 1.23 (ROM, 343.15 K)–139.8 (MF, 303.15 K); n: 0.849 (ROM,368.15 K)–1.105 (MF, 303.15 K).
η = 74 (MF, 368.15 K)–13,678 (MF, 303.15 K).
η* vs. T (Arrhenius, r ≥ 0.946), Ea: 57.7 (ROM)–74.5 (MF).
η* vs. T (=K0·eA/TB fit, r2 ≥ 0.9999).
Newtonian behaviour, except ROM 368.15 K (slightly shear-thinning).
[40]
Romania:
honeydew (HD), adulterated with fructose (F), glucose (G), hydrolysed inulin (I), malt wort (M), inverted sugar (IS), (5–50%, w/w).
Rheometer
PP, (ϕ 60 mm; gap 1 mm)
SSF
γ˙: 0–100 s−1 (up- and downward)
T: 293.15 K
DS
Stress sweeps: 1 Hz, σ 1 Pa (LVR)
ω: 0.62–62.83 rad s−1
T: 293.15 K
η, σ
G′, G′′
σ vs. γ˙ (Newton, r2 ≥ 0.999), Newtonian behaviour.
η (HD): 16.64; η (5–50%)—HD+F: 16.02–11.58; HD+G: 17.02–21.94; HD+I: 16.24–21.22; HD+M: 16.64–16.71; HD+IS: 16.63–16.56.
η vs. γ˙, thixotropic area: increased by M, G, S, IS (highest, HD+M); decreased by F.
G′′ >> G′: viscous nature.
G′′ vs. ω (P-L), r2 ≥ 0.999; K′′; n′′: 16.78; 0.991 (HD); 16.27–11.76; 0.990–0.988 (HD+F); 17.25–22.15; 0.991–0.993 (HD+G); 16.62–21.40; 0.994–0.995 (HD+I); 17.47–22.92; 0.986–0.951 (HD+M); 16.85–16.70; 0.991–0.996 (HD+IS).
Creep phase: 0–180 s.
J vs. t (Burgers model, r2 ≥ 0.983): significative influence of F, G, I on η0 (~103–107).
Creep start point: F increases, IS decreases.
Recovery phase: 180–360 s; J vs. t: Newtonian behaviour; no influence of the adulterants.
Honey authentication: PCA (rheological parameters + sugar composition): 100% explanation of total variance.
[51]
Romania:
linden (LI), black locust (BL), rape (R), sunflower (SF), honeydew (HD), multifloral (MF)
Rheometer, PP
(ϕ 40 mm; angle 2°, gap 1 mm)
SSF
γ˙: 0.1–500 s−1 (up- and downward)
T: 283.15–313.15 K
DS
Frequency sweep: 3–300 rad s−1, γ: 3% (LVR)
T: 293.15 K
η, σ
G′, G′′, δ
σ vs. γ˙—Newtonian behaviour: LI, BL, SF, MF; non-Newtonian with thixotropy: R, HD.
η (293.15 K): 17.2 (HD)–2.7 (LI).
G′′ >> G′: viscous nature.
G′: 13.8 (LI)–315.6 (SF).
G′′: 610 (LI)–2229 (SF).
tanδ: 55–161.
LDA to predict viscosity based on carbohydrate composition, p-value < 0.05: glucose and fructose; correct classification of 78.8% samples.
[21]
Spain:
eucalyptus (EU), honeydew (HD), orange (OB), multifloral (MF), rosemary (ROM), summer savoury (SS)
Rheometer
CC.
Rheometer
PP, (ϕ 60 mm; gap 0.5 mm)
Preheating: 55 °C; kept: 30 °C
SSF
γ˙: 0–100 s−1
T: 298.15–323.15 K
DS
Stress sweeps: 1 Hz
Frequency sweep: 0.628–62.8 rad s−1, σ 1 Pa (LVR)
T: 298.15–323.15 K
η, σ
η*
σ vs. γ˙ (Newton, r2 ≥ 0.99), Newtonian behaviour.
η: 0.462 (ROM, 323.15 K)–13.970 (HD, 298.15 K).
η vs. γ˙ and η* vs. γ˙: constant functions–Newtonian behaviour.
η vs. η*, Cox-Merz rule verified (α~1): all honeys at 313.15–323.15 K; except 298.15–303.15 K (α > 1). Prediction of η and η* from each other, through a modified Cox-Merz rule.
η vs. T (Arrhenius, r2 ≥ 0.998); Ea: 84.07 (ROM)–91.35 (HD).
η vs. T (VTF), r2 = 0.999); B: 1595 (OB)–1954 (HD).
η vs. °Brix and T: P-L and exponential models (r2: 0.733, 0.822); Ea: 73.317, 82.773.
[38]
Spain:
honeydew (HD), orange (OB), multifloral (MF), rosemary (ROM)
Rheometer
PP, (ϕ 60 mm; gap 0.5 mm)
Preheating: 55 °C; kept: 30 °C
DS
Stress sweeps: 1 Hz
Frequency sweep: 0.1–10 Hz, σ 1 Pa (LVR)
T: 278.15–313.15 K
G′, G′′, η* G′′>>G′: viscous nature.
η* vs. ω: constant function–Newtonian behaviour.
G′′ vs. ω (P-L), r2 ≥ 0.99; K′′: 1.13 (ROM, 313.15 K)–215.74 (HD, 273.15 K); n′′: 0.99–1.05.
Application of TTSP to viscoelastic properties: obtention of a viscoelastic model (4th grade polynomial equation, r2 > 0.99), suitable for all honeys.
[54]
Spain:
rosemary (RO)
(a) liquefaction by heating (HT)
(b) liquefaction by ultrasound (US)+HT
Viscometer, disc-type HT: 313.15–333.15 K, 60 min US: 40 Hz, 313.15–333.15 K, 60 min.
γ˙: 2.5–20 rpm
t: 20–60 min
η σ vs. γ˙, constant viscosity: Newtonian behaviour.
η (HT) = 333 (333.15 K, 60 min)–3240 (313.15 K, 10 min).
η (US) = 206 (333.15 K, 60 min)–3080 (313.15 K, 10 min).
η vs. T (Arrhenius)—Ea (HT): 64; (US): 59.
HT/US, 60 min—η: 1494/833 (313.5 K); 726/290 (323.5 K); 333/206 (333.5 K).
At a same temperature and after a certain period of time, η of US samples are lower; honey can be liquefied by US, without the need to increase temperature up to 323.15 K or higher temperatures.
[13]
Spain:
“Miel de Galicia”
Rotational viscometer
CC
Preheating:
55 °C; kept 30 °C.
SSF
γ˙: 0.3–2 s−1 (up- and downward)
T: 298.15 K
T: 280.15–328.15 K
γ˙: 1.4 s−1
η, σ σ vs. γ˙ (P-L): K = 7.887 × 10−3– 14.279 × 10−3; n = 0.933–0.969.
Shear-thinning behaviour (at low γ˙ values).
η vs. T (Arrhenius; the best regression): Ea: 83.880–96.631.
η vs. T (WLF); C1 [-] 54.4–32.2), C2 73.1–194.0; ηg: 1.1 × 106—1.2 × 109
η vs. T (VTF), r2 = 0.996); B: 875.85–992.09.
η vs. T (P-L); K: 4.96 × 1016–1.83 × 1018 -; m [-]: 9.25–8.57.
Temperature effect more relevant in the low range of temperature.
[2,58]
Tunisia:
eucalyptus (EU), orange (OB), rosemary (ROM), thyme (TH), mint (MI), horehound (HH)
Rheometer
CP, (ϕ 35 mm; gap 0.14 mm)
SSF
γ˙: 0.01–500 s−1
T: 293.15 K
DS
Frequency sweep: 0.1–100 rad s−1, σ 0.001 Pa
T: 293.15–323.15 K
η, σ
G′, G′′, η*
σ vs. γ˙ (HB, r2 ≥ 0.99), K: 8.47 (HH)–36.23 (TH); n: 0.68 (TH)–0.86 (HH); σy: 3.72 (HH)–41.18 (TH).
Non-Newtonian, shear-thinning behaviour.
ηapp vs. T (γ˙: 10 s−1, Arrhenius, r2 ≥ 0.97); Ea: 21.23 (HH)–34.91 (TH).
σ vs. t (Weltman, r2 ≥ 0.97); B: 8.64 (HH)–21.10 (TH).
G′′>G′: viscous nature.
G′′ vs. ω (P-L), r2 ≥ 0.96; K′′: 0.65 (HH, 323.15 K)–143.10 (TH, 293.15 K); n′′: 0.79 (TH, 323.15 K)–0.91 (TH, 293.15 K); non-Newtonian behaviour.
[33]
Turkey:
creamed honey
Rheometer
PP, (ϕ 50 mm; gap 0.5 mm)
SSF
γ˙: 1–70 s−1, T: 283.15 K
γ˙: 1–100 s−1, T: 298.15–313.15 K;
(up- and downward)
DS
Frequency sweep: 0.1–10 Hz, γ 0.5% (LVR)
T: 283.15–313.15 K
Temperature sweeps: γ 0.5% (LVR), 1 Hz,
T: 278.15–323.15 K
Thermal Loop
11 thermal cycles: 278.15–323.15 K, 10 rad s−1, γ 0.5%
ηapp, σ
G′, G′′, η*
σ vs. γ˙ (P-L), r2 ≥ 0.9993; K: 269.7 (283.15 K)–10 (313.15 K); n: 0.7641 (283.15 K)–0.8124 (313.15 K).
Hysteresis Area: 51,713 (283.15 K)–1129 (313.15 K).
ηapp,50 s−1 vs. T (Arrhenius, r2 ≥ 0.9188); Ea: 36.62.
G′′>>G′: viscous nature.
G′′ vs. T (Arrhenius, r2 ≥ 0.8565); Ea: 41.71.
G′′ vs. t (Weltman), r2≥ 0.9541; [-] B: 298.7 (283.15 K)–17.1 (313.15 K
G′′ vs. ω (P-L), r2≥ 0.9926; K′′: 273.4 (283.15 K)–4.0 (313.15 K); n′′: 0.881 (283.15 K)–1.033 (313.15 K).
Non-Newtonian shear-thinning thixotropic behaviour.
Δmin (G′′): 1.00 (cycle 1)–0.566 (cycle 11).
Creamed honey with low thermal stability: great structural change by thermal stress.
[29]
Turkey:
natural honey adulterated with
saccharose (HAS) and fructose (HAF) syrups
(0–50%, w/w)
Rheometer
PP (ϕ 50 mm; gap 0.5 mm)
SSF
γ˙: 0.1–100 s−1,
T: 298.15 K
DS
T: 298.15 K
Amplitude sweep test, 1 Hz,
γ: 0.1–100%
Frequency sweep test, 1% (LVR), 0.1–10 Hz
Temperature sweep test, 278.15–323.15 K, 1 Hz, 50 s−1
Creep phase: 0–150 s; recovery phase: 150–300 s
η, σ
G′, G′′, G*
σ vs. γ˙ (Newton), r2 ≥ 0.996 (HAS), r2 ≥ 0.997 (HAF): Newtonian behaviour.
η = HAS: 6.531 (0%)—2.019 (50%); HAF: 6.531 (0%)–1.085 (50%).
G′′ >> G′: viscous nature.
G′′ vs. ω (HAS, r2 = 0.999; HAF, r2 ≥ 0.998); Newtonian behaviour
K′′ = HAS: 6.367 (0%)–2.234 (50%); HAF: 6.367 (0%)–1.111 (50%); good indicator to detect honey adulteration at levels 10–50%, within a 278.15–323.15 K range.
K*: same results as K′′; natural honey with the highest total resistance to deformation.
J vs. t (Burgers model: r2 = 0.999 (HAS, HAF); η0 = HAS: 2.0–7.0; HAF: 1.1–7.0.
G0, G1, η1: no consistent trend with increasing adulterant level; cannot be used to detect adulteration.
η, G′′, η*, η0: potential to be good indicators of adulteration with saccharose and fructose, at specified ratios.
93.879% of the total variance in data set was described by four Principal Components, regarding physicochemical and rheological properties of natural and adulterated honeys.
[56]

ANN, artificial neural networks; aT, vertical shift factor; bT, horizontal shift factor; B, constant of the VTF model for temperature dependence (K); C, parameter in Equation (35); C, concentration; C1, coefficient in the WLF model; C2, coefficient in the WLF model (K); CA, Casson model; CC, concentric cylinders; CP, cone-and-plate; CON, control (fresh honey); D, diffusion coefficient; DSR, dynamic shear rheology; Ea, Arrhenius activation energy for flow (kJ mol−1); F/G, fructose/glucose ratio; Fmax, maximum force required to separate the probe from the sample; f, frequency (Hz); fg, fractional free volume at Tg (WLF equation); FRO, in freezer (−20 °C); G0, instantaneous elastic modulus of the Maxwell unit, in the Burgers model; G1, shear modulus of the Kelvin-Voigt unit, in the Burgers model; G′, storage modulus (Pa); G′′, loss modulus (Pa); G* complex modulus (Pa); Ge, equilibrium modulus (modulus of elasticity in the steady state, Pa); GN0, the viscoelastic plateau modulus (power of crosslinking of the structure, Pa); HB, Herschel-Bulkley model; HBs, Hydrogen bonds; J (t), creep compliance (shear); Je, limit susceptibility in the equilibrium state (Pa−1); K, consistency in Power-law model for viscosity (Pa sn); K, constant of the P-L model for temperature dependence (Pa.s); K′, elastic intercept in power law model (Pa sn); K′′, viscous intercept in power law model (Pa sn); KC, Casson plastic viscosity; k, mechanical vibration damping factor; LAOS, large amplitude oscillatory shear; LDA, linear discriminant analysis; LVR, linear viscoelastic region; m, constant of the P-L model for temperature dependence; M, torque (N m); MLP, multilayer perceptron; MSD, mean-square displacement; n, flow behaviour index in power law model for viscosity; n′, elastic slope in power law model; n′′, viscous slope in power law model; NH, natural honey; PCA, principal component analysis; P-L, power-law model; PNN, probabilistic neural network; PP, parallel-plates; PS, polystyrene; R, gas constant (kJ mol−1 K−1); RCH, reduced calorie honey; rpm, revolutions per minute; RT, room temperature (20–26 °C); SAOS, small amplitude oscillatory shear; SSF, steady shear flow; tanδ, loss tangent; t, shearing time (s); tStart-Stringiness, time from withdrawal until the string tore; tstringiness, time corresponding to the distance the probe moved away from the sample surface before the force dropped to 2.5 g; T, absolute temperature (K); TTS, total soluble solids (°Brix); TTSP, time–temperature superposition principle; VTF, Vogel–Tamman–Fulcher model; VPT, video particle tracking; w, weight; WLF, Williams-Landel-Ferry model; wt, water content. α, shift factor (Cox-Merz rule); αf, thermal expansion coefficient (deg−1) above Tg (WLF equation); αMSD, MSD scaling exponent; β, constant of the Power-law function; δ, phase angle; Δ, relative structural index; η (γ˙), steady shear viscosity; η0, zero-shear viscosity; η0 is the viscosity of the liquid filling the dashpot of the Maxwell element in the Burgers model (Pa s); η1, viscosity of the liquid filling the dashpot of the Kelvin-Voigt element, in Burgers model (Pa s), ηapp, apparent viscosity; ηg, viscosity at Tg (Pa.s); η*, complex viscosity; ϕ, diameter; ϕ, proportion of the ηapp in the 1st second of the assay (Pa.s) and the ηapp in the 300th second of the assay (Pa.s); γ, shear strain; γ˙, shear rate (s−1); σ, shear stress (Pa); σC, Casson yield stress (Pa); σy, yield stress (Pa); τ0, number average relaxation time (s);τm, weight average relaxation time (s); ω, angular frequency (rad s−1); ω0, cross-linking density of the structure (rad s−1).