Skip to main content
. 2021 Jul 31;11(8):1390. doi: 10.3390/diagnostics11081390

Table 2.

A comparison between state-of-the-arts methods with novel methods.

Reference Simple Dataset Colored
Images
Enhancement Segmentation Contribution Contribution
Achieved
Methods and Tools No. of
Classes
Accuracy
(%)
Sensitivity
(%)
Specificity
(%)
Precision
(%)
Dice
(%)
Number Type Free
[100] Y 1 D Y N Y Y Mobile Assessment N ABCD, MLP 2 88 66 93 N/A N/A
[101] N 1 A N N Y Y Classify lesion Atlas Y Gabor filter, ABCD 2 94 91.25 95.83 N/A N/A
[102] N 1 A N Y Y Y Classify lesion Atlas based
on the thickness
Y logistic regression with ANN 2 64.4 55.2 N/A N/A N/A
[103] N 1 A N Y Y Y Increase classification using a novel segmentation method Y Median Filter 2 N/A N/A N/A N/A N/A
1 D Y
[104] N 3 A N Y Y Y Segment and classify
pigmented lesions
Y Anisotropic Diffusion, Chan–Vese’s,
ABCD, SVM
2 79.01 N/A N/A 80 N/A
1 D Y
[105] N 1 RS N - - - classification Y Paraconsistent analysis network 3 93.79 N/A N/A N/A N/A
[106] Y 1 D Y N Y Y Segmentation Y Delaunay Triangulation 2 75.91 67.46 95.93 N/A N/A
[107] N 1 H N Y N Y Segmentation and Classification Y Granular Layer, Intensity Profiles 2 92.1 N/A 97.6 88.1 N/A
[108] Y 1 F N - - - Comparison of four
Classification methods
Y KNN with Sequential Scanning selection,
KNN with GA, ANN with GA,
Adaptive Neuro-Fuzzy Inference
2 94 N/A N/A N/A N/A
[109] Y 1 H N Y N Y Classification lesions with and
without segmentation
Y Z-transforms 2 85.18 91.66 80 78.57 N/A
[110] Y 1 JPGE N Y N N Classification of Psoriasis Y PCA, SVM 2 100 100 100 N/A N/A
[111] Y 3 A N N N Y Segmentation Y k-means 2 N/A N/A N/A N/A N/A
[112] Y 1 A N Y N Y Classification of skin cancer based on the
deep of lesion using 3D reconstruction
Y adaptive snake, stereo vision, structure from
motion, depth from focus
8 86 98 99 N/A N/A
1 D Y 3
[113] N 2 D N N N Y Classification of melanoma Y a self-generated neural network,
fuzzy neural networks with
backpropagation (BP) neural networks
2 94.17 95 93.75 N/A N/A
[114] N 1 JPGE N Y Y Y Segmentation and Classification Y fixed grid wavelet network, D-optimality
orthogonal matching pursuit
2 91.82 92.61 91 N/A N/A
[115] N 1 SI N N N Y Classification of the regular and
irregular boundary of skin lesion
Y 1D time series for Lyapunov exponent and Kolmogorov–Sinai entropy 2 95 100 92.5 86.5 N/A
1 D Y
[116] Y 2 D Y Y N Y Segmentation and classification of lesions to melanoma and Benign Y An ant colony, KNN, ANN 2 N/A N/A N/A N/A N/A
[117] N 1 A N Y N Y Segmentation and combine
features, classification
Y ABCD, SVM 2 90 72.5 94.4 N/A N/A
2 D Y
[118] N 2 D N N Y Y Codebook generated from a
bag of features
Y Histogram of Gradients, Histogram
of Lines, Zernike moments
2 92.96 96.04 84.78 N/A N/A
[119] N 1 D Y Y N Y Classification of skin lesion using feature subset selection Y Optimum-path forest integrated
with a majority voting
2 94.3 91.8 96.7 N/A N/A
[120] N 1 SIA scope N N N Y Analysis of multispectral skin lesion Y Box-counting dimension and lacunarity, Hunter score pattern detection, RBF kernel, SVM 2 97 59.6 97.8 N/A N/A
[121] N 2 D Y Y Y Y Automatic segmentation of skin lesion Y The grab-Cut algorithm, k-means 2 96.04 89 98.79 N/A 91.39
[122] Y 1 CCD N Y N Y Classification of skin lesion
using a smartphone
Y Otsu’s, Minimum Spanning Tree, Color Triangle 2 87.98 89.09 86.87 N/A N/A
[123] Y 1 D Y Y Y N Enhancement and fusion of skin lesion features for classification Y Wavelet transform, Curvelet transform, local binary pattern, SVM 2 86.17 78.93 93.25 N/A N/A
[124] N - - - N Y Y Extract fabric characteristics for lesion classification Y Gabor filters based on shark smell optimizing method, K-means - N/A N/A N/A N/A N/A
[125] N 3 D Y N Y Y Skin lesion segmentation and recognition based on fused features Y ABCD, fuzzy C-means, pair threshold binary decomposition, HOG, linear discriminant analysis, linear regression, complex tree, W-KNN, Naive Bayes, ensemble boosted tree, ensemble subspace discriminant analysis 2, 3 99 98.5 99 98.5 N/A
[126] N 1 D Y Y Y Y Skin lesion segmentation with several classifiers Y 2-D Gabor wavelet, OTSU’s, median filtering, morphological operations, m- mediod classifier, SVM, Gaussian Mixture Modeling 2 97.26 96.48 96.9 N/A N/A
[127] N 3 D Y Y Y Y Classify the selected features of parallel fusion of features after segmentation Y Global maxima and minima, uniform and normal distribution, mean, mean deviation, HOG, Harlick method, M-SVM 2 93.2 93 97 93.5 N/A
[128] N 3 D Y/N N Y Y Optimize features of skin lesion and classify these features Y Particle Swarm Optimization, KNN, SVM, decision tree 2 N/A N/A N/A N/A N/A
[129] N 1 D Y Y Y Y Using high discriminative features for melanoma classification Y Histogram correction, OTSU’s, corner detection, Gray-level co-occurrence matrix features, Daugman’s rubber sheet model, RUSBoost, linear SVM 2 95 95 95 N/A 92
[130] N 3 D Y N Y Y Classify melanoma based on the main frequencies from dermoscopic images Y ABCD, HU Moments, GLCM, Structural Co-occurrence matrix, MLP, LSSVM, Minimal Learning Machine 2 89.93 92.15 89.9 N/A 91.05
[131] N 1 I N - Y Y Differentiate infrared spectroscopy of skin lesion Y Fourier transform infrared, Morphological information, PCA 2 85 N/A N/A N/A N/A
[132] N 1 D Y Y Y Y Classifying four skin lesions based on the Gray-level difference method N Gray-level difference method, ABCD, SVM 4 100 100 100 N/A N/A
[133] N 1 CCD N Y Y Segment skin lesion and using a hybrid classifier to classify these lesions Y ABCD, pigment distribution and texture, GLCM, Log-linearized Gaussian mixture neural network, KNN, linear discriminant analysis, LDA, SVM, majority vote 3 98.5 95 99.5 N/A N/A
[134] N 1 D Y Y Y Y Classify typical and atypical pigment network to diagnose melanoma Y Laplacian filter, median filter, polynomial curve fitting, connected component analysis, 2D Gabor filters, Gray-Level co-occurrence Matrix, Pearson product-moment co-relation, Probabilistic SVM, ANN 2 86.7 84.6 88.7 N/A N/A
[135] N 1 LIBS spectra N - Y Y Classification of skin tissue Y laser-induced breakdown spectroscopy, PCA, KNN, SVM 2 76.84 74.2 86.9 N/A N/A
[136] Y 2 A N N Y Y Classification of melanoma versus nevi by correlation bias reduction Y 2D wavelet packet decomposition, SVM recursive feature elimination (SVM -RFE) 2 98.28 97.63 100 N/A N/A
2 D Y
[137] Y 1 D N Y Y Y Classification of lesions into melanoma and nevi Y Gaussian Filter, KNN, SVM 2 96 97 96 97 N/A
[138] Y 1 A N Y N Y Using of blue-whitish structure for melanoma classification Y multiple instance learning (MIL) paradigm, Markov network, SVM 2 84.5 74.42 87.9 61.54 N/A
1 D Y
[139] N 1 A N Y N Y Classify lesion into melanoma or nevi based of color features Y K-means, pixel-based classification 2 89.42 N/A N/A N/A N/A
[140] Y 1 D Y Y Y Segmentation and classification of skin lesions Y Hough Transform, ABCD, SP-SIFT, LF-SLIC region labeling 2 96 N/A N/A N/A 93.8
[141] Y 2 D Y Y Y Y Detect the boundaries of lesions to classify into melanoma and nevi Y Kullback-Leibler divergence, local binary patterns, SVM, KNN 2 80.7 N/A N/A N/A N/A
[142] N 1 JPGE N Y Y Y A QuadTree-based melanoma detection system based on color Y hybrid thresholding method, adaptive histogram thresholding, Euclidean distance transform, QuadTree, Kolmogorov-Smirnov, SVM, ANN, LDA, random forests 2 73.8 75.7 73.3 N/A N/A
[143] Y 1 D Y N Y Y Segmentation and classification of skin lesion Y Median Filter, watershed segmentation, ABCD, GLCM, KNN, RF, SVM 2 89.43 91.15 87.71 N/A N/A
[144] Y 1 D Y N Y Y Segmentations of Enhanced dermoscopic lesion images Y wavelet transform, morphological operations, Gray Thresholding, Cohen–Daubechies–Feauveau biorthogonal wavelet, Active contour, Color enhancement, Adaptive thresholding, Gradient vector flow 2 93.87 N/A N/A N/A 92.72
[145] Y 1 D Y N Y Y Three distinct features to classify melanoma N ABCD, Otsu, Chan–Vese, Dull-Razor, ANN 2 98.2 98 98.2 N/A N/A
[146] N 2 A N N Y Y Classification three lesions based on shape, fractal dimension, texture, and color features Y recursive feature elimination, GLCM, fractal-based regional texture analysis, SVM, RBF 3 98.99 98.28 98.48 N/A 91.42
2 D Y
[147] N 2 A N Y N N Extraction of features using frequency domain analysis and classify these features Y Cross spectrum-based feature extraction, Spatial feature extraction, SVM-RFE with CBR 4 98.72 98.89 98.83 N/A N/A
2 D Y
[148] Y 1 D N Y N N Improve bag of dense features to Classify skin lesions Y Gradient Location, Orientation Histogram, color features, SVM 2 78 N/A N/A N/A N/A
[149] N 2 D Y N Y Y CAD system for clinical assist N chroma based deformable models, speed function, Chan-Vese, Wilcoxon Rank Sum statistics, Discrete Wavelet Transform, Asymmetry, and Compactness Index, SVM 2 88 95 82 N/A N/A
[150] Y 2 D Y N Y Y Segmentation of skin lesions using fuzzy pixels classification and histogram thresholding Y fuzzy classification, histogram thresholding 2 88.4 86.9 92.3 N/A 76
[151] N 1 D Y Y Y Y Lesion classification based on feature similarity measurement for codebook learning in the bag-of-features model Y Codebook learning, k-means, color histogram, scale-invariant feature transform (SIFT) 2 82 80 83 N/A N/A
1 C Y
[152] Y 1 D Y Y Y Y Segmentation and classification of skin lesions using Kernel sparse representation Y Sparse coding, kernel dictionary, K-SVD 3 91.34 93.17 91.48 N/A 91.25
[153] N 1 D N N Y Y Improve skin lesion classification using borderline characteristics Y Gradient-based Histogram Thresholding, Local Binary Patterns Clustering, Euclidean distance, Discrete Fourier Transform spectrum (DCT), power spectral density (PSD), SVM, Feedforward Neural Network (FNN) 2 91 68 96 N/A N/A
1 C Y
[154] Y 1 D N Y N Y Multi-resolution-Tract CNN N AlexNet, GPU 10 79.5 N/A N/A N/A N/A
[155] Y 1 D Y Y Y Y Automatic segmentation and classification for skin lesions Y CNN with 50 layers, residual learning, SoftMax, SVM, Augmentation, GPU 2 94 N/A N/A N/A N/A
[156] N 1 D Y N Y Y Classification of segmented skin lesions Y U-Net, Sparse coding, Deep Residual Network (DRN), Augmentation 2 76 82 62 N/A N/A
[157] Y 1 D Y N Y Y Segmentation of skin lesions using deep learning Y fully convolutional networks (FCN), VGG, Augmentation 2 N/A N/A N/A N/A 89.2
[158] Y 1 D Y Y Y Y Automatic Skin Lesion Segmentation Using CNN Y FCN with 19 layers, Jaccard Distance, Augmentation, GPU 2 95.5 91.8 96.6 N/A 92.2
[159] Y 3 D Y Y Y N Detection of melanoma using CNN and regularized fisher framework Y ResNet50, transfer learning, SoftMax, SVM, Augmentation, GPU 2 78.3 35 88.8 N/A N/A
1 C Y
[160] N 1 D Y N Y Y Evaluation of skin lesion using Levenberg neural networks and stacked autoencoders clustering Y ABCD, morphological analysis, Levenberg–Marquardt neural network 2 N/A 98 98 N/A N/A
[161] N 1 D Y Y N N Classify limited and imbalanced skin lesion images N Adversarial Autoencoder with 19 layers, Augmentation, GPU 2 N/A N/A 83 N/A N/A
[162] Y 1 D Y Y N N Ensemble different CNN for skin lesion classification Y GoogLeNet, AlexNet, ResNet, VGGNet, Sum of the probabilities, Product of the possibilities, Simple majority voting (SMV), Sum of the maximal probabilities (SMP), Weighted ensemble of CNN, Augmentation, GPU 3 86.6 55.6 78.5 N/A N/A
[163] N 1 D Y Y N N Skin lesion analysis using Multichannel ResNet Y Ensemble multi-ResNet50, ANN, concatenated Fully Connected Layer, Augmentation, GPU 3 82.4 N/A N/A N/A N/A
[164] N 1 A N Y Y Y Classify skin lesions based on border thickness Y GoogleNet, Breslow index 5 66.2 89.19 85 N/A N/A
[165] N 1 D Y Y Y Y Classify lesion using fused features that extracted from deep learning and image processing Y ResNet50, Telangiectasia Vessel Detection Algorithm, transfer learning, GPU 5 N/A N/A N/A N/A N/A
[166] Y 1 D Y Y N N Classify skin lesions over IoT using deep learning Y CNN with nine layers, IoT, 7 81.4 N/A N/A N/A N/A
[168] Y 3 D Y Y Y N Skin lesion classification using depthwise separable residual CNN Y Non-local means filter, contrast-limited adaptive histogram equalization, discrete Wavelet transforms, depthwise separable residual DCNN 2 99.5 99.31 100 N/A N/A
1 C Y
[169] Y 1 D Y Y Y Y Classify skin lesion using Attention Residual Learning Y Attention residual learning CNN, ResNet50, transfer learning, Augmentation, GPU 3 N/A N/A N/A N/A N/A
[170] Y 1 D Y Y N N Classify skin lesion using CNN with novel regularization method Y CNN 7 layers, standard deviation of the weight matrix, GPU 2 97.49 94.3 93.6 N/A N/A
[171] N 1 D Y N Y Y Classify skin lesion by Incorporating the knowledge of dermatologists to CNN Y ResNet50, DermaKNet, Modulation Block, asymmetry block, AVG layer, Polar AVG layer. 3 91.7 N/A 65.2 N/A N/A
[172] Y 1 - - Y Y Y Classify skin lesions based on the novel 7-point melanoma checklist using Multitask CNN Y Multitask CNN, 7-point melanoma checklist, Augmentation, GPU 3 87.1 77.3 89.4 63 N/A
[173] Y 1 D Y Y N N Classify skin lesion using Aggregated CNN Y ResNet50, ResNet101, fisher vector (FV), SVM, Chi-squared kernel, transfer learning, Augmentation, GPU 2 86.81 N/A N/A N/A N/A
[174] Y - - - Y N N Using CNN as a feature extractor for skin lesion images and classify these features Y Alex-Net, ECOC SVM, transfer learning 4 94.2 97.83 90.74 N/A N/A
[175] Y 1 D Y Y N N Classification of skin neoplasms using CNN and transfer learning with web and mobile application N Inception V3 (GoogleNet), transfer learning, Augmentation, GPU - 91 N/A N/A N/A N/A
[176] N 1 C N Y N Y An application used through the cloud to classify diseases of face skin Y LeNet-5, AlexNet and VGG16, transfer learning, Augmentation, GPU 5 N/A N/A N/A N/A N/A
[177] Y 2 D Y Y Y Y Skin lesion classification using 4 CNNs and ensembling of the final classification results Y AlexNet, VGG, ResNet-18, ResNet-101, SVM, MLP, random forest, transfer learning, Augmentation, GPU 3 87.7 85 73.29 N/A N/A
[178] Y 1 D Y Y N N Compare the ability of deep learning model to classify skin lesions with expert dermatologists Y ResNet50, local outlier factor, transfer learning, GPU 2 N/A 87.5 60 N/A N/A
[179] N 1 D N Y Y Y Evolving the deep learning model PSO, hybrid learning PSO, Firefly Algorithm, spiral research action, probability distributions, crossover, mutation, K-Means, VGG16, Augmentation, GPU 2 73.76 N/A N/A N/A N/A
2 D Y
[181] Y 3 D Y Y Y Y Combine and expand current segmentation CNN to enhance the classification of skin lesions Y U-Net, ResNet34, LinkNet34, LinkNet152, fine-tuning, PyTorch, transfer learning, Augmentation, GPU, Jaccard-loss, 2 N/A N/A N/A N/A N/A
[182] N 1 D Y N Y Y skin lesion segmentation based using geodesic morphological active contour Y Gaussian filter, Otsu’s threshold, deformable models, partial differential equation, Mathematical morphology, active geodesic contour, neural network, deep learning, statistical region merging (SRM), 2 94.59 91.72 97.99 N/A 89
[183] Y 1 - - Y N N Erythema migrans and the other confounding lesions of skin using Y ResNet50, Keras, TensorFlow, fine-tuning, transfer learning, Augmentation, GPU 4 86.53 76.4 75.96 N/A 92.09
[184] Y 1 D Y Y N N Comparing between the CNN and 112 dermatologists for skin lesion detection Y ResNet50, fine-tuning, transfer learning, Augmentation, GPU 5 N/A 56.5 98.2 N/A N/A
[185] Y 2 D Y Y Y Y Segmentation of skin lesions by ensemble the segmentation output of 2 CNN Y DEEPLABV3+, Mask R-CNN, ABCD, fine-tuning, transfer learning, Augmentation, GPU 2 94.08 89.93 95 N/A N/A
[186] Y 1 C Y N Y Y Proposing an algorithm that able to train CNN with limited data Y Inception V3 (GoogleNet), PECK, SCIDOG, SVM, RF, fine-tuning, transfer learning, Augmentation, GPU 2 91 92 93 N/A 90.7
[187] Y 1 C N Y N N Classify skin disease of faces using Euclidean space to compute L-2 distance between images Y ResNet152, InceptionResNet-V2, fine-tuning, Euclidean space, L-2 distance, transfer learning, Augmentation, GPU 4 87.42 97.04 97.23 N/A N/A
[188] Y 1 D Y Y Y Y Neural Architecture Search to increase the size of the network based on the dataset size Y VGG8, VGG11, VGG16, 5-fold validation, Neural Architecture Search (NAS), hill-climbing, transfer learning, Augmentation, GPU 2 77 N/A N/A N/A N/A
[189] Y 2 D Y Y Y Y Skin lesion segmentation and pixel-wise classification using encoder and decoder network Y CNN, encoder-decoder deep network with skip connection, softmax, transfer learning, Augmentation, GPU 2 95 97 96 N/A N/A
[190] Y 2 D Y Y Y Y Multitasks DCNN for skin lesion segmentation, detection, and classification Y Multitask DCNN, Jaccard distance, focal loss, Augmentation, GPU 2 95.9 83.1 98.6 N/A 95
[191] Y 1 D Y Y Y Y Light Lightweight CNN for skin lesion segmentation and classification Y Lightweight CNN, MobileNet, DenseNet, U-Net, focal loss, fine-tune, transfer learning, Augmentation, GPU 2 96.2 93.4 97.4 N/A 88.9
[192] N 1 D Y Y Y N Enhancement and classification of dermoscopic skin images Y StyleGANs, 43 CNNs (ResNet50, VGG11, VGG13, AlexNet, SENet, etc.) max voting, fine-tune, transfer learning, Augmentation, GPU 8 99.5 98.3 99.6 N/A 92.3
[193] Y 1 D Y Y Y Y Skin lesion classification based on CNN Y Deep-class CNN, Augmentation, GPU 2 75 73 78 N/A N/A
[194] Y 2 D Y Y Y Y Skin lesion segmentation using encoder-decoder FCN Y FCN, GPU 3 96.92 96.88 95.31 N/A N/A
[195] Y 3 D Y Y N Y Classify skin melanoma by extracting ROI and CNNS Y AlexNet, ResNet101, GoogleNet, Multiclass SVM, SoftMax, Histogram based windowing process, hierarchical clustering, fine-tune, transfer learning, Augmentation, GPU 3 98.14 97.27 98.60 N/A 88.64
1 C Y
[196] Y 3 D Y N Y Y The fusion of extracted deep features of a skin lesion for classification Y Biorthogonal 2-D wavelet transform, Otsu algorithm, Alex and VGG-16, PCA, fusion, fine-tune, transfer learning, Augmentation, GPU 2 99.9 99.5 99.6 N/A N/A
[197] N 3 D Y Y Y Y Ensemble multiscale and multi-CNN network Y EfficientNetB0, EfficientNetB1, SeResNeXt-50, fusion, fine-tune, transfer learning, Augmentation, GPU 7 96.3 N/A N/A 91.3 82
[198] Y 2 D Y Y Y Y Classification of skin lesions by multiclass multilevel using traditional machine learning and transfer learning Y K-means, Otsu’s thresholding, GLCM, ANN. k-fold validation, AlexNet, fine-tune, transfer learning, Augmentation, GPU 4 93.02 87.87 98.17 97.96 N/A
[199] N 2 D Y N Y Y Optimized algorithm for weight selection to minimize the output of the network Y The bubble-net mechanism, Whale optimization algorithm (WOA), Lévy Flight Mechanism, genetic algorithm, shark smell optimization (SSO), world cup optimization algorithm, grasshopper optimization algorithm (GOA), particle swarm optimization algorithm (PSO), LeNet, fine-tune, transfer learning, GPU 2 N/A N/A N/A N/A N/A
[200] Y 3 D Y N Y Y semantic skin lesion segmentation with parameters reducing Y U-Net, FCN8s, DSNet, Augmentation, GPU 7 N/A 87.5 95.5 N/A N/A
[201] N 3 D Y Y Y Y Different CNN network integration for segmentation and multiple classification stage Y Inception-v3, ResNet-50, Inception-ResNet-v2, and DenseNet-201 7 89.28 81 87.16 N/A 81.82
[202] Y 3 D Y Y Y Y Skin lesion segmentation based on CNN Y CIElab, FCN, U-Net, Augmentation, GPU 2 N/A N/A N/A N/A 87.1
[205] Y 1 D Y Y N N Classify the challenging dataset ISIC2018 Y AlexNet, 10-fold cross-validation, fine-tune, transfer learning, Augmentation, GPU 7 92.99 70.44 96 62.78 N/A
[204] Y 1 D Y Y N N Classify the challenging dataset ISIC2019 Y GoogleNet, Similarity score, bootstrap weighted SVM classifier, SoftMax, fine-tune, transfer learning, Augmentation, GPU 9 98.70 95.6 99.27 95.06 N/A