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Abstract: Background: Helicobacter pylori (H. pylori) infects approximately 50% of the world popula-
tion. Its infection is associated with gastropathies, extra-gastric digestive diseases, and diseases of
other systems. There is a canonical process from acute-on-chronic inflammation, chronic atrophic gas-
tritis (CAG), intestinal metaplasia (IM), dysplasia, and intraepithelial neoplasia, eventually to gastric
cancer (GC). H. pylori eradication abolishes the inflammatory response and early treatment prevents
the progression to preneoplastic lesions. Methods: the test-and-treat strategy, endoscopy-based
strategy, and screen-and-treat strategy are recommended to prevent GC based on risk stratification,
prevalence, and patients’ clinical manifestations and conditions. Challenges contain false-negative
results, increasing antibiotic resistance, decreasing eradication rate, and poor retesting rate. Present
diagnosis methods are mainly based on invasive endoscopy and noninvasive laboratory testing.
Results: to improve the accuracy and effectiveness and reduce the missed diagnosis, some advances
were achieved including newer imaging techniques (such as image-enhanced endoscopy (IEE), artifi-
cial intelligence (AI) technology, and quantitative real-time polymerase chain reaction (qPCR) and
digital PCR (dPCR). Conclusion: in the article, we summarized the diagnosis methods of H. pylori
infection and recent advances, further finding out the opportunities in challenges.
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1. Introduction

Helicobacter pylori (H. pylori) infection is chronic and usually acquired in childhood.
Globally, H. pylori infects an estimated 50% of the global population which is influenced
by socioeconomic status, sanitation, regions, and age. For continents, it was reported that
Africa had the highest prevalence of H. pylori infection (70.1%), whereas Oceania had the
lowest prevalence (24.4%). For countries, the prevalence of H. pylori infection varied from as
low as 18.9% in Switzerland to 87.7% in Nigeria [1]. One meta-analysis reported an overall
prevalence of 44.3% involving 410,879 participants from 73 countries in six continents, with
a rate of 50.8% in developing countries compared with 34.7% in developed countries, 42.7%
in females compared to 46.3% in males, and 48.6% in adults (≥18 years) compared to 32.6%
in children [2]. H. pylori gastritis was defined as an infectious disease and should be offered
eradication therapy. If there is H. pylori-associated dyspepsia or functional dyspepsia,
eradication of H. pylori is the first-line treatment. Symptoms can be attributed to H. pylori
gastritis if sustained symptoms get remission after 6–12 months [3,4]. Regarding gastric
cancer (GC), some potential changes caused by H. pylori infection may contribute to the
progress of GC, which includes gastric dysbacteriosis [5], changing gastric mucosal, and
cellular immunity as one component of inflammatory microenvironment [6,7], aberrant
deoxyribonucleic acid (DNA) methylation [8], abnormal expression of ribonucleic acids
(RNAs) (micro RNAs, long noncoding RNA, and messenger RNAs) [9,10], and single-
nucleotide polymorphisms [11], et al. Chronic atrophic gastritis (CAG) and intestinal
metaplasia (IM) are precancerous conditions in which dysplasia (neoplastic precancerous
lesion) and adenocarcinoma may occur. GC incidence of mild, moderate, and severe atro-
phy is 0.04–0.10%/year, 0.12–0.34%/year, and 0.31–1.60%/year, respectively [12,13]. GC
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incidence in patient with IM is 0.038–1.708%/year, and the progressing rate to dysplasia
in IM patient was estimated to be 1.251%/year [14,15]. Endoscopic assessment, H. pylori
infection diagnosis, and surveillance are recommended in patients with precancerous con-
ditions. Endoscopically visible lesion harboring low- or high-grade dysplasia or GC should
undergo staging and treatment [16,17]. H. pylori eradication heals acute inflammation and
nonatrophic chronic gastritis and may lead to regression of atrophic gastritis and reduce
the risk of GC in patients with nonatrophic and atrophic gastritis. H. pylori eradication is
recommended in patients who have family history of GC, CAG, IM, dysplasia, or cancer
and in patients with gastric neoplasia or early GC after endoscopic therapy or by subtotal
gastrectomy to prevent metachronous recurrence [16,17]. Diagnosis is one of the cores
of H. pylori management and the prevention of GC. On the aspect of potential changes
associated with H. pylori infection mentioned above, these changes are “invisible” and need
more further research to achieve the translation of their visualization from basic study to
clinical practice, similar with present diagnosis methods. In this review, we concluded
the diagnosis methods of H. pylori infection and recent advances including endoscopic
diagnosis and laboratory diagnosis in detail and hope to improve above issues from the
aspect of diagnosis methods.

2. Challenges of H. pylori Management and Recommended Detecting Strategy

The maximum benefit of H. pylori eradication is obtained if it is done while the mu-
cosal damage is still nonatrophic [3]. The most common regimens as first-line treatment of
H. pylori are the clarithromycin-containing triple therapy extended for more than 7 days
and the nonbismuth (sequential and concomitant) and bismuth quadruple therapies [18].
The traditional standard triple therapy is associated with antibiotic resistance, which can
further undermine its efficacy and result in low eradication rate [18]. Bismuth-containing
quadruple therapy is confirmed as an effective regimen for eradicating H. pylori, especially
in strains with antibiotic resistance [19,20]. The choice of H. pylori eradication regimen
should be based on the local prevalence of clarithromycin resistance and the previous use
of macrolides [19]. Decreasing eradication rate because of antibiotic resistance emerged
as a main clinical problem. One meta-analysis including 178 studies from 65 countries
in World Health Organization Regions reported primary and secondary resistance rates
to clarithromycin, metronidazole, and levofloxacin were ≥15% [21]. A prospective study
investigated in 24 centers from 18 European countries reported that primary antibiotic
resistance of H. pylori was 21.4% for clarithromycin, 15.8% for levofloxacin, and 38.9%
for metronidazole, associated with the consumption in the community of macrolides and
intermediate-acting macrolides [22]. One research covering 176 articles from 24 countries
in the Asia-Pacific region showed primary H. pylori resistance rates were 17% for clar-
ithromycin, 44% for metronidazole, 18% for levofloxacin, 3% for amoxicillin, and 4% for
tetracycline [23]. In China, primary resistance rate to clarithromycin was 20–50% [24]. The
resistance rate of clarithromycin in Korea was 17.8–31.0% [25], and the clarithromycin
resistance rate in Japan was 38.5% [26]. Resistance to clarithromycin was significantly
associated with failure of clarithromycin-containing regimens. It should be avoided in
countries where clarithromycin resistance (>15%) or proven high local eradication rates
(<80–85%) [27]. Local surveillance networks are required to select appropriate eradication
regimens for each region. Before eradication, test clarithromycin resistance in advance is
acceptable. For example, in the Maastricht V/Florence Consensus Report, clarithromycin
susceptibility testing is recommended to be performed either via a standard method (an-
tibiogram) after culture or by a molecular test directly on the gastric biopsy specimen,
when a standard clarithromycin-based treatment is considered as the first-line therapy [28].
PCR or sequencing is newly recommended to test resistance [25]. However, cost, accu-
racy and availability are also factors influencing resistance test and further evaluation is
required. After eradication, it is recommended that all patients should be reassessed to
confirm eradication, and recommended tests include the urea breath test (UBT) and the
monoclonal H. pylori stool antigen test (Hp SAT) [4,28]. However, retesting rate ranged
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from 30% to 70% [29]. Poor retesting rate is also a concern in clinical practice, maybe at-
tributed to patients’ medical compliance, ages, test convenience, potential risk of indication
diseases for H. pylori, or followup system, etc. For example, patients receive eradication
because of a family history of GC, precancerous conditions or lesion, early GC, gastric
mucosa-associated lymphoid tissue (MALT) lymphoma or complicated peptic ulcer dis-
eases (bleeding, perforation, obstruction), they will be more willing to retest the primary
eradication effect. In addition, patients who failed primary eradication also had a signifi-
cantly higher risk of future hospitalization for nonvariceal upper gastrointestinal bleeding,
particularly among older patients and selective serotonin reuptake inhibitors users [30,31].
H. pylori recurrence remains another problem. A meta-analysis including 132 studies from
45 countries reported the global annual recurrence, reinfection and recrudescence rate of
H. pylori were 4.3%, 3.1% and 2.2%, respectively, and they were associated with socioeco-
nomic and sanitary conditions [32]. Aimed at different people for managing H. pylori, there
are three strategies. A test-and-treat strategy is appropriate for uninvestigated dyspepsia
with noninvasive tests such as UBT, which is preferred rather than prescribing proton
pump inhibitor (PPI) or endoscopy [33–35]. An endoscopy-based strategy followed by
biopsies of Sydney system should be considered in patients with dyspeptic symptoms,
patients with alarm symptoms, or older patients, particularly in low prevalence H. pylori
populations (<10%). A screen-and-treat strategy is recommended in communities at high
risk of GC [36].

3. Endoscopic Diagnosis
3.1. Conventional White Light Imaging (WLI)

Globally, the prevalence of gastritis is near 50%, which was shown from 40.7% to
56.0% and included 20–30% chronic atrophic gastritis. H. pylori-negative gastritis was
from 17.7% to 20.5%, in which chronic gastritis accounted for 10–15% [37–39]. It indi-
cates that H. pylori infection is generally consistent with the prevalence of gastritis and
H. pylori-positive gastritis generally accounts for more than 80%. Therefore, it is the basis
of clinical application of gastritis in Kyoto classification, as only a small proportion of
gastritis may not be infected by H. pylori. Endoscopic findings of conventional white light
imaging (WLI) can initially predict the status of H. pylori and the suspicious infection
according to gastritis in Kyoto classification, and then biopsies are taken according to
Sydney system [3,40]. Kyoto classification of gastritis including diffuse redness, regular
arrangement of collecting venules (RAC), fundic gland polyp (FGP), atrophy, xanthoma,
hyperplastic polyp, map-like redness, intestinal metaplasia, nodularity, mucosal swelling,
white and flat elevated lesion, sticky mucus, depressive erosion, raised erosion, red streak,
and enlarged folds. Regarding validation research, RAC, FGP, and red streak were demon-
strated with satisfactory diagnostic odds ratios (DOR) for predicting uninfected status.
Nodularity, diffuse redness, mucosal swelling, enlarged fold and sticky mucus were sig-
nificantly associated with current infection. Map-like redness was responsible for past
infection, and the overall diagnostic accuracy rate of Kyoto classification of gastritis was
more than 80% [41–44]. Furthermore, with regard of uninfected status, one study showed
RAC had excellent negative predictive value (NPV) of about 90% and sensitivity value of
up to 85% [45]. A meta-analysis including 4070 patients also showed RAC was a valuable
endoscopic feature of uninfected status with 0.80 sensitivity, 0.97 specificity, and 0.97 area
under the curve (AUC) [46]. With regard of current infection, Kyoto classification score
(including atrophy, IM, enlarged folds, nodularity, and diffuse redness) ≥2 could predict
H. pylori infection with 89.7% accuracy, 78.3% sensitivity, and 92.0% specificity in patients
with a high-negative titer of anti-H. pylori antibody [47]. One study showed an AUC for
H. pylori infection of WLI was 0.81 in the corpus and 0.71 in the antrum and indigo carmine
contrast (IC) method was useful in gastric swelling areas [48]. Other research reported
0.82–0.92 AUC used self-assembled score systems to predict H. pylori infection [49,50].
However, there are two problems that cannot be ignored in real time clinical practice. The
first one is the professional level and experience, as well as interobserver agreement. A brief
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mini-lecture on the Kyoto Classification of Gastritis could improve the accuracy from 90.3%
to 96.5% [51]. The second one is the clinical routine that biopsy rather than other detecting
methods (UBT, Hp SAT, or serological test) will be taken after primary prediction via Kyoto
Classification of Gastritis. From the data mentioned above, Kyoto Classification of Gastritis
is more characterized with higher specificity and slightly inferior sensitivity. One clinical
research reported no endoscopic features (alone or in combination) showed a sensitivity of
more than 57% for H. pylori infection [52], which may further result in increasing missed
diagnosis rate. The uneven distribution of H. pylori inevitably leads to sampling errors
in biopsy-based examinations including rapid urease test (RUT), histology, or culture.
Biopsies from multipoints can improve the accuracy of detection. Two samples (one from
the antrum avoiding areas of ulceration and obvious IM and one from normal appearing
corpus) can provide the highest yield for RUT, as well as time saving [53]. The sensitivity
of RUT was reported to vary between 80% and 100%, and its specificity is between 97%
and 99% [54]. If less than 104 bacterial cells are present in the gastric biopsy, false-negative
results are obtained most probably [55]. It is essential to improve the sensitivity. Therefore,
many efforts were done on newer imaging techniques such as image-enhanced endoscopy
(IEE) and aiding systems such as AI.

3.2. Image-Enhanced Endoscopy (IEE)

IEE including magnifying endoscopy and digital chromoendoscopy such as narrow-
band imaging (NBI), autofluorescence imaging (AFI), blue laser imaging (BLI), and linked
color imaging (LCI) offered advantages in diagnosing H. pylori.

Magnifying endoscopy (ME) can provide more precise information concerning the
collecting venules, the network of capillaries surrounding the gastric pits, the swelling
of the surface epithelium between pits, and the enlargement and destruction of the pits,
which was considered useful for the diagnosis of histopathologic gastritis [56,57]. Type Z-0:
subepithelial capillary network (SECN) with regular arrangement of collecting venules and
gastric pits resembling pinholes. The sensitivity, specificity, positive predictive value (PPV),
and NPV of the type Z-0 pattern for predicting normal gastric mucosa were 90.3–92.7%,
93.9–100%, 100%, and 83.8% [58–60]. Types Z-1 and 2 patterns (enlarged gastric pits, irreg-
ular or loss of SECN, and an absence of collecting venules) were reported with sensitivity,
specificity, PPV, and NPV for predicting H. pylori infection were 100%, 92.7%, 83.8%, and
100% [58,59]. A meta-analysis involving 1897 patients reported the pooled sensitivity and
specificity of ME to predict H. pylori infection were 0.89 and 0.82, respectively, with an
AUC of 0.95 [61]. Compared with that of conventional WLI, ME can be superior for the
diagnosis of H. pylori gastritis. The “pit plus vascular pattern” classification in the gastric
corpus observed by ME was able to accurately predict the status of H. pylori infection with
a pooled sensitivity and specificity of 0.96 and 0.91, respectively, with an AUC of 0.99 [61].
The sensitivity and specificity of irregularly arranged antral ridge pattern for the prediction
of antral gastritis were 89.3–96.3% and 65.2–73.7%, respectively [60,62]. Indigo carmine
staining increased sensitivity and specificity up to 97.6% and 100% for corporal gastritis,
and up to 88.4% and 75.0% for antral gastritis, respectively [60].

3.3. Electronic Chromoendoscopy

Non-M-NBI endoscopy is an optical image enhancement technique to enhance the
visualization of mucosal microscopic structure and capillaries of the superficial mucosal
layer. One study firstly and retrospectively found NBI could be a promising method
for H. pylori infection identification [63]. According to five gastric mucosal morphologic
patterns of non-M-NBI, type 3 (rod-shaped gastric pits with prominent sulci), 4 (ground
glass-like morphology), or 5 (dark brown patches with bluish margin and irregular bor-
der) morphologies were statistically significant in predicting H. pylori positive status and
achieved 94.28% sensitivity, 96.66% specificity, 98.50% PPV, and 87.87% NPV [64]. A further
retrospective study on the site-specific biopsy guided by NBI of abnormal mucosa rather
than the random biopsy for the diagnosis of H. pylori showed higher 95.4% sensitivity
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and 97.3% specificity [65]. However, a multicenter prospective study demonstrated no
difference in the accuracy of diagnosing H. pylori gastritis between NBI and WLI (74% NBI
vs. 73% WLI), although NBI demonstrated slightly higher sensitivity (69% vs. 57) but
reduced specificity (67% vs. 79%) [66].

M-NBI endoscopy clearly visualizes superficial gastric mucosal patterns and capillary
patterns. In one study including 106 patients, gastric corpus mucosal patterns observed
by M-NBI were divided into the following categories: normal: small, round pits with
regular subepithelial capillary networks; type 1: slightly enlarged, round pits with unclear
or irregular subepithelial capillary networks; type 2: obviously enlarged, oval or prolonged
pits with increased density of irregular vessels, and type 3: well-demarcated oval or tubule-
villous pits with clearly visible coiled or wavy vessels. H. pylori infection positive ratios of
normal and types 1, 2, and 3 patterns were 7.5%, 92.9%, 94.5%, and 66.7%, respectively [67].
In another study including 90 patients, the mucosa of the gastric antrum was observed
by M-NBI, and the gastric microstructure was categorized into five types (A–E) (type B:
elongated open branch-like pits with regular microvasculature; type C: dilated pits and
increased branching microvasculature). The sensitivity and specificity of type B alone,
type C alone, and types B + C for the detection of H. pylori infection were 52.2% and 87.%,
22.8% and 92.2 %, and 75.0% and 79.1%, respectively [68]. Compared with that of WLI, the
sensitivity, specificity, PPV, and NPV of M-NBI were higher (0.91 vs. 0.79, 0.83 vs. 0.52, 0.88
vs. 0.70, and 0.86 vs. 0.63, respectively) in a study with 56 patients after ESD [69].

3.4. Linked-Color Imaging and Blue Laser Imaging

Linked color imaging (LCI) can show mucosal color similar to WLI but produce
more color patterns of the mucosa due to emission intensity at wavelengths different
from WLI [70]. These colors allow endoscopists to diagnose a variety of lesions such as
inflammation areas because of the high color contrast with surrounding mucosa. Blue laser
imaging (BLI) is another IEE that combines narrow-spectrum blue laser with white light to
make up the deficiency of NBI [71]. The push of a single button during endoscopy allows
one to switch between LCI and BLI. LCI is brighter than WLI, and BLI is brighter than
NBI. LCI produces particularly bright images in the stomach and is useful when screening
gastric lesions, whereas BLI-bright and BLI are also useful in displaying mucosal structure
and vessels in close-up views inside the stomach, as well as relatively close views, especially
the antrum [72]. Some research has indicated H. pylori infection could be identified by
LCI and BLI. With regard of BLI, one study included patients’ mucosal patterns observed
by BLI and divided into Spotty, Cracked, and Mottled pattern groups with results of
12/77, 105/17, and 138/90 negative/positive for H. pylori infection, respectively. The
specificity and PPV for endoscopic diagnosis with positive H. pylori infection based on the
Spotty pattern were 95.3% and 86.5% [73]. On the aspect of LCI which is more suitable in
wide-lumen organ than BLI, studies based on Kyoto Classification of Gastritis to assess
the visibility of LCI, WLI, and BLI found that LCI could improve visibility especially for
diffuse redness, spotty redness, map-like redness, patchy redness and red streaks [74–76].
When compared with that of WLI, LCI could identify H. pylori infection by enhancing
endoscopic images of the diffuse redness of the fundic gland and achieve more optimal
diagnostic power (accuracy 85.8% vs. 74.2%, sensitivity 93.3% vs. 81.7%, and specificity
78.3% vs. 66.7%) [77]. Another study reported that the application of LCI at the corpus to
identify H. pylori infection could be reliable and superior to WLI with the highest accuracy
among groups (81.2% vs. 64.3–76.5%), as well as higher sensitivity (85.41%) and specificity
(79.71%) [78]. A prospective study also indicted the accuracy of LCI was higher than that
of WLI (accuracy 86.6% vs. 79.5%, sensitivity 84.4% vs. 84.4%, and specificity 88.9% vs.
74.6%) [79]. When compared with ME, one study recruiting 122 patients (36 had H. pylori
infection) showed that LCI could play a similar role with ME and demonstrated diagnostic
abilities of H. pylori infections by LCI (78.38% accuracy, 70.97% sensitivity, 82.5% specificity,
59.46% PPV and 87.84% NPV), ME (81.98% accuracy, 81.25% sensitivity, 83.87% specificity,
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64.10% PPV and 91.67% NPV), and both LCI and ME (78.38% accuracy, 80.65% sensitivity,
76.25% specificity, 57.78% PPV, and 92.42% NPV) [80].

i-Scan digital chromoendoscopy is also a digital contrast method to enhance minute
mucosal structures and subtle changes in color [81]. One prospective study showed the
overall diagnostic accuracy of i-scan was higher at 97% compared to 78% of WLI, and a
greater proportion of patients were identified as endoscopic features of H. pylori under
i-scan examination (79/146 vs. 45/146) [82]. Another research reported that the type
2 + 3 patterns of M-i-scan was superior to ME for the prediction of H. pylori infection
in 84 patients (accuracy: 94.0% vs. 84.5% and specificity: 93.5% vs. 80.6%), while the
sensitivity of the two modes was the same (95.5%) (type 2 meant honeycomb type SECN
with regular round pits with or without sulci, in the absence of collecting venules, and type
3 meant loss of normal SECN and collecting venules, with white enlarged pits surrounded
by erythema) [83].

Confocal laser endomicroscopy (CLE) is a new endoscopy technique for subsurface
analysis of the gastric mucosa and in vivo histology examination during endoscopy. CLE
was used for the first time to detect H. pylori in vivo reported in 2005 [84]. In a prospec-
tive study, CLE image criteria for H. pylori infection were established in a pilot study
of 20 patients, and images of 83 consecutive patients was observed by CLE with any of
the three features (white spots, neutrophils and micro-abscesses) with 92.8% accuracy,
89.2% sensitivity, and 95.7% specificity for predicting H. pylori infection in vivo during
endoscopy [85].

3.5. AI: One of Present Advances in Endoscopic Diagnosis of H. Pylori Infection

In the field of endoscopy, the application of AI has received wide attention including
gastrointestinal cancers and benign diseases based on endoscopic images, videos and
histopathologic slides [86]. H. pylori infection, as a dominant cause of CAG and GC, was
also detected via AI methods based on endoscopic images. One meta-analysis including
8 studies and 1719 patients (385 patients with H. pylori infection vs. 1334 controls) diagnosed
by WLI, BLI, or LCI reported that the sensitivity, specificity, DOR, and AUC of AI for the
prediction of H. pylori infection were 0.87, 0.86, 40, and 0.92, respectively. The accuracy
of the AI algorithm reached 82% for discrimination between noninfected images and
posteradication images [87]. Regarding WLI, a DCNN model trained and verified by WLI
of gastric antrum showed a power in diagnosing atrophic gastritis with 94% accuracy,
0.95 sensitivity, and 0.94 specificity, which were higher than those of experts [88], and AI
diagnosis could be done in a considerably shorter time less than 200 s [89,90]. On the
aspect of ME, a CNN system was pretrained using 1492 early gastric cancer (EGC) and 1078
H. pylori associated gastritis images from M-NBI to differentiate between EGC and gastritis
and evaluated by a separate test data set (151 EGC and 107 gastritis images based on ME-
NBI). Finally, it achieved a diagnostic ability with 85.3% accuracy, 95.4% sensitivity, 71.0%
specificity, 82.3% PPV and 91.7% NPV, respectively, and 51.83 images/second overall test
speed (0.02 s/image) [91]. In terms of LCI, a study developed a machine learning method to
diagnose H. pylori infection with 87.6% accuracy, 90.4% sensitivity, 85.7% specificity, 80.9%
PPV and 93.1% NPV [92]. One study developed two different CAD systems, one for LCI
(LCI-CAD) and one for WLI (WLI-CAD) and achieved a comparable diagnostic accuracy to
that of experienced endoscopists and a higher diagnostic accuracy of the LCI-CAD system
(84.2% for uninfected, 82.5% for currently infected, and 79.2% for posteradication status)
than that of WLI-CAD [93]. Another study used GoogLeNet, a 22-layer DCNN pretrained
by BLI-bright and LCI and tested by 222 patients (105 H. pylori-positive) to achieve a
significantly higher diagnostic ability of H. pylori infection from BLI-bright (0.96 AUC,
96.7% sensitivity, and 86.7% specificity) and LCI (0.95 AUC, 96.7% sensitivity and 83.3%
specificity) than that of WLI (0.66 AUC, 66.7% sensitivity and 60.0% specificity) [94]. The
research indicates that AI aiding different endoscopies to diagnose H. pylori infection can
achieve acceptable accuracies in preclinical stage and more efforts in need to promote the
real time endoscopic diagnosis directly in the future.
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4. Noninvasive Tests

Conventional noninvasive tests commonly include UBT, Hp SAT and serological test.
UBT is the best recommended noninvasive test in the test-and-treat strategy and

verifying test after eradication [28]. It can be divided into 13C-UBT and 14C UBT. The
13C-UBT is the best approach to diagnose H. pylori infection because of its simplicity, high
accuracy, and being less affected by focal distribution of H. pylori. 14C UBT cannot be
used in children and pregnant women due to the fear of its radiation [95–97]. Two meta-
analyses showed excellent performances of 13C-UBT. One reported 95% sensitivity and 95%
specificity, as well as 14C UBT with 95% sensitivity and 95% specificity [98], and another one
reported 96% sensitivity and 94% specificity, as well as 14C UBT with 97% sensitivity and
91% specificity [99]. There are some restrictions of using UBT, including discontinuing PPI
for at least 2 weeks and antibiotics and bismuth compounds for at least 4 weeks because of
their anti-H. pylori activity and the decreasing load of H. pylori [100,101], and some possible
specific conditions (peptic ulcer bleeding [102], gastric MALT lymphoma [24], and severe
gastric atrophy and IM [103]), as well as detection value close to the cutoff value [104].
While H2 receptor antagonists without anti-H. pylori activity have minimal effect on the
sensitivity of UBT and antacids do not impair the sensitivity of UBT or SAT [105].

Hp SAT is considered as an alternative in detecting H. pylori and retesting after erad-
ication, as well as diagnosing H. pylori infection in children and postgastric surgery pa-
tients [106,107]. Two types of SAT include polyclonal antibodies based on enzyme im-
munoassay (EIA) and monoclonal antibody on immunochromatography (ICA) [108]. One
meta-analysis reported 91% sensitivity and 93% specificity of SAT [109]. Another one
showed 92.4% sensitivity and 91.9% specificity [110]. For the confirmation of H. pylori
eradication more than 4 weeks after therapy, 86% sensitivity and 92% specificity was shown
in one meta-analysis [109], and 88.3% sensitivity and 92% specificity in another one [110].
One study demonstrated 91.6% sensitivity and 98.4% specificity of the monoclonal SAT
and 87.0% sensitivity and 97.5% specificity of the polyclonal SAT [111]. Monoclonal SAT
was more accurate after eradication therapy than polyclonal SAT [109,112]. There are some
restrictions when using Hp SAT. Low density of H. pylori in the stomach and a low antigen
load in the stool are considered as the most common factors causing false negative tests
which can be caused using bismuth, PPIs or antimicrobials, unformed or watery stool sam-
ples and the interval time after eradication [113,114]. Also, temperature and the interval
between stool sample collection and measurement also affect the results of SAT [115].

Serological test can be used for children and some specific conditions (peptic ulcer
bleeding, gastric MALT lymphoma, severe gastric atrophy, and IM and the use of PPI
or antibiotics), which may lead to a low bacterial load associated with false-negative
results. It is not recommended for the diagnosis of an active H. pylori infection and
detecting H. pylori after eradication because the antibodies may remain positive for decades
after H. pylori eradication [116,117]. Positive results cannot distinguish between active
infection and past exposure to H. pylori, and further confirmation by other tests is required.
The detection of specific H. pylori antibodies in urine and saliva has no current role in
patient management but can be helpful for epidemiological studies [118]. Serological
tests can be used only after validation, proposed in the Maastricht V/Florence Consensus
Report [28], as the accuracy depends on the antigen used in commercial kit and the
prevalence rate of specific H. pylori strains employed as the source of antigen in different
geographic locations, as well as the cut-off values. A meta-analysis including 34 studies
with 4242 participants (2477 had H. pylori infection). A threshold of >7 units/mL was used
in two studies involving 97 participants with 98% sensitivity and 71% specificity, and two
studies involving 234 participants used a threshold of ≥300 units with 91% sensitivity and
86% specificity [98]. In Kyoto global consensus report on H. pylori Gastritis, serological
tests (pepsinogen I and II and H. pylori antibody) are useful for diagnosing chronic gastritis
and gastric atrophy and identifying individuals at increased risk for gastric cancer [119].
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5. Recent Advances of PCR: QPCR and DPCR

Polymerase chain reaction (PCR) presently contains three types: conventional PCR,
quantitative real-time PCR (qPCR), and digital PCR (dPCR). PCR amplifies DNA and
generates several millions of copies of a specific segment of DNA from a minute amount
of starting material. qPCR is based on PCR and measures the amount of PCR product
after each round of amplification using a fluorescent readout. dPCR enables the absolute
quantification of target nucleic acids present in a sample and alleviates the shortcomings
of qPCR [120]. PCR methods can detect H. pylori in different specimens such as human
saliva, stool, gastric juice, and biopsies and dental plaques. Two kinds of housekeeping
genes including 16S rRNA and 23S rRNA were applicated in clinical detection of H. pylori
infection and antibiotic resistance. One meta-analysis demonstrated the DOR of genes, and
their performance ranking used stool PCR test was as follows: 23S rRNA 152.5, 16S rRNA
67.9 and glmM 68.1 [121]. Several studies of qPCR testing gastric biopsy, gastric juice, or
stool showed more than 90% or 95% sensitivity to detect H. pylori and 100% sensitivity to
test antibiotic resistance in patients with dyspepsia and similar or higher diagnosis ability
compared with that of histological methods [122–124]. For example, a prospective multi-
center study including 1200 adult patients compared qPCR performed on stool samples to
detect H. pylori glmM gene and mutations in 23S rRNA conferring clarithromycin resistance
with culture/E test of two gastric biopsy samples. It demonstrated 96.3% sensitivity, 98.7%
specificity, and 98.2% accuracy for detecting H. pylori by qPCR and 100% sensitivity, 98.4%
specificity, and 98.7% accuracy for detecting resistance to clarithromycin [125]. On the
aspect of dPCR, studies simultaneously quantified H. pylori clarithromycin-resistant and
-susceptible 23S (A2142G, A2142C, and A2143G) and 16s rRNA gene alleles in gastric
biopsy and stool samples using droplet digital PCR (ddPCR) and indicated that ddPCR
could detect H. pylori and its clarithromycin resistance-associated genotypes and might
aid in immediately testing H. pylori status after eradication [126–128]. ddPCR was also
useful in detecting low-density “occult” H. pylori infection in a significant proportion
(36%) of patients diagnosed as negative by conventional methods [129]. Nested dPCR, as
another type of dPCR, was also useful to test clarithromycin resistance performed on stool
samples in middle school students [130]. As qPCR and dPCR, especially the latter one,
are characterized as high sensitivity and the ability to test antibiotic resistance in less time,
clarithromycin resistance test by PCR is recommended in the management of H. pylori
infection. It may be also useful to find false-negative results caused by low density of
H. pylori or its antigen. There are also some issues that still need our attention, such as
the target genes to design the primer sets, commercial kits to extract DNA from stool, and
false-positive results.

6. Conclusions

H. pylori infection is chronic and prevalent. Early detection and eradication can abolish
the aggregation of chronic inflammation and atrophy and prevent GC. There are some
challenges in clinical practice such as false-negative results, increasing antibiotic resistance,
decreasing eradication rate, and poor retesting rate. In this review, we concluded present
diagnosis methods mainly based on invasive endoscopy and noninvasive laboratory testing.
From the view of endoscopy, some advances such as ME, LCI, and AI demonstrated better
diagnostic powers than that of WLI to reduce the false-negative results and contribute to the
present targeted biopsy and the future achievement of direct endoscopic diagnosis without
biopsy. Meanwhile, potential noninvasive methods real-time detecting H. pylori during
endoscopy qualitatively and quantitatively to replace biopsy is also equally valuable to be
studied and developed. From the view of laboratory testing, the development of PCR can be
helpful in antibiotic resistance and eradication rate. Regarding retesting rate, it is necessary
to simplify the routine (retesting at least 4 weeks after eradication), besides conducting
followup and surveillance system. As PCR is characterized with a high sensitivity, it may
be useful to detect H. pylori status immediately after eradication. Therefore, it is promising
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in better diagnosis and management of H. pylori infection and preventing gastric cancer
with the development of technology optimization and innovation.
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