Skip to main content
. 2021 Jul 31;11(8):1384. doi: 10.3390/diagnostics11081384

Table 2.

Comparison on the MRNet dataset.

Pathology Method ROC-AUC ACC SE SP
Abnormality MRNet 0.936 0.883 0.947 0.64
ELNet 0.941 0.917 0.968 0.72
MRPyrNet (with MRNet) ––– ––– ––– –––
MRPyrNet (with ELNet) ––– ––– ––– –––
TransMed-T (Ours) 0.974 ± 0.007 0.907 ± 0.010 0.955 ± 0.002 0.728 ± 0.016
TransMed-S (Ours) 0.976 ± 0.004 0.918 ± 0.006 0.958 ± 0.011 0.720 ± 0.000
TransMed-B (Ours) 0.958 ± 0.018 0.898 ± 0.012 0.951 ± 0.016 0.696 ± 0.020
ACL Tear MRNet 0.955 ± 0.005 0.847 ± 0.005 0.722 ± 0.000 0.950 ± 0.009
ELNet 0.940 ± 0.001 0.808 ± 0.000 0.648 ± 0.019 0.939 ± 0.015
MRPyrNet (with MRNet) 0.976 ± 0.003 0.886 ± 0.010 0.815 ± 0.019 0.944 ± 0.009
MRPyrNet (with ELNet) 0.960 ± 0.015 0.881 ± 0.034 0.827 ± 0.039 0.924 ± 0.030
TransMed-T (Ours) 0.969 ± 0.009 0.938 ± 0.009 0.935 ± 0.021 0.939 ± 0.008
TransMed-S (Ours) 0.981 ± 0.011 0.949 ± 0.003 0.963 ± 0.007 0.938 ± 0.005
TransMed-B (Ours) 0.949 ± 0.013 0.931 ± 0.012 0.924 ± 0.027 0.936 ± 0.006
Meniscus Tear MRNet 0.843 ± 0.016 0.778 ± 0.027 0.750 ± 0.067 0.799 ± 0.009
ELNet 0.869 ± 0.031 0.775 ± 0.044 0.814 ± 0.109 0.745 ± 0.075
MRPyrNet (with MRNet) 0.889 ± 0.006 0.808 ± 0.008 0.853 ± 0.048 0.775 ± 0.052
MRPyrNet (with ELNet) 0.895 ± 0.008 0.761 ± 0.042 0.872 ± 0.106 0.676 ± 0.149
TransMed-T (Ours) 0.939 ± 0.015 0.830 ± 0.024 0.869 ± 0.018 0.800 ± 0.032
TransMed-S (Ours) 0.945 ± 0.011 0.848 ± 0.016 0.881 ± 0.037 0.824 ± 0.026
TransMed-B (Ours) 0.952 ± 0.012 0.853 ± 0.018 0.879 ± 0.039 0.834 ± 0.007