Table 1. Overview of Different Topics and Applications of ML-FFs Discussed in This Sectiona.
category | ref | ML-FF | max. Natoms | reference theory |
---|---|---|---|---|
electronic effects | Sauceda et al.70 | sGDML | 21 | CCSD(T), CCSD |
Sauceda et al.214 | sGDML | 21 | CCSD(T), CCSD | |
Sauceda et al.69 | sGDML | 21 | PBE, CCSD(T), CCSD | |
thermodynamics | Morawietz et al.260 | BP-NNP | 6912 | RPBE, BLYP |
Andrade et al.261 | DeepMD | 426 | SCAN | |
Deringer et al.262 | GAP | 1000 | LDA | |
Behler et al.263 | BP-NNP | 64 | LDA | |
Bartok et al.264 | GAP | 23 496 | PW91 | |
Deringer et al.265 | GAP | 4096 | PW91 | |
Bonati et al.266 | DeepMD | 680 | SCAN | |
Brickel et al.213 | PhysNet | 6 | MP2 | |
reactions | Unke et al.267 | RKHS | 3 | UCCSD(T) |
Denis et al.268 | RKHS | 3 | UCCSD(T)-F12a | |
Lu et al.269 | PIP-NN | 7 | UCCSD(T)-F12a | |
Sweeny et al.270 | PhysNet | 7 | MP2 | |
Käser et al.271 | PhysNet | 7 | MP2 | |
Rivero et al.272 | PhysNet | 19 | M06-2X | |
Liu et al.273 | BP-NNP | 38 | RPBE | |
nuclear quantum effects | Chmiela et al.105 | GDML | 21 | PBE |
Chmiela et al.69 | sGDML | 21 | CCSD, CCSD(T) | |
Schütt et al.274 | SchNet | 20 | PBE | |
Sauceda et al.161 | sGDML | 21 | CCSD, CCSD(T) | |
Hellström et al.275 | BP-NNP | 1700 | RPBE | |
excited states | Chen et al.276 | HDNN | 5 | CASSCF |
Westermayr et al.277 | NN | 6 | MR-CISD | |
Westermayr et al.278 | SchNet | 6 | MR-CISD, CASSCF | |
spectroscopy | Gastegger et al.71 | BP-NNP | 209 | BLYP, BP86, B2PLYP |
Yao et al.195 | BP-NNP | 60 | ωB97X-D | |
Raimbault et al.279 | SOAP | 80 | PBE | |
Sommers et al.280 | DeepMD | 512 | SCAN |
In all cases, the type of employed ML-FF is given along with the number of atoms of the largest system used to study the respective phenomenon. The basic level of reference theory (neglecting basis sets and dispersion corrections for clarity) is also reported.