
Wound Size Imaging: Ready for Smart Assessment
and Monitoring

Yves Lucas,1,* Rania Niri,1,2 Sylvie Treuillet,1 Hassan Douzi,2

and Benjamin Castaneda3

1PRISME Laboratory, Orléans University, Orléans, France.
2IRF-SIC Laboratory, Ibn Zohr University, Agadir, Morocco.
3Laboratorio de Imagenes Medicas, Pontificia Universidad Catholica del Peru, Lima, Peru.

Significance: We introduce and evaluate emerging devices and modalities for
wound size imaging and also promising image processing tools for smart
wound assessment and monitoring.
Recent Advances: Some commercial devices are available for optical wound
assessment but with limited possibilities compared to the power of multimodal
imaging. With new low-cost devices and machine learning, wound assessment
has become more robust and accurate. Wound size imaging not only provides
area and volume but also the proportion of each tissue on the wound bed.
Near-infrared and thermal spectral bands also enhance the classical visual
assessment.
Critical Issues: The ability to embed advanced imaging technology in portable
devices such as smartphones and tablets with tissue analysis software tools
will significantly improve wound care. As wound care and measurement are
performed by nurses, the equipment needs to remain user-friendly, enable
quick measurements, provide advanced monitoring, and be connected to the
patient data management system.
Future Directions: Combining several image modalities and machine learning,
optical wound assessment will be smart enough to enable real wound moni-
toring, to provide clinicians with relevant indications to adapt the treatments
and to improve healing rates and speed. Sharing the wound care histories of a
number of patients on databases and through telemedicine practice could in-
duce a better knowledge of the healing process and thus a better efficiency
when the recorded clinical experience has been converted into knowledge
through deep learning.
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SCOPE AND SIGNIFICANCE
All types of wounds will benefit

from the emergence of advanced im-
age acquisition devices and proces-
sing tools as they share common
healing process which implies fast
and accurate periodic examination to
adapt the treatments. As wound care
is performed not only in hospital
but also at home, wound assessment

needs to rely on low-cost, user-
friendly, and portable equipment.
We summarize here recent experi-
ments in computer vision laborato-
ries on wound images with emerging
image modalities and sensors. A
comprehensive review of the intro-
duction and development of wound
size imaging helps to understand the
power and the limits of this tool in
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clinical practice. Other aspects of imaging such as
vascular or infection, not covered here, are re-
quired to assess fully a wound.

Smart assessment is concerned with both soft-
ware and hardware aspects. On one side, artificial
intelligence provides algorithms, for which simply
providing labeled images as input during the
learning step is sufficient, to build a model efficient
in the recognition task. On the other side, smart-
phone technology invades the medical field with
friendly, low-cost, and portable devices. Smart-
phone embeds ‘‘smart’’: this reminds us that this
property is not only attached to software but also to
the hardware side of wound imaging devices with
evident mobility and connectivity capabilities.

TRANSLATIONAL RELEVANCE

It is clear that adding information about the
wound tends to improve the quality of assessment:
each imaging modality extracts specific data to bet-
ter evaluate the healing process. The assistance of
medical experts is still required to provide the
ground truth for tuning the image processing algo-
rithms and validating the outputs. At a higher level,
the knowledge of these experts is also necessary to
combine all the data to describe the wound state
accurately.

CLINICAL RELEVANCE

The benefits of wound size imaging are already
visible in automatic wound assessment, but the
room for improvement is even greater if we consider
wound monitoring. To anticipate and favor the
evolution of a wound, it is necessary to integrate all
its history and to analyze how the different regions,
with their different tissue types, have been trans-
formed, how the frontiers of these regions have been
distorted, and at what speed. By accumulating data,
the learning process becomes more robust, since
neural networks perform optimally on huge learn-
ing databases, enabling more efficient therapeutic
options for wound care to be proposed to improve
healing rates. We should not nevertheless forget
that many other factors influence the wound evo-
lution, in particular, all the biological data docu-
mented in the patient’s medical record. These data
need to be included in the learning process to refine
wound assessment and monitoring.

EVOLUTION OF PRACTICE
The burden of wound care in the health system

Wound care is a major health issue as it is an-
ticipated that worldwide 380 million people will

suffer from wounds by the year 2025. In 2018 in
Europe, for example, the population prevalence
of chronic wounds was 3–4/1,000 people, which
roughly translates to between 1.5 and 2.0 million of
the 491 million inhabitants of the European Union,
and the annual incidence estimate for both acute and
chronic wounds stands at 4 million in the region.1–3

There is a wide range of wounds, such as surgical,
ulcers (venous stasis, diabetic, arterial, pressure,
decubitus .), traumatic injuries, and burns.

The rising prevalence of diabetes, a pathology
associated with a slow healing process, and the
growing geriatric population can be considered as
the two major factors of the increase in the burden
of wound care in the health system, further in-
creased by the rise in the number of trauma in-
juries and road accidents. As publicly reported
wound healing rates are underestimated, the cost
could be higher for the health system.4

These wounds have a major long-term influence
on the health and quality of life of patients and
their families, causing depression, loss of function
and mobility, social isolation, prolonged hospital
stays, and high treatment costs. Emergency wound
care and clinicians with considerable technical
skill play a frontline role by performing successful
wound care. It is also essential that the wounds be
treated promptly and properly for the treatment to
be efficient and to improve the wound healing rate.
Patients with wounds need frequent clinical eval-
uation to check the local wound status regularly
and adjust therapy. The assessment and monitor-
ing of wounds is therefore a critical task to perform
an accurate diagnosis and to select a suitable
treatment.

Visual assessment
In clinical routine, wound care is performed by

nurses and consequently visual assessment is only
possible after she has removed the dressing and
cleaned the wound, a time-consuming procedure.
As a result, wound assessment suffered for many
years from being a strictly manual practice and
poor data were available for accurate wound mon-
itoring, especially when a patient wound history
was not shared between the nurses.

The periodic assessment of a wound is based on
visual examination: clinicians describe the wound
by geometrical measurements and quantify the
skin tissue involved.5 Measurements are generally
one-dimensional (1D) (a basic ruler or a specific
Kundin gauge), sometimes 2D (the contour is
drawn on a transparency to measure its surface),
and 3D for severe cases (the volume is obtained
from an alginate cast or serum injection inside the
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wound) or producing an alginate cast to obtain the
volume. Moreover, these methods are imprecise
and require direct contact with the wound. The
evaluation of the percentage of each type of tissue
in the wound bed based on color and texture anal-
ysis helps to understand the progress of the healing
and to provide a contactless quantitative mea-
surement.6,7 The healing status is obtained from
a color evaluation protocol corresponding, respec-
tively, to the dominant color, that is, red, yellow,
black, and pink, of the different tissues present on a
wound (respectively, granulation, fibrin, necrosis,
and epithelium). The percentage of each type of
tissue is recorded on a color-coded scale.8 However,
during wound tissue identification, it is difficult for
clinicians to determine their precise proportions by
a simple visual inspection. Therefore, numerous
techniques have become available for tissue clas-
sification over the wound region, ranging from the
use of tracings to the more sophisticated methods
detailed below requiring the use of cameras and
computers.

Pioneering work in wound size imaging
With traditional cameras based on negative

films, it was only possible to document patient
folder, but the marketing of affordable digital
camera enabled quantitative and automatic mea-
surements on wounds based on image processing
technology. The first studies considered wound as
planar, so that wound area could be computed
simply by counting the pixels. The percentage of
each type of tissue was then derived after classi-

fying the segmented regions.9–11 Two-dimensional
approximation provides a low metric precision on
large and curved wounds due to projection on focal
plane. Moreover, the lighting conditions and the
RGB sensor embedded in a given digital camera
lead to color variability and tissue misclassifica-
tions. Machine learning requires tedious labeling
of hundreds of images by experts to build a ground
truth and the relevant tissue descriptors.

Some works focused on wound 3D modeling for
spatial and volumetric measurements based on
active and passive devices (Fig. 1). The first tech-
nique consists in extracting and matching interest
points in a sequence of images.12–14 In the other
one, a laser line or a matrix pattern illuminates the
wound. In the two cases, the 3D points are trian-
gulated by back projecting light rays.15–17 The
prototypes elaborated by research laboratories
were not adapted for routine care due to their
overall dimensions, cost, and sophisticated practi-
cal application. In fact, due the strong prevalence of
wounds in clinical centers, only low-cost systems
could be spread in any hospital service. As already
mentioned, wound assessment is done by the nurse
during wound care and only a few minutes can be
spared daily after cleaning wound bed, excluding
complex protocols. Anyway critical wounds require
a more reliable diagnosis aided by an advanced
multimodal device.

No pioneering work produced a versatile device
to describe both wound shape and quantify tissue
distribution, which are, however, essential for vi-
sual assessment. Later, prototypes were replaced

Figure 1. Volume measurement: active vision by color stripes projection (MAVIS I) passive vision by dual lens stereovision (MAVIS II).
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by commercial digital cameras to produce wound
3D maps with tissues legends18,19 (Fig. 2). This was
a significant step toward smart wound size imag-
ing: the calibration step was avoided due to multi-
ple view geometrical advances20 and a standard
pattern pasted in the field of view provided color
constancy and metric gauging.21,22

Subsequently, no significant improvements were
made23–27 neither in the software nor in the hard-
ware to propose a specific device with embedded
image processing intended for wound assessment.
The emergence of low-cost, accurate, portable, and
handheld devices with embedded spectacular com-

puting power was to radically change wound care
practice,28 as these devices could be spread mas-
sively. Indeed, if the algorithms are installed and
run inside the mobile devices without the need for a
server, it will drastically increase speed and enable
to work without internet access.

First commercial devices for wound size
imaging

The SilhouetteMobile� system (Aranz Medical
Ltd., Christchurch, New Zealand) (Fig. 3 left) pro-
vided a handheld tool with embedded digital cam-
era, active vision, and image processing software.

Figure 2. 3D wound reconstruction and labeling using a simple handheld digital camera. 3D, three-dimensional.

Figure 3. (Left) Silhouette wound assessment device from Aranz medical (right) inSight device from eKare.
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Thanks to the RGB sensor and three laser line
generators, an electronic device could come up to the
requirements of a basic visual assessment (Fig. 5).
Unfortunately, only geometrical measurements are
provided: wound area is obtained by contour detec-
tion in the image and the average volume is deduced
from the projection of laser patterns on wound sur-
face. So, no tissue classification is available to assess
the healing stage. To evaluate its accuracy, a com-
parison with Visitrak� (Smith & Nephew, Watford,
United Kingdom) wound measurement system, a
tool based on manual tracing on transparent sheets
reported onto a tactile tablet, and also with a basic
elliptical approximation made with a ruler was
carried out with a reference provided by a scanner.29

It demonstrated that all the wound imaging devices
clearly outperform manual measurements with a
ruler. The accuracy based on the relative error were
13.3%, 6.8%, and 2.3% and the precision based on
the coefficient of variation were 6%, 6.3%, and 3.1%,
respectively, for the ruler, the Visitrak, and Sil-
houette devices.

For accurate 3D measurements, several thou-
sands of data points are required to build a numer-
ical mesh. WoundZoom (Woundzoom, Inc.) device is
based on a specially designed tablet which contains
a built-in 3-D image sensor that can capture the
length, breadth, and width of a patient’s wound. The
software program calculates the surface area and
volume. It provides professionals with thermal
mapping, which is another indicator of tissue
health. Recently, InSight (eKare, Fairfax, Virginia,
USA) (Fig. 3 right) a small device based on an iPad
with an add-on stereo color sensor and embedded
image processing software has been marketed.30 It
provides a wound 3D model, tissue labeling, and
wound region extraction from the background.

Numerous commercial imaging devices have
been released since that time. So, it is legitimate to
search for the best one. To check and compare the

technical accuracies announced for all the avail-
able commercial devices released, it would be nec-
essary to capture wound images from the same
patients during a consistent clinical study, with the
same panel of experts delivering the ground truth
for the tissue labels. This explains why the speci-
fications provided by the manufacturers, rarely
controlled by independent laboratories, are pro-
vided here by company’s links.

EMERGING ACQUISITION DEVICES
AND IMAGE MODALITIES

Just as digital cameras had revolutionized the
field of photography, new emerging and low-cost
devices offer again unexpected possibilities, such
as thermal and infrared imaging or 3D scanning
(Table 1). Spectral exploration was developed to
detect nonvisible wavelengths, analyze narrow
bands, and drastically improve spectral resolution.
It provides relevant data for tissue analysis and
classification. Concurrent techniques are also
available for 3D geometrical measurements over
the wound. The trend is to associate spectral
analysis and 3D scanning with multimodal devices.

Spectral exploration
Acquiring a large number of narrow spectral

bands, about ten for a multispectral image or one or
two hundreds in the case of a hyperspectral image,
provide much more data than color imaging, which
is limited to red, green, and blue channels with a
large bandpass. These devices initially reserved
for aerial and satellite remote sensing are be-
coming widespread in factories to inspect con-
sumer goods, and have been applied more recently
in the medical field where visible and infrared
bands are investigated.31,32

The acquisition technique uses push broom
sensing, in which the scene is scanned during air-
borne displacement of the sensor. Since the camera

Table 1. Wound imaging methods for tissue analysis and shape measurements

Wound imaging method Features Application in wound care Advantages Disadvantages

Color imaging Three broad channel RGB sensor Basic tissue classification
Shape measurements

Available on all smartphones
High spatial resolution

Limited 3D reconstruction precision on
poor textured wounds

Multispectral/
Hyperspectral
imaging

Visible and/or near IR sensor
Up to several hundreds of

narrow bands.

Enhanced tissue classification
Oxygen saturation
Bacterial environment

High spectral resolution No add-on sensor for smartphone.
Powerful illumination required

Thermal imaging Mid-infrared band sensor Insights on tissue inflammation
and healing effectiveness

Add-on sensor available Low thermal precision and poor spatial
resolution

Light pattern Projection of laser lines or
infrared speckle

Shape measurements Available on some smartphones
with infrared light pattern

Implies specific lighting system for
pattern projection.

Time of flight Time taken by light to reach a
point and go back to the
sensor.

Shape analysis and volume
measurement

Add-on sensor available
High robustness for shape

measurements

Scanning required to create a 3D
map. Device customization needed to
comply with wound small size.

3D, three-dimensional.
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needs to be translated as in a photocopier to obtain
a spectrum in each scanned line, this technique is
not adapted to wound imaging where the capture
of complete image frames is required. To capture a
hyperspectral cube, composed of a series of images
at different wavelengths, it is necessary to operate
very quickly when the scene is not static. A basic
and low-cost approach is to use a wheel with sev-
eral filters to capture in vivo wound images.

Even with a few wavelengths, preliminary ex-
perimentations indicated that wound assessment
is greatly enhanced by spectral discrimination.33,34

Manual filter selection can be avoided with liquid
crystal filters which are electronically tuned
through a computer interface. This technique
proved to be efficient to explore which wavelengths
are relevant to detect and display vital tissues
during surgery in an operating room.32 Recently,
advanced snapshot mosaic sensors (IMEC, Leuven,
Belgium) have been marketed. As they allow a se-
ries of wavelengths to be captured simultaneously
in the visible and near-infrared band, medical ap-
plications will undoubtedly benefit from this tech-
nology. The last one released has key benefits: color
and narrow-band near-infrared imaging are inte-
grated into a single chip for low-cost and compact
solutions. Moreover, the infrared band is tunable to
match a specific filter band, which is valuable for
medical imaging using fluorescence: the sensor can
be customized to capture only the wavelengths
emitted by the tissues stimulated by fluorescence.

Another technique to gather tissue response to
specific wavelengths is to illuminate the tissue
with these wavelengths in a dark environment.
For example, based on digital light processing vi-
deoprojection, a hyperspectral imaging system
has been designed for visualizing the chemical
composition of in vivo tissues during surgical pro-
cedures, in particular, to quantify the oxygenation
of the tissues.35 In a recent study, monitoring
wound healing in a 3D wound model by hyperspec-
tral imaging was investigated to mimick in-vitro
healing process. It comprised human fibroblasts
embedded in a collagen matrix and keratinocytes on
the surface as representatives of the most important
skin cells. This wound model was established and
incubated without and with acute and chronic
wound fluid. Tissue samples were fixed and inves-
tigated histologically and immunohistochemically
to attest that the model was able to correlate cell
quantity and spectral reflectance during wound
closure.36

The number of wavelengths provides sharp dis-
crimination between tissues, but the ability to
stimulate tissues with only a particular wavelength

can reveal hidden properties. This is the case of
the i:X Wound Intelligence device (MolecuLight,
Toronto, Canada) (Fig. 4). With the guidance of
fluorescence imaging, this portable touch-screen
with an intuitive interface allows clinicians to
quickly, safely, and easily visualize bacteria. They
simply appear in red in the image, providing max-
imum insights for accurate treatment selection. A
monochromatic violet light is emitted by the device
and its interaction with the tissue and bacteria
leads to a green fluorescence of the wound which
turns to red for harmful bacteria. A similar ap-
proach is followed in the SnapshotNIR device (Kent
Imaging, Calgary, Canada) (Fig. 5) which uses light
in the near-infrared spectrum for wound assess-
ment. As the wavelength-dependent light absorp-
tion of hemoglobin differs if it is carrying oxygen
from when it is not, this device reports approximate
values and displays images of oxygen saturation,
relative oxyhemoglobin, and deoxyhemoglobin lev-
els in superficial tissue without injectable dyes or
patient contact. It gives insights on tissue health
and the healing potential of wounds. It conveys a
comprehensive picture of tissue health and the
healing capacity of wounds.

HyperView�, a new surface tissue oximetry
device (HyperMed Imaging, Inc., Memphis, Ten-
nessee, USA) also provides color-coded images
depicting approximate concentrations of oxyhe-
moglobin and deoxyhemoglobin, as well as oxygen
saturation. In a smaller and more portable config-
uration as used in the no more available OxyVu�-1
system, it is also based on hyperspectral imaging
technology, which enable to differentiate light
absorption between oxygenated hemoglobin and
deoxygenated hemoglobin imaging technology.

Figure 4. Diabetic Foot Ulcer, Heel - FL-image� (real-time imaging in fluo-
rescence mode as a result of violet light illumination) revealed both cyan
fluorescing bacteria, which is indicative of Pseudomonas aeruginosa (arrows)
and red fluorescing bacteria MolecuLight i:X Wound Intelligence Device.
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HyperMed Imaging, Inc. received FDA clearance
in 2017 for this device, which determines oxygen-
ation levels in superficial tissues, an important
concern for wound healing, diabetic foot ulcers, and
critical limb ischemia.

Another technique, still based on near-infrared
imaging, is laser speckle contrast imaging (Fig. 6).
A laser (785 nm) is diffused over the tissues, cre-
ating a speckle pattern which is captured in real-
time with a coupled charge device (CCD) camera

and analyzed to image blood perfusion and study
microcirculation. Such a system, as the PeriCam
PSI NR (Perimed, Järfälla, Sweden), is not hand-
held but remains easy to move and to be operated,
when mounted on a car fitted with a flexible arm.

Tissues have a number of useful properties in
the near-infrared region of the spectrum, linked to
their weak absorption and high scattering of these
wavelengths. The light–tissue interaction of com-
ponents such as red blood cells, hemoglobin, or
collagen is relevant to assess wound healing.37

Longer wavelengths in the infrared band pro-
vide thermal information. As new devices become
cheaper and embedded as add-on sensors, thermal
cameras are becoming common for industrial con-
trol and visual inspection. This imaging modality is
particularly relevant for wound assessment and
has been investigated in this field.38–40 It allows for
physical and physiological monitoring, feeding in-
formation to the physician about blood flow and
metabolic activity, and it helps to identify differ-
ences between affected and unaffected tissues. The
Scout solution (WoundVision Indianapolis, In-
diana, USA), for instance, is a visual and infrared
imaging device that computes and stores wound
dimensions and biological modifications on the cu-
taneous tissues, based on temperature differential.
In the current European STANDUP project41

(Smartphone Thermal ANalysis for Diabetic Foot
Ulcer Prevention detection and treatment) dedi-
cated to diabetic foot ulcers42 (Fig. 7), thermal in-
formation is used to prevent ulcers by hyperthermia
detection, to monitor ulcer healing by combining
thermal, color, and 3D measurements and to im-
prove the design of foot insole and foot pads.

Nonoptical devices are out of the scope of this
article but can be coupled with color imaging such
as ultrasound to get insights on the condition of

Figure 5. Snapshot NIR allows viewing oxygen saturation (StO2) levels
throughout the wound and surrounding tissue. Kent Imaging SnapshotNIR

device. NIR, near infrared.

Figure 6. Wound healing progress for burns analyzed with PeriCam PSI NR, Burn Center, Linköping Univ. Hospital, Sweden.
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underlying tissues43 and make possible the
screening of bed sores.44

3D geometrical measurements
A single image provides a lot of information on

a wound, but it fails to produce accurate shape
measurements, due to perspective projection er-
rors on nonplanar wounds. To obtain 3D data,
many approaches are now possible.

By combining several images from different
points of view, 3D points can be reconstructed by
triangulation. This is the basic concept of stereo-
scopic systems. Nowadays, the acquisition of image
pairs can be advantageously replaced by video ac-
quisition, since in an image sequence, the mapping
of homologous points is easily done between two
successive frames, whereas it is often tricky to find
corresponding points between distant viewpoints.
The weak point of this technique is that it does not
work if the wound is insufficiently textured: not
enough points can be matched between the images,
resulting in a sparse 3D map and poor measure-
ments. On well-textured scenes, this shape from

motion approach competes with powerful laser
scanners equipped with turning tables, as tested in a
study on volume estimation of skin ulcers45 (Fig. 8).

To ensure more robust results than with the
preceding passive vision techniques, in active vi-
sion, light patterns are projected onto the wound to
obtain a 3D shape from the distorted pattern. This is
the solution embedded in the commercial wound
assessment device Silhouette (Aranz Medical, New
Zealand) which projects three laser lines to obtain
wound 3D data. The projection of a textured pattern
provides denser 3D maps for accurate volume esti-
mation, as done with the inSight device (eKare).

Recently, affordable time-of-flight cameras be-
came available. These cameras are so named be-
cause they produce depth images by measuring on
each point the time taken by light to reach this
point and be reflected back to the sensor. These
devices can compete with manual practice for volu-
metric measurement.46 This is also the case in a new
multimodal prototype sensor system for wound as-
sessment and pressure ulcer care. Multiple imaging
modalities, including RGB, 3D scanning, thermal,
multispectral, and chemical sensing, are integrated
into a portable hand-held probe for real-time wound
assessment. This multimodal sensor system per-
forms various assessments, including tissue com-
position, 3D wound measurement, temperature
profiling, spectral, and chemical vapor analysis, to
estimate healing progress.47

Another class of sensors could soon revolutionize
photographic devices. It is constituted by newly

Figure 7. From an infrared feet image with a smartphone equipped with
add-on thermal sensor (left) temperature differential can be computed
(center) to detect hyperthermia for diabetic ulcer prevention.

Figure 8. Reproducibility test: Residual distances between three models
generated from different mobile cameras after ICP registration with the laser
scanner reference (top left) —Zenteno 2019.45 ICP, iterative closest point.
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manufactured plenoptic sensors, (Raytrix, Kiel,
Germany), which are already integrated in indus-
trial inspection tasks. While a classical digital
camera measures on each pixel the total intensity
of light emitted from one point of the real scene, a
plenoptic camera48 captures in a single snapshot
the direction of each ray contributing to the inten-
sity on a pixel, called the light field. As a conven-
tional camera produces a 2D image formed by a
single lens, a light field camera contains a micro lens
array. Typically, a hologram is a photographic re-
cording of the light field which appears to be 3D seen
with the naked eye. Practically, plenoptic cameras
make possible all in-focus with a high-resolution for
accurate metrology. In the near future, this tech-
nology could be integrated in smartphone cameras
as light field modules for smartphones have aroused
the interest of manufacturers. These tools are very
promising for medical applications. For example, in
soft-tissue surgery, a novel fused plenoptic and
near-infrared camera tracking system enables 3D
tracking of tools and target tissue while overcoming
blood and tissue occlusion in the uncontrolled, rap-
idly changing surgical environment.49

ARTIFICIAL INTELLIGENCE FOR TISSUE
SEGMENTATION
Expert knowledge

When wound assessment is done during visual
examination, the clinician’s knowledge is required
to characterize the nature of the tissues. Even with
the naked eye, an expert is able to discriminate
between healing and infected tissues under non
controlled lighting, but his/her efficiency is limited
to producing quantitative measurements over the
wound status or evolution. Wound imaging enables
automatic measurement of tissue areas but tissue
classes need to be first defined. Clearly, the expert
knowledge needs to be transferred to the machine
vision system by a learning step. It consists in
collecting certified samples of each class of tissue to
constitute a tissue database.

The clinician can draw tissue outlines on digital
wound images but this process is time consuming.
One alternative is to label previously segmented
images with one of the tissue class labels.19–50 The
clinician is no longer free to delimit exactly tissue
regions but if the segmentation level is small en-
ough, one can avoid creating hybrid regions con-
taining several tissue classes, which the clinician
would be unable to label. Note that intraobserver
repeatability is not maximal in this process and
that interobserver repeatability is even lower, so
that several experts are needed to produce a robust

ground truth. Tissue regions with poor consensus
should be discarded for the learning step.

Machine learning
The power of machine learning,51 an application

of artificial intelligence, resides in its ability to au-
tomatically learn and improve from experience
without being explicitly programmed. The sample
tissue regions labeled by the clinicians feed directly
the learning step during which descriptors are com-
puted on each tissue region. After various labeled
samples have been processed, the algorithm is able to
label a new sample with a high confidence level,
based on the region descriptors extracted on it and
compared with those of the known samples. Practi-
cally, the wound database is built from part of the
labeled sample tissues. Then machine learning is
run and validated by automatically segmenting the
other part of the samples called the test database.
Building a tissue model requires manually extract-
ing color and texture descriptors to characterize each
sample and assign the correct tissue label to it.

A machine learning approach is still very popular
and inspired many efficient marketed medical im-
aging systems. The support vector machine (SVM)
is the most popular supervised algorithm, and gen-
erally reaches the highest performance for most
classification problems, given its mathematical
properties such as convex optimization. Several
machine learning architectures have been designed
to implement wound tissue classification. For ex-
ample, a robust skin tissue classification tool using
cascaded two-staged SVM-based classification was
proposed.15 The segmentation task consisted in the
extraction of texture and color descriptors from
wound images, followed by the SVM classifier to
label the tissues within the wound into three cate-
gories (granulation, slough, and necrosis). Compu-
ter methods based on manually engineered
descriptors or image processing methods were also
developed to segment diabetic foot ulcers.52

Convolutional neural networks
A critical step in the classical machine learning

workflow consists in selecting discriminant fea-
tures from the images. This task is still devoted to
humans. On the contrary, with deep learning, the
so-called new generation of neural networks,
manual feature engineering is not required. In-
stead, the network elaborates automatically high-
level features from raw data during the learning
step, but massive image databases are required in
this supervised process.

Deep learning has demonstrated its efficiency in
numerous applications, such as text translation,
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autonomous vehicles, voice assistants, or economic
estimates. Images are ideal data structure for
these networks and after spectacular results in
computer vision such as image semantic segmen-
tation, their application for medical imaging has
been investigated with success by the computer
vision specialists.53 Clearly, this approach will
convey many medical advances in the next years.
Traditionally, scientific discoveries are the result of
intuition and observation, making hypotheses from
associations and then designing and running ex-
periments to test the hypotheses. However, with
medical images, observing and quantifying associ-
ations can often be difficult because of the wide
variety of features, patterns, colors, values, and
shapes that are present in real data. Here, deep
learning can extract new knowledge from the ac-
cumulation of hundreds of thousands of real cases.

Deep learning in health care addresses a wide
range of problems and provides doctors with an ac-
curate analysis of any disease, helping them treat
them better, thus resulting in better medical deci-
sions. It is noteworthy that the number of articles
published on various applications of artificial intel-
ligence in medical image analysis54 has been mul-
tiplied by four between 2015 and 2017 and that the
segmentation of anatomical structure is the most
tackled topic. The most commonly used architecture
of deep learning networks for medical image anal-
ysis is convolutional neural networks (CNNs).

Deep learning can contribute to a range of
fundamental tasks in medical image analysis: re-
trieval, registration, detection, segmentation clas-
sification, image synthesis, and enhancement. For
example, using deep-learning models trained on
patient data consisting of retinal fundus images, it
is now possible to predict cardiovascular risk fac-
tors not previously thought to be present or quan-
tifiable in retinal images, such as age, gender,
smoking status, systolic blood pressure, and major
adverse cardiac events.55 Deep learning can more
directly outperform an expert eye in the detection
of pathologies during breast, liver, and lung ra-
diological examinations. As X-ray images provide
huge amounts of data, CNNs can rise to the chal-
lenge of identifying very small regions in images
depicting anomalies, such as nodules and masses
that might represent cancers. Compared to highly
trained dermatologists, deep neural networks also
obtained similar diagnostic accuracy in identifying
several types of skin cancers, but it involved a huge
reliably annotated image database which is not
currently available for wounds.56

Image segmentation is one of the first areas in
which deep learning displays promising contribu-

tions to medical image analysis and some pioneering
studies have recently investigated this approach
(Table 2). As deep learning requires a massive
amount of training data, which is a real problem for
wound images captured in the patient room, several
strategies have been tested to overcome it.

One solution is to split large images into small
ones to expand the size of the database. Geometrical
transformations such as scaling, translations, rota-
tions, flipping, elastic deformations, or color space
changes can also be made to generate a lot of sub-
images. In a recent study,57 (Fig. 9) only 22 images
of pressure injuries were used for tissue classifica-
tion (granulation, slough, and necrosis). The meth-
od involved using CNN on a dataset composed of a
lot of cropped images to perform optimized seg-
mentation. A standard resolution was adopted for
the training and test images, but a preprocessing
step created a set of small subimages, which were
used as input for the CNN network, which achieved
an overall average classification accuracy of 92%.

Another solution is to pretrain the network on a
very large scale generic image database before
training it on a smaller one dedicated to the ap-
plication. A two-tier transfer learning method was
applied by training a fully CNN on larger datasets
of images and using it as pretrained model for the
automated segmentation of diabetic foot ulcers.58 A
dataset of 705 images was constituted, including
600 diabetic foot and 105 healthy foot images. The
surrounding skin was also considered as it is a
relevant sign of ulcer’s healing. The specificity va-
lue for ulcer tissue was around 98%.

Expanding the training sample by geometrical
transformation does not account for variations re-
sulting from different imaging protocols and lesion
specificities. So, a third solution takes advantage of
a particular class of networks called generative
adversarial networks.59 Composed of a generative
model G and a discriminator model D, they have
the ability to explore and discover the underlying
structure of the training data and learn to generate
new realistic images for network training using the
G model. This is particularly interesting for wound
imaging where data scarcity and patient privacy
are important concerns. The discriminator D can
be seen as a regularizer to ensure that the syn-
thesized images are valid. This approach has been
tested for unconditional dermoscopy image syn-
thesis before skin tissue classification.60

One interesting result is that while CNN outper-
forms classical machine learning for wound segmen-
tation and even feature extraction, SVM should be
preferred for the next step of tissue classification. For
example, the classification was a two-step process.
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Feature extraction can be run on a pretrained
network such as AlexNet before the tissue classi-
fication step based on linear kernel SVM.61 A da-
taset composed of 350 images was labeled into
seven classes of tissue. Only three types of tissues
are generally considered over the wound (sloughy,
granulation, and necrotic) but additional types
(infected, granulating healthy or not, epithelial)
enhance the classification. With this architecture
combining CNN and SVM instead of feeding SVM
with manually designed descriptors, the accuracy
was improved (86.4% instead of 79.66%). Similarly,
(Fig. 10) a wound segmentation approach has been
proposed.62 A CNN architecture is adopted to ex-
tract the features used both to feed SVM classifiers
to detect infection and Gaussian regression models

to predict healing. For wound segmentation, CNN
accuracy (95%) outperformed the SVM classifier
(77.6%) but for the detection infection, the SVM
classifier trained with CNN features outperformed
the neural network (84.7%). In fact, CNN should
involve traditional image processing in the image
processing workflow, for instance, for environ-
mental background removal in preprocessing step
and semantic correction in a postprocessing step.63

WOUND IMAGE MANAGEMENT
Image databases

In the field of medical imaging, while a number
of open access datasets are available, most of them
are related to radiology (X-rays, MRI, PET, CT .)
and not wound imaging. However, such databases

Table 2. Summary of deep learning studies on wound tissue segmentation and classification

Works Goals Methods Database Results

Sofia Zahia [2018, USA]
Tissue classification and

segmentation of pressure
injuries using ConvNets57

Segmentation of the different tissue
types present in pressure injuries
(granulation, slough, and necrotic
tissues) using a small database

ConvNet (5 · 5 inputs) 22 images 1,020 · 1,020
Patches 5 · 5 -75% for training

set and 25% for test set

Accuracy = 92.01%
DSC = 91.38% Precision per

class:
Granulation = 97.31%
Necrotic = 96.59%
Slough = 77.90%

H. Nejati [2018, Singapore]
Fine-grained wound tissue

analysis using deep neural
network61

Classification of seven types of tissues
(necrotic, slough, infected,
epithelialization, healthy, unhealthy,
hyper granulation)

AlexNet (227 · 227
inputs) SVM (HSV,
LBP, HSV+LBP)—
Principal component
analysis

350 images
Patches 20 · 20
Resizing patches to 227 · 227

Three-fold cross validation:
AlexNet = 86.40%
HSV = 77.57%
LBP = 79.66%
HSV+LBP = 77.09%

Fangzhao Li [2018, China]
A composite model of wound

segmentation based on
traditional methods and deep
neural networks63

Wound image segmentation framework
that combines traditional digital
image processing and deep learning
methods

FCN (MobileNet) 950 images Precision = 94;69%

Manu Goyal [2017, UK]
DFUNet: CNNs for DFU

classification84

Novel fast CNN architecture called
DFUNet for classification of ulcers and
non-ulcerous skin which outperformed
GoogLeNet and AlexNets

DFUNet
LeNet
AlexNet
GoogleNet
SVM (LBP)
SVM (LBP+HOG)
SVM (LBP+HOG+color

descriptors)

292 images of patient’s foot
with ulcer and 105 images
of the healthy foot

Patches 256 · 256 -85% for
training set, 5% for validation
set and 10% testing set

Data Augmentation (rotation,
flipping, color spaces)

AUC curve:
DFUNet = 0.9608
LeNet = 0.9292
AlexNet = 0.9504
GoogleNet = 0.9604
LBP = 0.9322
LBP+HOG = 0.9308
LBP+HOG+Color

Descriptors = 0.9430
Manu Goyal [2017, UK]
Fully convolutional networks

for diabetic foot ulcer
segmentation58

Automated segmentation of DFU
and its surrounding skin by using
fully connected networks

FCN-AlexNet
FCN-32s
FCN-16s
FCN-8s

600 DFU images and 105 healthy
foot images

From 600 DFU images in the
dataset, they produced 600
ROIs of DFU and 600 ROIs for
surrounding skin around the
DFU.

Specificity for Ulcer:
FCN-AlexNet = 0.982
FCN-32s = 0.986
FCN-16s = 0.986
FCN-8s = 0.987
Specificity for Surrounding skin:
FCN-AlexNet = 0.991
FCN-32s = 0.989
FCN-16s = 0.994
FCN-8s = 0.993

Changhan Wang [2015, USA]
A unified framework for

automatic wound
segmentation and analysis
with CNN62

Wound segmentation for surface area
estimation and features extraction

Infection detection
Healing progress prediction

ConvNet
Kernel SVM
Gaussian Process

Regression

350 images
Patches 20 · 20
Resizing patches to 227 · 227

Accuracy:
SVM (RGB) = 77.6%
ConvNet = 95%

Wound Imaging: ready for smart assessment and monitoring.
AUC, area under the curve; CNNs, convolutional neural networks; DFU, diabetic foot ulcer; DSC, dice similarity coefficient; FCN, fully convolutional network;

HOG, histogram of oriented gradients; HSV, hue saturated value; LBP, local binary pattern; SVM, support vector machine.
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would be valuable for research, especially when
machine learning and artificial intelligence are in-
volved, but also enable the comparison of algorithm
efficiency from concurrent research teams through
challenges or simply for publication reports. In a
scientific study, a research team works on its own

image database and so it is difficult to compare al-
gorithm performance. Moreover, the quality of the
ground truth cannot be checked by other teams.

There are several reasons for this: first, wound
images are difficult to obtain as they are taken at
the bedside (it is not pleasant for the patient to face

Figure 9. Preprocessing step for database creation (top) and dataset dictionary for three wound tissues (bottom)—Zahia 2018.57
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a camera with such a handicap and taking pictures
is often only possible when the dressing is changed
by the nurse); second, as these images are difficult
to obtain, researchers are tempted to reserve their
exploitation to their own group; third, there is a
lack of standardization in the protocols for wound
image capture: lighting control, points of view and
centring, scale factor, color constancy, wound his-
tory, patients’ medical records, and so on are all
features that can vary from one study to another.
All these points should be addressed. Not only
are wound images already difficult to find but
also obtaining series of images covering a wound
history from its inception to healing is nearly
impossible.

Various wound images can nevertheless be
freely retrieved from the Medetec wound database,
including pressure ulcers, surgical wounds, and di-
abetic ulcers, regularly encountered by a wound
care practitioner. A complementary database
named Medetec Surgical Dressings Database con-
tains images of many wound technical dressings,
which are used to stimulate the healing process.

Computer aided wound monitoring

At the beginning, a precise wound assessment is a
prerequisite for wound monitoring. Many compo-

nents of the assessment should be included in
weekly documentation through a nurse’s narra-
tive note or a wound assessment chart: wound lo-
cation, etiology, classification or stage, size of wound
(length, width, and depth), amount of wound tun-
neling and undermining, types of tissues and
structures observed in the wound bed, amount of
exudates, state of the surrounding skin and wound
margins, signs and symptoms of wound infections,
individual’s pain level, patient’s medical factors
which could delay healing, and treatment objectives.

To record the evolution of a wound across different
healing stages, the Pressure Ulcer Scale for Healing
(PUSH) and Bates-Jensen Wound Assessment Tool
(BWAT) procedure are the standard ones for the
clinicians. PUSH tool developed by the National
Pressure Ulcer Advisory Panel (NPUAP) tracks if
wound evolution is positive or not. The PUSH score
is expressed by the addition of three subscores re-
lated to area, exudates and tissue condition. In the
same manner, the BWAT scores thirteen parameters
to assess a wound, including dimensions, necrotic
tissues, exudates, granulation and epithelialization.

After wound assessment, evaluation of care and
a wound treatment plan can be investigated.
Wound imaging provides only one component of a
patient’s state and can obviously not determine if

Figure 10. (from left to right) The cropped image is taken as input by the neural network- At the output pixel-wise probabilities of wound segment are
provided in gray levels the and final mask is obtained by setting a threshold of 0.5 on every pixel, to compare with the ground truth mask displayed in the last
column. Wang 2015.62
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the treatment has to be changed. With the com-
mercial devices currently available in the clinical
environment, only global parameters such as
wound dimensions and the proportion of the differ-
ent tissues are extracted. Analyzing locally and over
time, the distribution of the different tissues and the
evolution of the 3D surface could improve under-
standing of the healing process and diagnosis. The
accumulation of a great number of wound healing
histories, including all the wound assessment com-
ponents, could feed machine learning algorithms to
assist the clinician in treatment decision.

Wound monitoring quality can be significantly
improved when the wound imaging device is linked
to a data management tool. For example, the
WoundZoom tablet (Perceptive Solutions, Inc., Ea-
gan, Minnesota, USA), through its Web portal, helps
collate patient information and can be easily inte-
grated with a hospital’s electronic health records,
which is vital to creating a seamless digital network
and eliminating double documentation.

Data can be exchanged between clinical centers
or between clinicians and remote patients. Many
hospitals have investigated the advantages of tele-
medicine for dermatology or wound therapeutic fol-
lowing. For this reason, clinicians should develop
partnerships with companies offering emerging tools
for telemedicine environments. Currently, images
are compressed, uploaded and transferred between
hospitals to enable discussions with remote experts,
but image processing capabilities are not supported
on line. With the development of mobile health,
patients with chronic wounds who need the eval-
uation and assessment of a wound care specialist
can take photographs of the wounds with a digital
camera or smartphone and send them via the in-
ternet to the wound care specialist. These digital
photographs allow the expert to diagnose and
evaluate the chronic wounds on a periodic basis.
Nevertheless, it is necessary to be aware of a de-
graded reliability when performing wound as-
sessment using mobile images.64

SMARTPHONE APPLICATIONS

A smart sensor is commonly defined as a device,
which does not output raw signals but embeds
processor, memory, knowledge, and software, to
process these signals, extract high-level information,
detect major events or anomalies and export the re-
sults on networks. It has also friendly calibration
and configuration capabilities. The idea behind
smart wound assessment is that it relies on con-
nected devices that not only capture images but also
process them locally and completely to assess wound
healing status with a high level of significance.

Since several years, smartphones have sur-
passed medium range digital cameras on the con-
sumer market. These low cost and familiar devices
include not only powerful processors but also high
rate interfaces. A smartphone is not as reliable as
a high-grade medical imaging device but it is the
instrument of choice for mobile health.65,66 Clearly,
the opportunity offered by the Internet of Medical
Things and smart devices is already relevant for
wound care, for example, to improve the surveillance
of diabetic foot ulcers.67 The range of applications is
also extended by add-on or connected sensors.

For example, smartphones are used for acuity
screening in rural areas. Moreover, retina health
can be monitored by plugging the Peek Retina
Medical ophthalmoscope (Peek Vision, London,
United Kingdom) for macula and optic nerve illu-
mination into the smartphone. In orthodontics, The
Dental Monitoring application (Dental Monitoring
Company, Paris, France) is prescribed and activated
by an orthodontist for all types of patients, whether
in treatment, monitoring, or contention. Patients
download the application from the App Store or
Google Play digital distribution platforms and use
their smartphone to take mouth photos, which are
then uploaded to the Dental Monitoring website for
further processing. Many sensors are embedded in a
smartphone and have been used for medical appli-
cations such as patient tracking at all times with
GPS to deal with the risk of wandering or patients’
balance monitoring using the phone’s accelerometer.

Smartphones or tablets are indeed promising
tools for standard wound monitoring at the patient’s
bedside in hospital or at home.68–70 It is clear that
sophisticated equipment could enable more accurate
ulcer detection or assessment than a smartphone but
none of it is designed for mobile health applications
(mHealth). So, the challenge is to embed in a smart-
phone the essential features required by the nurse
to rapidly assess an ulcer, characterize its evolution,
transfer measurements to the hospital data man-
agement system, and obtain therapeutic indications.

Wound management
With the development of eHealth, smartphones

and tablets are appropriate tools for wound man-
agement when mobile and connected devices are
looked for. For the nurse responsible for wound
care, it becomes a personal organizer and secre-
tary. Several software tools have been developed to
simplify wound management.

Smartphone applications such as SmartWound-
Care (Internet Innovation Centre, Beijing, China)
can replace paper-based charting with electronic
charting for chronic wounds. It facilitates tele-
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health with data sharing and data transfer be-
tween multiple health care providers, allowing for
more timely consultation and reducing the need for
patients with mobility difficulties to attend con-
sultations in person.

Wound treatment, staff communication, and
quality reporting can be simplified if, directly at the
bedside, a handheld device is available to acquire
clinical data. The Braden scale has been clinically
validated to predict pressure ulcer risk, utilizing
the PUSH tool and telemedicine applications such
as WoundRounds (Telemedicine Solutions LLC,
Schaumburg, Illinois, USA) to track wound healing.
These indicators are valuable inputs of a risk pre-
vention system. Patients are sorted by overall risk
and the nurse will even be prompted to deliver
patient interventions. A mHealth application for
decision-making support in wound dressing selec-
tion has also been proposed, so that the nurse can be
assisted at the patient’s bedside.71

Wound size imaging without add-on sensors
To comply with the concept of mobile health

(mHealth), one should ideally use nothing but a
smartphone, excluding add-on sensors, especially if
use by patients at home is intended. Some advanced
imaging modalities are then excluded but automatic
wound assessment is nevertheless possible.

To obtain geometrical measurements of the wound
with this limitation, several solutions were evaluat-
ed.72 A mobile application to document chronic
wounds using a smartphone was extended to facili-
tate geometrical measurements on wounds using the
smartphone’s integrated camera. Various strategies
have been implemented and tested to extract mea-
surements: depth from focus, inertial sensors, and an
original pinch/zoom method.

It is valuable to compare the performance of
smartphone-based applications with that of mar-
keted wound measurement devices. A recent
study73 showed that Planimator, a wound area
measurement application for Android smart-
phones, outperforms commercial devices such as
SilhouetteMobile (Aranz medical, New Zealand)
and Visitrak (Smith & Nephew, United Kingdom)
presented before. The median of relative error
were, respectively, 0.32%, 2.09%, and 7.69%, and
the standard deviations of relative difference were,
respectively, 0.52%, 5.83%, and 8.92%.

In commercial applications for 3D reconstruc-
tion without add-on sensors, the technique is based
on photogrammetry: the user takes a series of pic-
tures from different viewpoints, and a 3D colored
and textured model of the object is derived by
computation using such popular applications as

QLone (EyeCue Vision Technologies Ltd., Yokneam,
Israel), Scandy Pro (Scandy, New Orleans, Louisi-
ana, USA), or Scann3D (SmartMobileVision, Bu-
dapest, Hungary). A video acquired with a high-tech
smartphone can compete with a laser scanner if
the wound tissue is sufficiently textured to enable
dense 3D map reconstruction.45

For wound tissue segmentation purposes, the
embedded processing power of recent smartphones
is now sufficient to implement powerful algo-
rithms. For example,74 the smartphone can per-
form wound segmentation based on the accelerated
mean-shift method. The classical tissue color code
is then used to resume wound healing progress
and analyze its trend over time. Another efficient
algorithm, the random forest classifier based on
various color and texture features, has been im-
plemented on mobile devices to classify granular,
sloughy, and necrotic tissues. Training is a long
and tricky computer process, but classification is
fast enough to be run on a smartphone.75

Relying on the power of deep learning, Deep-
wound CNN76 is able to run wound assessment on a
smartphone in the context of surgical site surveil-
lance. The size of the dataset, which is composed of
1,355 smartphone wound images, enables to assign
several labels to each test image, including not only
granulation tissue or fibrinous exudates but also
infection, drainage, staples, or sutures.

Wound size imaging with add-on sensors
A smartphone is able to perform wound 3D

scanning with the emergence of software applica-
tions and add-on sensors. These advances are
mainly driven by new face identification functions
embedded into the smartphone, but the translation
to medical applications is immediate. With add-on
sensors, the current technique available is based
on light pattern projection over the wound.

For example in the Structure Sensor (Occipital
Inc., San Francisco, California, USA) (Fig. 11 top)
integrated in the TechMed 3D medical application
intended for body parts digitization, the structured
light consists of an infrared speckled pattern, which
gives access to multiple custom measurements and
scans exportation into iMed files. In the Eora 3D
scanner (Eora 3D, Sydney, Australia), a green laser
line generator attached to the smartphone provides
structured light, but the part to be scanned needs to
rest on a turn table to obtain a complete scan, so this
technique is not applicable to a patient.

The most accurate technique is time of flight (TOF)
(Fig. 11 center). From the time necessary for a light
pulse to reach an obstacle and go back to the sensor, it
is simple to compute the depth in different directions
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and accurately map objects through a purely geo-
metrical mesh. This technique is embedded in new
Vivo’s Nex dual screen smartphone (Vivo Mobile
Communication Co., Beijing, China) to enable en-
hanced 3D face recognition protection with a 300,000
pixel resolution depth, which is said to be 10x the
number existing in structured light technology. Some
other advanced smartphones are also equipped with
such TOF sensor, but it is dedicated to portrait en-
hancement (Huawei P30 Pro) or 3D face scanning
after processing by 3D Creator application (Sony
Xperia XZ3), remaining far from wound imaging
resolution requirements as it cannot detect portrait
details such as noses or ears. In fact, smartphone
technology is driven by consumer market, for which
high precision at close distance is not a priority.

Compact add-on thermal sensors have also been
marketed for Android and IPhone smartphones. For
example, in the STANDUP European project41 cur-
rently in progress, thermal information is provided
by a compact Flir one PRO (FLIR Systems, Inc.,
Wilsonville, Oregon, USA) (Fig. 11 bottom) camera
plugged into an Android smartphone. Two smart-
phone applications are currently being developed.
The first one will be able to detect possible hyper-
thermia of the plantar foot surface and will analyze
temperature variations on targeted regions of inter-
est. The local temperature differential between the
two plantar arches and also temperature variations
just after a cold stress test are analyzed for screening
purposes. The second one will assess temperature,
color, and 3D shape of diabetic foot ulcers over time.
The integrated camera provides color imaging and
3D measurements should be obtained from video
capture and compared for evaluation to an add-on
sensor plugged into the smartphone.

Color and thermal modalities are also combined
in another smartphone-based application,77 so that
periwound temperature increase can be tracked to
detect infection.

The design and adaptation of other sensors for
smartphones is still in progress to overcome tech-
nical challenges. This is the case for optical coher-
ence tomography technique, which proved to be
relevant for monitoring of wound healing processes
in biological tissues78 and is now addressed by
sensor manufacturers for the mHealth market.79

DISCUSSION

When faced with the ongoing revolution in im-
aging devices and software tools for wound as-
sessment, one may legitimately feel somewhat
bewildered. When digital cameras replaced tra-
ditional photography, the advantages of numeri-
cal files over printed pictures were obvious. The
reduction in cost to make a picture was drastic and
the digital file could be stored, shared, and
transferred easily and quickly. Recently, new
imaging modalities have emerged at reduced costs
and are very promising for wound care. So, which
devices should reasonably equip clinical staff in
the coming years?

Wound research focused for many years on two
major criteria: healing time and wound area de-
crease. The automatic measurement of wound
volume and percentage and distribution of each
type of tissue have changed this situation. 3D
wound scanners and tissue segmentation and
classification software must therefore be inte-
grated in the weekly wound assessment.

Figure 11. Structure sensor by occipital mounted on a tablet (top) Vivo’s
Nex Dual Screen TOF 3D sensor for smartphone (center) Flir One PRO LT
thermal camera for IPhone and IPad (bottom). TOF, technique is time of flight.
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A major point is the need for low-cost, user-
friendly imaging devices: given the high prevalence
of wounds in hospitals, these devices need to be
routine equipment for nurses, like a thermometer or
a tensiometer. Considerable time is already devoted
to dressing the wound, so there is little extra time to
spend for wound size imaging. The same criteria
also apply for mobile health development: the pa-
tient should be able to operate the device easily.

Another essential point is the need for data ex-
change: the imaging device has to be connected
with the hospital data management system. This is
critical to transfer data and specific care instruc-
tions, as nurses regularly relieve the preceding
ones in patient bedroom. The constitution of large
wound databases for machine learning purposes is
also dependent on the dissemination of wound im-
ages at a very large scale as the efficiency of new
deep learning techniques relies on the number of
sample images used during the learning step. As
for other patient medical data, the collect of wound
images raises the problems of consent and confi-
dentiality. We should make the difference between
routine exploitation of images and research: in the
first case, wound images should be collected with
the same confidentiality rules as during echo-
graphic or endoscopic examinations for instance. In
the case of research, the patient should agree by a
written consent with the fact that images would be
used for a clinical study or feed a wound image
database and all data should be anonymized. To
simplify wound image sharing between distant
sites, smart phones may provide immediate digital
signing of consent of patients each time a situation
is valuable for other investigators.

The superiority of multimodal imaging tools is
also relevant. Combining several wavelengths and
3D geometrical measurements helps to develop a
more robust wound description than that obtained
with a single sensor.

For these reasons, tablets and smartphones are
the best platforms for wound assessment at the
bedside or at home. As more and more computing
resources, imaging technology and sensors are em-
bedded in these devices at reduced cost due to large
scale production, they will play an increasing role in
wound assessment. Some functions such as thermal
imaging, bacterial activity, or oxygen saturation
display could be reserved for therapeutic follow-up of
severe wounds; at least add-on sensors for smart-
phones can be shared easily by the clinical staff.

The ability of smart imaging devices to measure
wounds with a great accuracy is well established.
On the contrary, their efficiency and reliability to
discriminate between different types of tissues are

more questionable. The main reason is that expert
knowledge must be introduced in the learning pro-
cess. The labeling task, which consists in assigning
to each pixel a tissue class, is essential to build a
ground truth. But this process is subjective, fastid-
ious, and relies only on the naked eye, not on his-
tological references. It is even ambiguous for hybrid,
mixed, or multisliced tissues. Anyway, a common
wound RGB image can be segmented into granula-
tion, fibrin, necrosis, and healthy regions with a
great confidence. If narrow spectral bands can be
extracted, especially in the near-infrared band, ex-
tra insights on tissue oxygenation and perfusion are
provided. Higher wavelengths in the thermal band
are relevant for the early detection of infection or
inflammation, not seen by clinician naked eye.

One could think that deep learning could boost
overall performance of all these imaging devices, as
in other applications of medical imaging, cancer
screening on radiographies for example. But to
achieve high performance, deep learning networks
require hundreds of thousands of labeled images:
here is the bottleneck because wound image label-
ing is approximate and time consuming for the
clinicians involved in this process and conse-
quently large datasets are currently not available.
At present time, deep learning is able to extract
accurately by semantic segmentation a wound
from its background, clearly outperforming classi-
cal image processing algorithms. It counts the
pixels covered by the main classes of tissues, but it
does not provide diagnosis over the healing process
and cannot replace histopathology of wounds.

Patient care is the main flow for wound imaging
but what about preclinical studies on small animals
to elaborate new treatments? It is clear that the
available commercial devices are not adapted to
narrow field of view and close distance imaging, but
advanced smartphones have macrophotography
capabilities. However, it is not possible to distin-
guish very small structures, such as capillaries, due
to insufficient resolution and close focus. However,
combined with an eye piece and an objective, a mo-
bile phone can be transformed into a quantitative
imaging device, a mobile phone microscope.80

To achieve it on a smartphone, all automated
settings and manufacturer image preprocessing
filters have to be to cancelled or minimized to re-
store raw image quality.

Illumination at close distance can be problematic,
but in the context of a clinical study, lighting systems
can be installed over the experimental setup, which
is not the case in a patient room. The development of
new treatments for wound care in the context of
preclinical studies is already investigated.81
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The exploration of preclinical models of
skin wound healing is now proposed for
testing efficacy before clinical testing, and
wound imaging is essential for quantita-
tive measurements on wounds induced by
thermal, mechanical, or chemical action,
which are followed for rodents and large
animals.82 In vivo imaging is applied to
wound dimensional measurements, skin
temperature, and inflammation bio-
marker quantification.

The next frontier will be advanced tools
for wound monitoring and treatment plan
assistance. Optical assessment is generally
based on present wound condition. The
record and analysis of wound shape and
tissue distribution over time could con-
tribute to a better evaluation of the healing
process and to adapt the treatments. Until
now, only graphs of global parameters such
as wound size or the proportion of each
type of tissue over time, and wound history
are commonly summed up by scores such as PUSH
or BWAT. Taking the local changes in wound ge-
ometry and tissue distribution over the wound sur-
face into account could improve analysis of the
healing process and help to adapt treatment.

In conclusion, we should not forget that wound
size imaging remains only one component of wound
assessment among those listed in the clinical chart
and that all the biological and health data in the
patient’s record contribute to devising an efficient
treatment plan to optimize wound healing. To
predict the healing outcome, many imaging probes
have been developed,83 which provide in-vivo real-
time assessment of tissue microenvironment and
inflammatory responses, providing cues on the
underlying wound histology. These devices are
complementary to the wound size imaging devices
presented here that describe present wound state
and are able to quantify its past changes but are not
adapted to estimate its evolution. At the highest
level, the clinical staff will still make final decision
but he will be far more assisted, thanks to stan-
dardization of wound imaging devices.

SUMMARY

Wound assessment no longer relies only on
manual measurements since optical devices can
accurately capture its 3D shape and label tissues
across wound bed. However, to be routinely used in
the clinical setting, compact, user-friendly devices
are preliminary requirements, before being ac-
cepted by the nurses in charge of wound care. Low-

cost wound size imaging devices now address range
finding, hyperspectral resolution, and thermal
sensing. Multimodal system performance will not
be the addition but the multiplication of single
modalities and offer precise and reliable wound
assessment. The emergence of deep learning is also
expected to be promising for tissue analysis.

The marketed devices do not embed the latest
technological advances but routine wound care will
soon take advantage of it. Indeed, the reduction of
health system spending is driving the emergence of
the devices marketed in the coming years and
mobile health should undergo a spectacular de-
velopment with the integration of enhanced imag-
ing hardware and software tools in smartphones.

ACKNOWLEDGMENTS AND FUNDING
SOURCES

This work was supported by internal funding
sources of PRISME laboratory, Orleans, France
and by The H2020-MSCA-RISE STANDUP Euro-
pean project.

AUTHOR DISCLOSURE AND GHOSTWRITING

No competing financial interests exist. The con-
tent of this article was expressly written by the
authors listed. No ghostwriters were involved in
the writing of this article.

ABOUT THE AUTHORS

Yves Lucas, PhD is an associate professor at
PRISME laboratory, Orléans University, France,

TAKE-HOME MESSAGES

� Smartphones will soon become common devices for routine wound as-
sessment

� Add-on -sensors enhance significantly the capabilities of smartphone-
based wound assessment

� Wound size imaging modalities have been extended from the visible
spectral band to the near-infrared and thermal bands in the low-cost and
portable devices.

� Hyperspectral imaging increases to hundred of narrow spectral bands the
spectral resolution of color images limited to the red, green, and blue
large channels

� Wound imaging is not limited to wound shape measurement. It enables
tissue classification and provides insights on oxygenation, perfusion in-
flammation, or infection

� Advanced features for wound assessment are already available in recent
commercial imaging devices

� Deep learning should improve wound assessment and monitoring, as
observed in many other medical imaging applications
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Abbreviations and Acronyms

AUC ¼ area under the curve
BWAT ¼ Bates-Jensen Wound Assessment

Tool
CCD ¼ couple charge device

CNNs ¼ convolutional neural networks
DFU ¼ diabetic foot ulcer
DSC ¼ dice similarity coefficient

EU ¼ European Union
FCN ¼ fully convolutional network
HOG ¼ histogram of oriented gradients
HSV ¼ hue saturation value
ICP ¼ iterative closest point

IR ¼ infrared
LBP ¼ local binary pattern
NIR ¼ near infrared

NPUAP ¼ National Pressure Ulcer Advisory
Panel

PUSH ¼ Pressure Ulcer Scale for Healing
ROI ¼ region of interest

SVM ¼ support vector machine
TOF ¼ technique is time of flight
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