Figure 1.
Pathophysiology of LEMS. In normal conditions, the depolarization of the presynaptic nerve terminal leads to calcium ions influx, acetylcholine (ACh) release, and binding to the ACh receptors (AChR) with a consequent influx of positively charged ions, mainly sodium, generation of an endplate potential (EPP) and muscle contraction. In LEMS, voltage gated calcium channel (VGCC) antibodies block calcium influx causing a reduction of the ACh released at the presynaptic terminal with consequent reduction of the EPP amplitude. High-frequency repetitive nerve stimulation however can increase the EPP amplitude through calcium accumulation in the presynaptic terminal and increased ACh release.
