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Abstract
Detection and classification of CRISPR-Cas systems in metagenomic data have become increasingly prevalent in
recent years due to their potential for diverse applications in genome editing. Traditionally, CRISPR-Cas systems
are classified through reference-based identification of proximate cas genes. Here, we present a machine learn-
ing approach for the detection and classification of CRISPR loci using repeat sequences in a cas-independent
context, enabling identification of unclassified loci missed by traditional cas-based approaches. Using biological
attributes of the CRISPR repeat, the core element in CRISPR arrays, and leveraging methods from natural language
processing, we developed a machine learning model capable of accurate classification of CRISPR loci in an ex-
tensive set of metagenomes, resulting in an F1 measure of 0.82 across all predictions and an F1 measure of 0.97
when limiting to classifications with probabilities >0.85. Furthermore, assessing performance on novel repeats
yielded an F1 measure of 0.96. Although the performance of cas-based identification will exceed that of a repeat-
based approach in many cases, CRISPRclassify provides an efficient approach to classification of CRISPR loci for
cases in which cas gene information is unavailable, such as metagenomes and fragmented genome assemblies.

Introduction
CRISPR and CRISPR-associated proteins (Cas) constitute

the prokaryotic adaptive immune system.1–6 CRISPR-Cas

systems enable precise cleavage of nucleic acid targets

from invading bacteriophages and other predatory mobile

genetic elements through the guidance of DNA-encoded

targeting sequences, termed ‘‘spacers.’’7–9 The ability to

discern and cleave targets in a nucleotide-specific manner

has proven an invaluable tool to the field of biotechnol-

ogy and has been exploited for a myriad of applications

in genome editing across a wide array of industries, includ-

ing agriculture, medicine, bioprocessing, and biotechnol-

ogy.10–15 CRISPR-Cas systems are currently organized

into 2 classes, 6 types, and 33 subtypes based on character-

istics of the effector complex, the presence of signature

and accessory cas genes, and the architecture of the

CRISPR-Cas locus.16 Different CRISPR-Cas types vary

in their molecular mode of action, with variability ob-

served across effector complex composition, target nucleic

acid types, and cleavage outcomes, affording a diversity of

genetic applications.

Recent major advances in sequencing technology have

substantially increased the throughput, in combination

with decreasing costs, and thus have dramatically ac-

celerated metagenomic sampling and sequencing, gener-

ating vast amounts of public metagenomic data. Because

CRISPR-Cas systems are found in *40% of bacteria

and *90% of archaea, metagenomes, which typically

contain diverse populations of microbes, are ideal candi-

dates for the discovery of novel CRISPR-Cas vari-

ants.17,18 Due to the natural complexity of these data,

numerous assembly algorithms, typically based on de

Bruijn graphs, have been employed to assemble contigu-

ous metagenomic sequences (contigs) accurately.19–23 A

major hindrance to these algorithms is the processing of

repetitive sequences, which increase the computational

complexity of the assembly and often result in partially

assembled CRISPR loci at the contig extremities, separat-

ing CRISPR arrays from their corresponding cas genes.

Although several methods have been developed with

the explicit goal of improving the assembly of CRISPR-

Cas sequences in metagenomes, most of these algorithms

operate through reference-based assembly, thus limiting

the results based on pre-existing knowledge of the data

set or on matches to known reference sequences in cur-

rent databases.24–27 Because CRISPR-Cas systems are
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typically first identified by the defining and core feature

of the CRISPR array—namely, the repeat—and are

then classified based on the adjacent cas genes, the true

biotechnological novelty of the metagenome can be di-

minished. Beyond the practical applications, measuring

diversity of CRISPR-Cas systems in large metagenomic

data sets is crucial to gain ecological insights into com-

plex microbial communities, as well as to improve our

understanding of the distribution and evolution of

CRISPR-Cas systems across varied environments.

The CRISPR repeat is central to each of the three phases

of adaptive immunity: adaptation, expression, and interfer-

ence. The repeat serves as the template for integration of

newly acquired spacer sequences, enables crRNA matura-

tion by providing the substrate for processing, and is criti-

cal for the appropriate binding of mature crRNA to Cas

effector proteins, leading to cleavage of nucleic acid tar-

gets.6,28–32 Thus, we investigated the feasibility of a repeat-

based approach to CRISPR-Cas classification, as opposed

to the canonical cas-centric approach, and demonstrate

here that the application of this technique leads to an in-

creased number of classified CRISPR loci in assembled

metagenomic data. Repeat-based analysis not only allows

for classification of CRISPR arrays that have been sepa-

rated from their associated cas genes but has the advantage

of being less computationally intensive than traditional

cas identification methods, which are based on exhaustive

BLAST or Hidden Markov Model (HMM) searches

against protein sequence databases.16 Decreased depen-

dence on computational resources could simplify and ex-

pedite analyses of data sets with large memory footprints,

which could prove prohibitive to users without access to

high-performance hardware or servers.

Several previous studies have explored evolutionary

conservation and classification of CRISPR repeats through

sequence alignment, clustering, and analysis of secondary

structures. However, the primary objective of these studies

was first to identify and categorize repeats into families

and only then to examine the associations with CRISPR

subtypes across the identified repeat families.33,34 An im-

portant first step in approaching cas-independent classifi-

cation was recently pioneered by CRISPRCasTyper,35

with an implementation of an extreme gradient boosted

tree (XGBoost) model trained on repeat sequence data.

The XGBoost model is a decision-tree-based ensemble al-

gorithm widely used in classification problems, where

each tree is generated sequentially, learning from errors

made by previous trees.36 Here, we validate and expand

this technique through the exploration of new model

input features and detailed analysis of the contributions

of the underlying features that enable successful recogni-

tion of each subtype.

Multiple modeling approaches were explored. How-

ever, given the high dimensionality of the k-mer-based

feature set and the complex interaction among both bio-

logical and k-mer-based features, an XGBoost model

was employed for repeat classification. While biological

features (GC content, repeat length, and palindromicity)

are generally among the highest impact features across

subtypes, k-mer features are largely unique to a subtype.

The performance of CRISPRclassify was evaluated

against a large publicly available set of metagenome-

assembled genomes (MAGs), referred to as the test

set.37 We found that the predictive performance of the

CRISPRclassify model on the training and validation

sets largely translated to this previously unseen test set.

Although it is unlikely that a repeat-based approach

will outperform the traditional cas-based approach di-

rectly, this methodology can provide complementary bi-

ological context in cases where the data on adjacent cas

genes are inadequate and identifies key features of the re-

peats that are central to the accurate subtype assignment.

Methods
Data sources
Genomes with previously classified CRISPR loci16 were

downloaded from the National Center for Biotechnology

Information (https://www.ncbi.nlm.nih.gov/). Repeats

were extracted via MinCED (github.com/ctSkennerton/

minced), a tool derived from CRT with default options.38

All detectable repeat sequences were retained. Repeats

and associated strain information were subsequently

stored in a Postgres database, resulting in 7,808 CRISPR

loci and 15,669 repeat sequences across 30 subtypes,

shown in Supplementary Table S1. Stratified random

split was used to divide the data into an 80% derivation

cohort (training set) and 20% validation cohort. Repre-

sentation of all available subtypes in the training set was

verified prior to the model training procedure. The deri-

vation cohort for the resource probability model consisted

of 12,534 repeats across 30 subtypes, and the validation

cohort contained 3,135 repeats across 30 subtypes.

Feature selection
For each repeat, a set of biological features, as well as

k-mer-based features comprised of nucleotide ‘‘words’’

of k length, were extracted to form the feature set used

in the classification model. Biological features include:

(1) length—the count of the characters in the repeat se-

quence; (2) GC content—the frequency of G and C nucle-

otides over the length of the repeat sequence; and (3)

palindromic index—the fraction of matching nucleotides

between the repeat sequence and its reverse complement

at the same index position. In addition to the biological
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features, repeat sequences were tokenized to extract

all contiguous, overlapping k-mers at varying k-mer

lengths.39 Given the unknown cardinality of the repeat

sequence, the reverse complement of each sequence

was also tokenized. The k-mer feature set for a given re-

peat sequence is therefore comprised of the occurrence

frequency of each distinct k-mer from both the repeat se-

quence and its reverse complement.

Model
Given the overlapping k-mers, an assumption of condi-

tional independence of the feature set could not be

made. A nonlinear approach that accounts for the complex

interaction between both biological and k-mer-based fea-

tures was necessary, leading to the implementation of

an extreme gradient boosted tree model (XGBoost).36

While XGBoost can be employed as a multiclass classi-

fier, the CRISPRclassify model was implemented using

a one-vs-all (OVA) binarization strategy where a sepa-

rate model stratum is trained for each subtype, with

the subtype itself being extracted as the binary response

variable.40 The probability, Pi,k, of subtype k for repeat

i conditional on a set of biological features Bioi and a

set of k-mer word tokens Kmeri is calculated using equa-

tion (1):

Pi, k Subtype kjBioi, Kmerið Þ = XGBk Bioi, Kmerið Þ for all i, k

(1)

The highest probability subtype, j*(i), for repeat i is

found using equation (2):

ŷ = argmax
k2 1...Kf g

Pi, k (2)

The highest probability subtype (i.e., argmax) across

model strata is assigned to each repeat using equation

(2). In order to identify the optimal k-mer length, the

OVA XGBoost model was applied to feature sets derived

from k-mer lengths from three to seven. The final

deployed model uses a feature set with a k-mer length

of five, coupled with the three aforementioned biological

features. Hyper-parameter optimization resulted in final

max depth of 15, a learning rate of 0.3, with early stop-

ping at 10 rounds and an upper limit of 50 rounds.

While all subtypes were included in the derivation and

validation data, some subtype model strata were excluded

due to low volume (n < 11). These included subtypes:

IV-C, V-B2, III-E, V-U1, VI-D, III-F, V-U2, VI-C, and

V-B1. Due to their exclusion from the derivation data

set, these subtypes were not considered for classification

and were not predicted by CRISPRclassify. Analysis was

conducted using the XGBoost package with R v3.6.2.

(https://www.R-project.org/, https://CRAN.R-project.org/

package=xgboost). Determination of the optimal prob-

ability cutoff was made by comparing receiver oper-

ating characteristic (ROC) curves using the pROC

package for R.41

Exploratory stratified logistic regression and multi-

class XGBoost models were trained using the same train-

ing and validation datasets as the final OVA XGBoost

model. All models were optimized using a grid search

pattern where an exhaustive combination of a predeter-

mined list of hyperparameter values was used to train

the models.

CRISPRclassify development
The CRISPRclassify application was developed in R

(https://www.R-project.org/). Repeats were identified

and extracted using MinCED with default options and a

custom Bash script derived from CRISPR Visualizer.42

To control the false-positive rate of CRISPR locus de-

tection using MinCED, previously described filtering

methods were employed.35,43 Putative false CRISPR ar-

rays were identified and excluded from further classifi-

cation if the repeats exhibited overall sequence identity

<0.7, spacers displayed overall sequence identity >0.6, or

if one or more spacers were 70% shorter than the average

spacer length across the entire locus. The biological and

k-mer-based repeat features were generated directly from

the repeat sequence using the tidyverse package (https://

www.tidyverse.org/). To maximize the support for

various levels of end users, CRISPRclassify was de-

veloped as a Shiny application with a web-interface

(https://shiny.rstudio.com/) that is deployed on a user’s

local machine via the command line. Additionally,

CRISPRclassify can be executed directly on the com-

mand line without invoking the user interface for im-

proved pipeline integration.

Benchmarking through cas-based classification
To enable benchmarking of CRISPRclassify against a

test metagenome, a custom cas-based pipeline was devel-

oped in Bash and Python. The test set, comprised of more

than 10,000 metagenome samples, contains a total of

52,515 MAGs. These data were obtained from the Joint

Genome Institute Genome Portal (https://genome.jgi.doe

.gov/portal/GEMs/GEMs.home.html).37 The cas identi-

fication pipeline identified repeats in the metagenome

using MinCED and extracted 20 kb flanking regions up-

stream and downstream of the CRISPR locus. The

flanking regions were queried against a reference BLAST

database aggregated from previously described cas se-

quences.16,18,44,45 BLASTx searches were carried out

with an E-value threshold of 1e-6 and a minimum cas

identity of 60%. CRISPR loci were then classified by
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subtype based on the presence of signature cas genes, and

these results were subsequently compared against pre-

dictions made by the CRISPRclassify model. For loci that

could not be classified through the cas-based approach

(i.e., no flanking identifiable cas genes), no comparison

could be made, and those loci were omitted from the

analysis. To ensure accurate benchmarking, loci with

multiple signature cas genes located in their flanking

regions were also omitted from the analysis. Only repeats

classified by CRISPRclassify with probabilities >0.85

were evaluated. Benchmarking performance was evalu-

ated based on the F1 score: (2 · Precision · Recall)/

(Precision + Recall).

Results
Model performance on validation data
In the exploration phase of this study, three model

schemes were evaluated. The first model was a multivar-

iate logistic regression stratified by subtype. Despite the

appeal of the feature interpretability provided by a linear

model, the predictive performance was suboptimal rela-

tive to the nonlinear XGBoost model. The mean area

under the curve (AUC) of the stratified logistic regression

was 0.9062 (95% confidence interval [CI] 0.8477–

0.9651). The second model scheme was a multiclass

implementation of XGBoost, resulting in a mean AUC

of 0.9937 (95% CI 0.989–0.998). The third model that

was ultimately selected for CRISPRclassify employs an

OVA scheme. With this approach, a separate XGBoost

model was created for each subtype, with the subtype

itself being a binary response variable. The AUC perfor-

mance of the OVA XGBoost model across subtype strata

for k-mer lengths 3–7 is illustrated in Figure 1. The AUC

results are based on the validation cohort. The k-mer

length of 5 (five-gram) produced the highest mean

AUC of 0.993, with the least degree of variance (95%

CI 0.983–1; Supplementary Table S2). To account for

predictions with greater uncertainty, Youden’s J statistic

was used to determine an optimal probability cutoff value

of 0.85.46,47 To suppress uncertain predictions, this cutoff

was applied to the argmax results of the validation set,

leading to a considerable reduction in inaccurate predic-

tions (Fig. 2). AUC values for each subtype can be found

in Supplementary Table S1.

Feature importance
Feature importance was evaluated across a range of

k-mer length models within each subtype stratum. As is

customary for XGBoost models, feature importance

was calculated as a measure of ‘‘gain.’’ The gain metric

measures the degree to which a feature reduces entropy,

or disorder, within the underlying decision trees used

within the XGBoost model. The top five highest-gain fea-

tures by subtype are listed in Table 1, and a full list of all

features by subtype can be found in Supplementary

Table S3. A common underlying signal for k-mer fea-

tures was identified regardless of the k-mer length. As a

representative example, Table 2 lists the 20 highest-

gain k-mers across all k-mer length models for the I-A

subtype stratum. The highest-gain k-mer comes from

the five-gram model, and the top k-mers from the three

and four-gram models are primarily derivatives of the

AATTG pentamer, which itself is fully contained in

(‘‘AGAATTG ‘‘) or overlaps with (‘‘AATTCT’’) in the

high-gain k-mers of the six- and seven-gram models.

The k-mers that make major contributions to subtype

classification are heterogeneous across subtypes. Figure 3

illustrates the relationship of high-gain k-mers across

subtype models. High-gain k-mers were identified as hav-

ing 90% CI (z > 1.645) based on the natural log of the gain

value. Seven of the 74 high-gain five-gram features are

represented in two subtype strata, and none are repre-

sented in three or more strata. Such heterogeneity indi-

cates that k-mer markers are largely unique to a

subtype and that the XGBoost model relies mostly on a

limited set of unique k-mers. This observation indicates

mutually exclusive associations between specific k-mer

sequences and the subtypes.

In addition to k-mer-based features, biological fea-

tures also proved impactful in the prediction of subtypes.

Figure 4 presents a visual summary of the distribution of

derived biological features for subtypes with >20 training

examples. Repeat length varies widely across type I, but

subtypes I-F and I-G contain repeats of conserved lengths

of 28 and 36 bp, respectively. Subtypes II-A and II-B also

exhibit conserved repeat lengths of 36 and 37 bp, respec-

tively. Although the repeat length across type III is not as

tightly concentrated around the median as those for some

of the type I and type II subtypes, the interquartile range

distribution across type III is similar, with a median of ei-

ther 35 or 36 bp. The length of type V repeats are broadly

variable, with median lengths from 29 bp (V-U4) to 37 bp

(V-K). Like the length distribution of the type I repeats,

their GC content shows a wide range of values across

the type I subtypes. In contrast to the high similarity

across type II repeats, type V repeats demonstrate notable

variability, with median values as low as 22% (V-A) and

as high as 75% (V-U4). Across all analyzed repeats, the

palindromicity index shows much less variation between

subtypes.

The relative importance of features varied by subtype,

but generally, biological features exhibited higher gain

across subtypes than k-mer-based features. Repeat length
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was the most impactful feature, with a mean gain of 0.159

(95% CI 0.086–0.232), followed by the GC content, with

a mean gain of 0.067 (95% CI 0.031–0.0960). The palin-

dromic index was found to be a less predictive biological

feature, with a mean gain of 0.012 (95% CI 0.006–0.018).

Repeat length was particularly important for subtypes

II-C, I-B, and I-E, with gain values of 0.39, 0.31, and

0.24, respectively. GC content disproportionately impacted

the prediction of subtype I-B, with a gain of 0.19, followed

only by III-A, with a gain of 0.08. Palindromicity was rel-

atively important for subtypes III-B, III-C, and III-D, with

gain values of 0.03, 0.02, and 0.02, respectively.

CRISPRclassify tool overview
The CRISPRclassify pipeline consists of three distinct

processes: identification of CRISPR arrays, feature ex-

traction, and classification with the stratified model

described above. Repeats and spacers were identified

using a string searching algorithm implemented in

MinCED. Putative false CRISPR arrays were then fil-

tered out if repeat sequences were non-uniform, spacer

sequences were highly similar, or if any irregular spacer

lengths were detected. Biological features and overlap-

ping k-mer features were then generated for each repeat

in the data set and passed to the model for classification.

FIG. 1. Area under the curve (AUC) performance by k-mer size. Model performance varied based on the k-mer
length selected during training. A length of 5 provided optimal performance, with a mean AUC of 0.993. K-mer
lengths of 4 and 6 also performed well, both with mean AUCs of 0.988. AUC performance with a k-mer length of 2
had the lowest performance of 0.966.
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The web interface allows simple upload of assembled ge-

nomic files (.fasta, .fna, etc.) and provides classified re-

peats in a downloadable .csv format. Results are

provided in both plot and table formats. The plot displays

counts of CRISPR loci by subtype, whereas the table lists

each distinct repeat, its location in the source file, the pre-

dicted subtype with its corresponding computed probabil-

ity, the organism in the training data with the most similar

matching repeat sequence, as well as the number of single

nucleotide polymorphisms present in the most similar

matching repeat sequence, termed the ‘‘edit distance’’

(Fig. 5). This analysis can also be executed entirely on

the command line without the web interface, resulting

in the same .csv file generated by the user interface. It

is also possible to classify repeats that have been previ-

ously identified and extracted using other CRISPR detec-

tion tools such as CRISPRDetect, CRISPRCasFinder, or

CRISPRidentify.43,48,49 Note that in order to identify

CRISPR loci using the primary pipeline, this tool requires

assembled genomes or metagenomes and will not process

raw reads.

Benchmarking CRISPRclassify
To validate the model performance, results from CRISPR

classify were benchmarked against cas-based predictions

of a diverse test set not seen by the model during training.

FIG. 2. Prediction matrix of one-vs-all (OVA) XGBoost results on validation set. Application of the 0.85 probability
threshold leaves only 14 total repeats incorrectly classified. The bottom-right quadrant of the graph displays the few
examples from subtypes III-A, III-B, and III-D that were misclassified in the validation set.
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Table 1. High-Gain Features by Subtype

Subtype Feature Gain Cover Frequency Subtype Feature Gain Cover Frequency

I-A length 0.16 0.18 0.11 III-F AAACA 0.16 0.62 0.21
I-A AATTG 0.15 0.12 0.02 III-F ACAAG 0.14 0.02 0.13
I-A gc 0.07 0.01 0.10 III-F CTTCC 0.15 0.01 0.12
I-A AGAAT 0.05 0.00 0.01 III-F CTGGA 0.17 0.00 0.13
I-A CGATA 0.03 0.00 0.01 III-F CCAGC 0.13 0.00 0.04
I-B gc 0.19 0.12 0.08 IV-A CCCCC 0.20 0.15 0.05
I-B length 0.31 0.07 0.08 IV-A GGTTA 0.06 0.09 0.04
I-B CATCA 0.03 0.04 0.01 IV-A CGATA 0.18 0.08 0.03
I-B GGTAC 0.02 0.04 0.00 IV-A length 0.05 0.00 0.08
I-B AGGCG 0.02 0.01 0.00 IV-A gc 0.06 0.00 0.09
I-C GCGAC 0.36 0.09 0.01 IV-C CTAGA 0.07 0.29 0.10
I-C length 0.12 0.08 0.11 IV-C TTGCA 0.23 0.13 0.14
I-C GTGGA 0.06 0.04 0.01 IV-C CCTAG 0.06 0.08 0.05
I-C ATCCA 0.05 0.03 0.01 IV-C TGCAA 0.41 0.07 0.33
I-C gc 0.06 0.02 0.10 IV-C palIdx 0.16 0.03 0.19
I-D length 0.12 0.11 0.07 V-A GTAGA 0.57 0.30 0.14
I-D AATCC 0.06 0.08 0.02 V-A GTCTA 0.04 0.21 0.07
I-D CGGGA 0.03 0.02 0.01 V-A AAATT 0.16 0.01 0.12
I-D gc 0.06 0.01 0.07 V-A CTAAG 0.05 0.00 0.06
I-D ATCCC 0.06 0.01 0.02 V-A TTAAA 0.02 0.00 0.07
I-E length 0.24 0.09 0.09 V-B1 AAGCT 0.18 0.34 0.11
I-E TCCCC 0.51 0.08 0.01 V-B1 AAAGC 0.10 0.26 0.06
I-E CGGAG 0.04 0.07 0.01 V-B1 TGCCA 0.10 0.02 0.06
I-E gc 0.03 0.07 0.08 V-B1 AACGG 0.11 0.01 0.07
I-E CCCGC 0.04 0.05 0.02 V-B1 gc 0.09 0.00 0.12
I-F CTGCC 0.58 0.15 0.03 V-B2 CAACC 0.12 0.88 0.26
I-F TCATC 0.05 0.09 0.01 V-B2 AACCC 0.11 0.05 0.10
I-F CCATC 0.03 0.08 0.00 V-B2 GCGAA 0.08 0.01 0.05
I-F length 0.14 0.08 0.10 V-B2 CGCGA 0.26 0.00 0.18
I-F TCTAA 0.03 0.01 0.01 V-B2 GCACA 0.06 0.00 0.03
I-G CAATG 0.24 0.10 0.02 V-F gc 0.21 0.12 0.13
I-G length 0.08 0.09 0.08 V-F GTTAA 0.06 0.06 0.04
I-G gc 0.05 0.01 0.09 V-F length 0.08 0.01 0.08
I-G CTTCA 0.15 0.01 0.02 V-F palIdx 0.08 0.00 0.13
I-G CCTCA 0.06 0.00 0.02 V-F CATTC 0.07 0.00 0.02
II-A AAAAC 0.29 0.11 0.04 V-K GTTGA 0.22 0.22 0.07
II-A length 0.12 0.07 0.05 V-K length 0.09 0.04 0.07
II-A TCTAA 0.06 0.04 0.02 V-K CTTTC 0.10 0.01 0.08
II-A gc 0.06 0.04 0.08 V-K CCTCC 0.09 0.01 0.06
II-A ACTCT 0.05 0.03 0.01 V-K gc 0.06 0.00 0.11
II-B ATAAT 0.08 0.35 0.06 V-U1 ATGAG 0.23 0.71 0.26
II-B ACTGA 0.12 0.16 0.05 V-U1 GGTTA 0.13 0.01 0.08
II-B length 0.11 0.09 0.10 V-U1 CATTA 0.13 0.01 0.08
II-B CCCTC 0.11 0.01 0.02 V-U1 AGCAG 0.13 0.00 0.08
II-B AATAA 0.09 0.00 0.03 V-U1 ATTAA 0.13 0.00 0.16
II-C length 0.39 0.24 0.06 V-U2 AAGCT 0.06 0.10 0.09
II-C TAAAA 0.06 0.05 0.02 V-U2 TCGAA 0.07 0.05 0.08
II-C CTACA 0.04 0.04 0.01 V-U2 CCAAG 0.13 0.03 0.08
II-C AAATG 0.02 0.02 0.01 V-U2 GAATC 0.27 0.03 0.13
II-C AAAAT 0.02 0.01 0.02 V-U2 palIdx 0.05 0.00 0.06
III-A AGGGG 0.06 0.08 0.02 V-U4 CGGAC 0.11 0.28 0.07
III-A gc 0.08 0.08 0.07 V-U4 CGGTC 0.12 0.16 0.12
III-A CCGTC 0.12 0.05 0.01 V-U4 palIdx 0.05 0.01 0.06
III-A CGAGA 0.03 0.00 0.00 V-U4 gc 0.19 0.00 0.15
III-A CGGAA 0.05 0.00 0.00 V-U4 length 0.06 0.00 0.05
III-B gc 0.08 0.08 0.07 VI-A ACCTC 0.04 0.18 0.06
III-B GGCCA 0.04 0.07 0.01 VI-A AGTCC 0.05 0.03 0.05
III-B TCCGA 0.05 0.05 0.01 VI-A ATAAT 0.04 0.01 0.04
III-B length 0.05 0.04 0.05 VI-A GGATA 0.32 0.01 0.05
III-B ATTAA 0.04 0.03 0.01 VI-A GATAA 0.04 0.00 0.02
III-C AGGAT 0.07 0.08 0.03 VI-B GGGTA 0.13 0.25 0.05
III-C gc 0.07 0.01 0.10 VI-B TGCAA 0.10 0.12 0.02
III-C palIdx 0.09 0.01 0.11 VI-B CCAAC 0.07 0.03 0.05
III-C CAAGG 0.09 0.01 0.02 VI-B CTTCA 0.06 0.00 0.04
III-C AGATA 0.04 0.00 0.01 VI-B AGAGC 0.09 0.00 0.02

(continued)
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After filtering out putative false loci, CRISPRclassify

detected 28,438 CRISPR loci in the 52,515 genomes in

the test set. For proper classification, unique repeats

were grouped by locus: the same repeat sequences in

two different loci were considered unique. When grouping

by locus, we identified 75,513 unique repeats. After limit-

ing this set to only classifications with probabilities >0.85,

18,504 loci remained, ultimately resulting in high-

confidence classifications for 65.1% of detected CRISPR

loci. Grouping the high-confidence repeats by locus

yielded 42,700 distinct repeats for subsequent benchmark-

ing. The outputs of all further analyses were obtained with

the high-confidence probability threshold of 0.85 unless

otherwise stated. The resulting distribution of predictions

by locus subtype is shown in Figure 6. Subtype I-C dom-

inated the predicted subtypes, representing 28.1% of all

classified loci. Notably, although type III has been previ-

ously reported to be more abundant than type II in most

major bacterial and archaeal phyla,16,18 predictions of

type II loci outnumbered those of type III, making up

17.8% of all classified loci versus 6.9% represented by

type III.

Investigation into the relationship between predicted

subtype probabilities and edit distance yielded a trend

that as subtype probability increases, edit distance de-

creases (Supplementary Fig. S1). The mean edit distance

across all detected repeats was 5.3. Repeats with predic-

tions above the 0.85 probability threshold had a mean edit

distance of 3.2 compared to the mean edit distance of

7.0 for repeats that fell beneath the 0.85 threshold. This

indicates that in general, the model generates higher con-

fidence predictions when classifying repeats that are

more similar to what it was exposed to during training,

although some high-confidence predictions were made

on repeats with large edit distances, and vice versa,

some low probability predictions were made for repeats

with small edit distances.

The cas-based pipeline, using a conservative 60% cas

identity threshold, successfully assigned a subtype to

3,625 out of the total 28,438 loci detected, resulting in

9,938 classified repeats out of the total 75,513 repeats

detected. Of the total 28,438 loci considered for bench-

marking, 13,085 (46%) had at least one detectable flank-

ing cas gene. However, only 3,635 of these also

contained the signature cas gene required for subtype

classification, typically due to contig truncation. The

remaining 15,353 (54%) unclassified loci are ‘‘orphan’’

CRISPR arrays that have been separated from any asso-

ciated cas genes or are not associated with cas genes at

all, and therefore could not be classified.50

These cas-based predictions were compared against

the high-confidence predictions generated with CRISP-

Rclassify, yielding an overlapping set of classified re-

peats for benchmarking, comprised of 7,410 repeats in

Table 1. (Continued)

Subtype Feature Gain Cover Frequency Subtype Feature Gain Cover Frequency

III-D length 0.11 0.11 0.05 VI-C TCCAA 0.39 0.70 0.34
III-D GCACC 0.03 0.04 0.00 VI-C AAACG 0.07 0.12 0.09
III-D gc 0.06 0.02 0.09 VI-C GACTA 0.14 0.10 0.14
III-D palIdx 0.02 0.01 0.06 VI-C CCCTC 0.07 0.00 0.02
III-D ATTGA 0.01 0.00 0.01 VI-C CCTCG 0.09 0.00 0.05
III-E CTAGA 0.15 0.08 0.16 VI-D ACTAG 0.35 1.00 0.50
III-E CTAGC 0.10 0.03 0.09 VI-D gc 0.32 0.00 0.21
III-E CAATC 0.21 0.00 0.13 VI-D GTCTA 0.14 0.00 0.13
III-E ATGCC 0.10 0.00 0.06 VI-D CTAAA 0.13 0.00 0.08
III-E GCGGA 0.10 0.00 0.06 VI-D palIdx 0.03 0.00 0.04

The five highest-gain features are provided for each subtype. The three highest-gain features identified were ‘‘CTGCC’’ for I-F, with a gain of 0.58,
‘‘GTAGA’’ for V-A, with a gain of 0.57, and ‘‘TCCCC’’ for I-E, with a gain of 0.51.

Table 2. High-Gain k-mers for Subtype I-A

k-mer
Reverse

compliment k-mer Gain
k-mer

length model

AATTG CAATT 0.225 5
AAT ATT 0.205 3
AATT AATT 0.195 4
AGAATTG CAATTCT 0.118 7
AAG CTT 0.072 3
AATTCT AGAATT 0.071 6
AATA TATT 0.050 4
AAC GTT 0.048 3
CTTTA TAAAG 0.039 5
AAAG CTTT 0.034 4
TAA TTA 0.034 3
AAA TTT 0.032 3
CAATTC GAATTG 0.032 6
ATA TAT 0.031 3
AATAAT ATTATT 0.028 6
ACTGAA TTCAGT 0.027 6
CTAAAG CTTTAG 0.026 6
AGA TCT 0.026 3
ATTC GAAT 0.026 4

The gain for each k-mer feature is dependent on the k-mer length of the
model. The ‘‘AATTG’’ k-mer displays the highest gain across all length
k-mer models, with a gain of 0.225 for a k-mer length of 5.
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total. The overall counts of the benchmarking compari-

son are depicted in Figure 7, with performance mea-

sures listed in Table 3. The confusion matrix values

used to calculate performance measures can be found

in Supplementary Table S4. The overall model had an

F1 score of 0.97, with 13/20 subtypes having an F1

score >0.8. The subtypes with low representation

(n < 30 training examples)—namely, III-C, V-F, V-U2,

V-U4, and VI-A—demonstrated poor performance, as

anticipated. Notably, however, although subtypes

V-A, V-K, and VI-B had low representation in the train-

ing set, with 58, 33, and 113 examples, respectively,

they showed high performance. Subtype I-G had an

F1 score of 0.64, which was much lower than expected,

considering the number of training examples. The recall

for I-G was perfect, with a value of 1, but the precision

was low at 0.47. Upon further examination, 57/58 false-

positives found for I-G were duplicate instances of the

same I-B CRISPR locus encoded on the Thermus ther-

mophilus HB8 plasmid pTT27. When accounting for

this duplication of false-positives from a single source

locus, the performance dramatically improved for both

I-G and I-B, in the latter case due to the reduction of

false-negatives.

Subtype III-B had the low F1 score of 0.31, with four

true positives, nine false-negatives that were falsely

FIG. 3. K-mer feature gain by subtype. Subtypes that demonstrated the highest-gain k-mer features were I-C
(‘‘GCGAC’’), I-E (‘‘TCCCC’’), I-F (‘‘CTGCC’’), I-G (‘‘CAATG’’), II-A (‘‘AAAAC’’), and III-A (‘‘CCGTC’’). High-gain k-mers are
distinct to individual subtypes. Only subtypes with >50 validation examples are listed for clarity.
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FIG. 4. Distribution of biological features by subtype. Box plots of repeat length (A), GC content (B), and
palindromicity index (C) are shown for repeats in the training set. Repeat length, GC content, and palindromicity
index display the widest variability across type I and type V repeats, while the median of these features is more
conserved within type II and type III repeats.
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classified as subtype I-B, and nine false-positive predic-

tions (Supplementary Table S4). The loci of the true pos-

itive predictions harbor both cas1 and cas2 (cas1/2)

genes, whereas the loci containing the nine false-

negatives contained no cas1/2 genes. Repeats of the

nine false-positive predictions all belonged to bona fide

III-C loci. Predictions of the III-C subtype were poor as

well, missing each of the 17 loci predicted via cas gene

identification. To identify the sources of these discrepan-

cies, we examined the III-B and III-C training data in

greater detail. The III-C training data consisted of 20 bac-

terial and archaeal strains. All but three of these strains

possessed III-C loci that co-occur with at least one

other type I system. In total, 13/20 strains contained

III-C loci that lacked adjacent cas1/2 genes. This pattern

of co-occurrence and lack of cas1/2 genes was observed

across the III-B training examples as well, albeit to a

lesser extent. Generally, among the strains that contained

a type III-B or III-C (III-B/C) locus lacking cas1/2 genes

and also possessed a type I system, the repeats of the type

FIG. 5. Overview of the web interface of CRISPRclassify. Locus counts are displayed by subtype, and distinct
repeats are listed by locus, along with predicted subtype and corresponding probability. High-gain k-mers are
highlighted in the repeat sequence either in blue, indicating forward orientation, or in yellow, indicating the reverse
complement. The strain with the closest matching repeat from the training data set is calculated and listed as
‘‘Closest Strain,’’ along with the corresponding number of single nucleotide polymorphisms between the repeats
(Edit Dist).
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III locus were almost identical in sequence to the repeats

of the co-occurring type I locus. This is expected because,

in such cases, the type I Cas1–Cas2 adaptation complex

recognizes the type III repeats.51–53 When cas1/2 genes

were present at the type III-B/C locus, the repeat se-

quences between the type III and type I loci in the

same genome shared substantially less identity (Supple-

mentary Fig. S2). In summary, repeats from type III-B/C

loci lacking cas1/2 genes will be falsely classified as

type I due to their high sequence similarity.

It is worth noting that the cas-based analysis of the test

set (138 GB) that involved identification of the CRISPR

loci, extraction of the flanking genomic regions, and the

search for signature cas genes took 46 h to complete.

The analysis of the same data set with CRISPRclassify

on the same hardware produced the results in <5 h.

Both analyses were carried out on an iMac Pro with 64

GB of RAM and a 3 GHz processor.

To complement the cas-based benchmarking analysis,

we performed another round of benchmarking against the

results of a popular alternate classification tool, CRISP-

RCasFinder.49 Although several tools were considered

for generating an alternate benchmarking comparison

such as CRISPRDetect and CRISPRCasTyper,35,48

CRISPRCasFinder was ultimately selected due to its

rapid execution speed and easily parsable output. This

FIG. 6. Overview of CRISPRclassify results on an unseen test set. The number of high confidence loci ( p > 0.85)
grouped by subtype shows types I and II comprise a majority of the test data, while types III, V, and VI have more
limited representation. A total of 28,438 CRISPR loci were detected in the test set.
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analysis resulted in an overall F1 measure of 0.93 (Sup-

plementary Table S5). Again, we saw poor performance

when classifying subtypes III-B and III-C. However,

10/13 classified subtypes exhibited an F1 measure >0.7,

while the F1 measures of subtypes I-C, I-E, I-F, I-G, II-A,

II-C, and V-A were ‡0.95.

In order to approximate CRISPRclassify’s potential

for identification and discovery of novel loci, we investi-

gated performance on repeats with an edit distance >6,

which are dissimilar to repeats seen by the model during

training. Overall, benchmarking these repeats resulted in

an F1 measure of 0.96 (Supplementary Table S6). These

data broadly mimic the larger set of benchmarking per-

formance results, with 11/17 detected subtypes scoring

an F1 measure >0.8. As expected, subtypes with low

training representation—III-C, V-F, V-U4, and VI-A—

demonstrated low F1 measures.

To evaluate differences in model performance that can

be attributed to the inclusion of biological input features

in combination with the five-gram pattern, we compared

benchmarked results from CRISPRclassify and CRISP-

RCasTyper’s repeat-based prediction function, which

also uses XGBoost (Supplementary Table S7). To make

an equitable comparison, no cutoff probability values

FIG. 7. Benchmarking result counts for the test set. Cas-based locus classification results (Actual) are plotted
against CRISPRclassify predictions (Predicted). Subtypes with the most misclassified loci were I-B (61 false-negatives),
V-U4 (40 false-negatives), II-C (24 false-negatives), and VI-A (23 false-negatives). The overall F1 score for the high
confidence predictions ( p > 0.85) of the test set is 0.97.
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were used for either model, and all predictions were con-

sidered. Running CRISPRCasTyper with default options

(k-mer length of 4) resulted in an overall F1 score of 0.73.

The same analysis carried out with CRISPRclassify

yielded an F1 score of 0.82, producing a mean increase

in F1 score by 0.09.

Discussion
In this work, we developed an efficient method for the

classification of CRISPR systems by analysis of repeat

sequences alone using a machine learning approach

based on an XGBoost model. Such models have re-

ceived increased recognition in recent years, as they

have proven to outperform alternative nonlinear ap-

proaches regularly, including deep learning-based

methods.36 Because XGBoost models train quickly rel-

ative to competing models, they effectively mitigate the

risk of overfitting with proper hyper-parameter tuning

and offer substantially improved interpretability over

deep learning approaches. For these reasons, XGBoost

was implemented as the primary approach over a vari-

ety of potential deep learning architectures. Further-

more, OVA scheme models often lead to improved

performance over multiclass classifiers as individual bi-

nary models can better discriminate within a two-class

subset. However, the OVA XGBoost model produced

results comparable to the multiclass model in this

case. Although the multiclass model is executed more

efficiently, only invoking a single model per classifica-

tion, the OVA scheme model provides valuable gain

data per subtype, which is not possible for a multiclass

model lacking stratification.

In terms of feature importance, biological features

contributed the most gain per subtype, with repeat length

being the highest-gain feature, on average. These findings

validate and support a previous study that reports the con-

servation of repeat length within subtypes.54 When vary-

ing the k-mer length used by the model, we detected

considerable variability in discrimination between sub-

types. The consistency in high-gain k-mer features ob-

served across the models of various k-mer lengths

reflects unique biological signatures of each subtype.

The five-gram models that significantly contributed to

subtype classification showed minimal overlap across

subtypes, with 67/74 present in a single stratum.

Although a k-mer length of five resulted in the best over-

all performance, some subtypes were better predicted

using different k-mer lengths.

Due to the nature of multinomial classifiers, a predic-

tion must be made for each input provided, typically,

without consideration for uncertainty. To account for

this, Youden’s J statistic was used to distinguish in-

formed predictions from those with higher uncertainty.

Aside from suppressing uncertain predictions, low prob-

abilities represent one metric to aid in the identification of

potentially novel and thus biologically interesting re-

peats. Although low probability predictions are not a di-

rect indicator of novelty, they reveal nucleotide patterns

and biological features with minimal representation in

the training data and could be used to flag loci for further

investigation.

In order to evaluate the model performance thor-

oughly, we benchmarked against a comprehensive col-

lection of metagenomes, representing a diversity of

organisms and environments that encompass 135 phyla.

In general, benchmarking against this test set yielded

highly accurate results for subtypes with more than 30

training examples, demonstrating that the XGBoost ap-

proach, in combination with both biological and k-mer-

based features, is sufficient for accurate classification of

an unknown data set. Accurate prediction of classes

with sparse representation was and will remain challeng-

ing until sufficient numbers of training examples can be

gathered. Notably, however, features of subtypes V-A,

V-K, and VI-B provided enough distinction that these

loci could be accurately predicted even with low class

representation in the training set. Furthermore, by com-

paring the classifications from CRISPRCasTyper and

CRISPRclassify against cas-based predictions of the

test set, we confirmed that extending a k-mer-based

model with biological input features in combination

Table 3. Benchmarking Performance Results

Subtype Precision Recall F1
Repeats detected

in test set
Training

examples

I-A 0.89 1.00 0.94 16 147
I-B 0.95 0.88 0.91 518 1,429
I-C 1.00 1.00 1.00 1,379 1,448
I-D 0.88 0.97 0.92 29 164
I-E 0.98 1.00 0.99 2,144 4,388
I-F 0.99 1.00 1.00 541 1,314
I-G 0.47 1.00 0.64 52 356
II-A 0.95 1.00 0.98 472 803
II-C 1.00 0.99 0.99 1,670 637
III-A 0.77 0.96 0.85 110 697
III-B 0.31 0.31 0.31 13 268
III-C 0.00 0.00 0.00 17 19
III-D 1.00 0.85 0.92 214 408
V-A 0.86 1.00 0.93 121 58
V-F 0.00 0.00 0.00 3 17
V-K 0.89 0.89 0.89 9 33
V-U2 0.00 0.00 0.00 8 6
V-U4 0.00 0.00 0.00 40 18
VI-A 0.00 0.00 0.00 23 20
VI-B 1.00 1.00 1.00 31 113

Performance metrics listed per subtype show high precision, recall, and
F1 scores for subtypes with >30 training examples, with the exception of
subtype III-B, which had 268 training examples but a low F1 score of 0.31.
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with five-gram sequence features led to an overall perfor-

mance improvement, most notably for subtypes I-A, I-B,

I-D, II-A, and III-D.

Despite high F1 scores for the relatively abundant sub-

types, accurate prediction of subtypes III-B and III-C

proved problematic. It is well known that III-B/C systems

often lack their own adaptation machinery and extend

their CRISPR arrays by co-opting the required Cas pro-

teins from CRISPR-Cas systems encoded in other geno-

mic locations.55 In accordance with this trend, we

observed that the presence of cas1 and cas2 genes in

a III-B or III-C locus determines whether the repeats

in the respective CRISPR array conform to the nucleo-

tide sequence of the endogenous type I locus or carry a

sequence signature that can be leveraged for subtype

prediction. This being the case, we found that most pre-

dictions for the III-B/C subtypes actually classified

the co-occurring type I systems rather than the type

III system itself. This observation illustrates the complex

co-evolutionary dynamics between CRISPR arrays and

cas genes—the two distinct modules of a single system

that must operate in coordination to acquire and maintain

adaptive immunity. Classification of CRISPR-Cas loci

can be further complicated by the shuffling of CRISPR-

Cas components due to recombination between closely

related adaptation modules.16

Ultimately, of the 28,438 CRISPR loci detected in the

test set, CRISPRclassify confidently identified 18,504

(65.1%). In contrast, the cas-based pipeline generated

classifications for only 3,625 (12.8%). Clearly, one

major contributing factor to the low detection rate of

the cas-based pipeline is the conservative 60% identity

threshold that was required for cas identification. This

high threshold was empirically selected to minimize spu-

rious cas matches which convoluted the subsequent

benchmarking results with incorrect locus classifications.

For example, when 30% was used as the minimum iden-

tity cas threshold, 10,401 loci were classified, but the

false-positive rate significantly increased because many

signature type V genes (cas12) were falsely identified

due to their homology to transposon-encoded tnpB

genes, which are extremely abundant across bacteria

and archaea.56 Even at the relatively permissive 30%

minimum identity cutoff, the cas-based approach leaves

18,698 loci unclassified compared to the 9,934 from

CRISPRclassify. Utilization of repeat-based classifica-

tion enabled improved coverage of metagenomes in

less time than the traditional cas-based approach, and

successfully classified CRISPR loci where adjacent cas

genes were missing or fell below the minimum alignment

threshold against reference data. Highly sensitive identi-

fication of cas genes using Cas protein family profiles as

queries for sequence searches is feasible, but it is chal-

lenging to implement in automatic pipelines without

compromising specificity.16 Additionally, the demon-

strated high performance on dissimilar repeat sequences

from those seen in training indicates that use of this

model could extend beyond classification of familiar re-

peats to support identification and discovery of novel

loci in metagenomes.

Conclusion
We report here that due to the dependence of traditional

CRISPR-Cas identification approaches on BLAST and

HMM alignments to known Cas protein sequences, a

substantial proportion of CRISPR loci in metagenomes

remain unclassified, highlighting the need for supplemen-

tal tools to maximize the efficiency of CRISPR analysis,

especially in metagenomic data. This analysis validates

the feasibility of repeat-based classification and, further-

more, elucidates the salient features of CRISPR repeats

that are crucial for subtype level classification. As meta-

genome samples and sequencing data continue to accu-

mulate at a spectacular pace, the approaches developed

in this work could provide guidance into the development

and application of additional machine learning models to

facilitate identification and characterization of CRISPR-

Cas loci.
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