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Abstract: In the process of drug discovery, identifying the interaction between the protein and
the novel compound plays an important role. With the development of technology, deep learning
methods have shown excellent performance in various situations. However, the compound–protein
interaction is complicated and the features extracted by most deep models are not comprehensive,
which limits the performance to a certain extent. In this paper, we proposed a multiscale convolutional
network that extracted the local and global features of the protein and the topological feature of
the compound using different types of convolutional networks. The results showed that our model
obtained the best performance compared with the existing deep learning methods.

Keywords: compound–protein interaction; drug screening; convolutional network; deep learning

1. Introduction

Drug discovery contains multiple steps that take a long time and cost a lot of money.
Predicting and identifying the compound–protein interaction (CPI) play an essential role
in the discovery and development of safe and effective new drugs. In the initial stage
of drug discovery, screening out the compounds that interact with the target protein can
greatly increase the success rate of drug discovery [1]. A large number of studies have
shown that the advantage of deep learning is that it can obtain a robust descriptor of the
original data after nonlinear transformation [2], which could promote the model to learn
the task-related features from the data. With the establishment of more and more datasets
of protein structures and compound–protein interactions, more and more studies have
attempted to introduce deep learning methods into both drug discovery [3–5] and the
predictive task of compound–protein interaction [6–8].

These methods usually integrated the information of proteins and molecules into one
framework for binary classification. The existing deep learning methods for compound–
protein interaction can be summarized into three categories:

1. The predictive models based on a 1D structure.

The protein is composed of multiple amino acids, and each amino acid is represented
by one character or multiple characters. A protein could be expressed as a string of
multiple characters. The 1D sequence of the protein is similar, with the text in the field of
natural language processing. Therefore, some researchers tried to apply the end-to-end
representation learning method in order to learn the feature of protein sequences.
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DeepDTA [9] built a model to predict the binding affinity between ligands and proteins,
in which the protein was represented as a 1D amino acid sequence. The results showed that
the performance of the model based on deep learning was superior to the models based
on traditional machine learning. A MFDR model [10] used a multi-scale protein sequence
descriptor to extract the feature of the 1D amino acid sequence, which was combined with
the feature of the molecular fingerprint in order to predict the interaction of the compound–
protein. Tsubaki et al. [11] applied 1DCNNs and GCN to learn features from the 1D amino
acid and molecular graph, respectively, for predicting compound–protein interactions. The
CGBVS-DNN [12] and DBN [13] model also extracted the feature of the protein from the
1D amino acid sequence.

2. The predictive models based on a 2D structure.

Recently, some studies constructed a 2D structure descriptor through a protein se-
quence and extracted features based on it or based on an original secondary structure
in various tasks. Fout et al. [14] introduced the protein graph into the prediction of the
protein–protein interaction, in which the basic node in the graph corresponded to the
residue. DrugVQA [15] was a compound–protein interaction predictive model in which
the protein was described as a distance matrix through the amino acid sequence. DGraph-
DTA [16] built a contact map to represent the protein based on the protein sequence in
order to predict the binding affinity. Instead of considering the residue as the node, Prote-
inGCN [17] built a protein graph according to the distance between atoms and regarded
the atom as the basic node. iProStruct2D [18] performed protein classification based on 2D
snapshots taken from the 3D structure. SSnet [19] extracted the feature from the secondary
structure of the protein in order to predict the compound–protein interaction, which was
based on the original 2D information of the protein.

3. The predictive models based on a 3D structure.

The structure of an active protein is not a simple combination of amino acids, but a
3D structure formed by protein folding. The stability of the 3D structure benefits from
the interaction between amino acids, which also affects the compound–protein interaction.
Researchers tried to learn the interaction from the 3D structure of the compound–protein
complex. AtomNet [20] was the first model that utilized deep learning methods to predict
the binding affinity of molecules and proteins based on 3D structural information. In the
AtomNet, the author extracted the feature from the 3D grids of the compound–protein
complex. The 3DCNN [21] and Se-OnionNet [22] also predicted the binding affinity of the
protein and the molecule based on the complex, which was obtained from the docking
software. ACNN [23] constructed a neighbor distance matrix using atomic coordinates and
a distance based on the complex in order to predict the free energy. However, there are
only 17679 biomolecular complexes of the protein–ligand [24]. Due to the fact that there
is a certain deviation in the calculation of the docking software, it is not accurate enough
to predict interactions based on the complex conformation obtained from this software.
Although researchers predicted the interaction between the proteins and the compounds
through the 3D structure, the accuracy needs to be improved.

The spatial structure feature of the binding site provides precise information for the
binding between proteins and compounds, but the global feature of the protein may also
affect the binding process. It is mainly embodied in two aspects. First, in consideration
of the shape and volume of the protein, the binding site only takes up a small spatial
proportion of the protein volume. The choice of the compound is influenced by the global
feature of the protein. Second, in the process of binding, the folding mode of protein
conformation is more complicated. The formation of the binding site is the result of the
combined effect of many factors. Atoms that do not belong to the binding site may also
affect binding.

Based on the consideration of the above factors, this work not only considers the local
feature of the binding site that closely relates to the docking process, but also considers
the global feature of the protein. Due to the large volume of the protein and the complex
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spatial structure that could result in high computational complexity, the 3D spatial structure
of the whole protein is discarded. The 1D amino acid sequence is used to represent the
global feature. In this work, the local feature from the binding site and the global feature
from the amino acid sequence are processed by two convolutional neural networks to
extract the information of the protein. Besides, the graph convolutional network is used
to extract the feature of the compound. All these features are combined to predict the
compound–protein interaction.

2. Materials and Methods

In this work, we propose a predictive model for compound–protein interaction using
three convolutional neural networks. The architecture is shown in Figure 1. In this
architecture, the features of compound–protein interaction contain three parts, including
the local feature of the binding site, the global feature of the 1D amino acid sequence
and the topological feature of the molecule. The local feature of the protein indicates the
spatial feature of the binding site through 3D convolutional neural network (3D-CNN),
which could discover the precise binding information. The global feature of the protein
indicates the feature from amino acid sequence using 1D convolutional neural network.
Moreover, in order to discover topological structure information of the molecule, the graph
convolutional network is applied to extract the relationship between atoms. All three
features are combined to predict compound–protein interaction.
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2.1. The Local Feature of the Protein Based on Multi-Channel 3D Convolutional Neural Network

The effective binding of the compound and the protein is the key to the function of
the drug. The binding site plays an important role in the process of binding. The essence of
the combination of the protein and molecule is that the atoms of the molecule interact with
the atoms of the binding site. The focus of this work is finding the molecules that interact
with the binding site of the protein. Therefore, in the description of the protein, the main
information is the characteristics of the binding site. Since the formation of the binding site
is based on its 3D structure, we extract features from the 3D structure of the binding site.

For the spatial structure, the first problem that needs to be solved is how to construct
the spatial descriptor of the binding site in order to extract effective information. In the
3D spatial structure, angstrom (Å) is used as the basic unit of the measurement. Inspired
by image pixels in the field of image processing, the protein is represented by the basic
units of each voxel with a size of 1 Å × 1 Å × 1 Å. The method of using voxels to represent
proteins has been used in the docking scoring AutoDock Vina [25] in the virtual screening
and DeepSite [26] model for predicting the position of the binding site.

In the compound–protein complex composed of the protein and the molecule, non-
covalent bond interactions play an important role in the formation of the protein conforma-
tion, the stability of the protein conformation and the stability and activity of the binding of
the protein and the molecule. Similar to DeepSite [26], the features of eight channels related
to these non-covalent bond interactions are extracted to act as an important part of the
protein descriptor, including hydrophobic, aromatic, hydrogen bond acceptor, hydrogen
bond donor, positive ionizable, negative ionizable, metal and excluded volume.

The occupancy of a single atom is calculated as follows:

n(r) = 1− exp
(
−
( rvdw

r

)12
)

(1)

where rvdw is the Van der Waals atom radius and r is the distance.
The calculation method of the above descriptors of the protein has been integrated

into HTMDs [27]. In DeepSite [26], the values of eight channels are calculated for all atoms
of the protein in order to predict the location of the binding site. However, the interaction
between the protein and the molecule mainly occurs in the binding site. We focused on
studying the role of binding sites and molecules. Therefore, in the 3D descriptors of the
protein, the voxel values of the eight channels are only calculated for the atoms belonging
to the binding site.

The binding site occupies a small space in the whole protein, shown in Figure 2a.
The binding site and the molecule are connected by non-covalent bond, and the rest of
the proteins have little contribution on this connection, which is shown in Figure 2b.
If we build an eight-channel grid for all atoms in the protein, it could cause a waste of
computing resources. Therefore, only the information of the binding site was extracted and
the corresponding descriptors were constructed. In order to facilitate the feature extraction
of the binding site, a box (30 Å × 30 Å × 30 Å) was constructed around the binding site,
which is shown in Figure 2c. According to eight channels of the protein in the previous
section, the feature of the binding site was extracted from the eight channels to cover
different properties.
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Through the descriptor of the binding site, the atoms belonging to the binding site
were divided into eight different channels and many voxels were constructed with DeepSite.
Thus, the descriptor of the binding site is represented by the cube box composed of voxels of
eight channels. Furthermore, the model uses 3D convolutional neural networks to process
these cube boxes to obtain the feature of the binding site, which is shown in Figure 3. If the
size of the 3D convolutional kernel is (P, Q, R), the output at the position (x, y, z) of the
feature cube is calculated as the following equation.

vxyz
(l+1) = ∑

m

P−1

∑
i=0

Q−1

∑
j=0

R−1

∑
k=0

wijk
l v(x+p)(y+q)(z+r)

l + bl (2)

where wijk
l represents the weight of the position (i, j, k) in the l-th layer 3D convolutional

kernel, v(x+p)(y+q)(z+r)
l represents the feature values in the l-th layer at the feature cube

position (x + p)(y + q)(z + r), bl represents the bias of the l-th layer and vxyz
(l+1) represents

the value of (x, y, z) in the (l + 1)-th layer 3D feature cube. The bias and weight of each layer
are obtained through training. The maximum pooling is utilized in the proposed model.
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2.2. The Global Feature of the Protein Based on 1D Convolutional Neural Network

The protein sequence is a representation of the primary structure of a protein, which
consists of multiple amino acids. There are 20 kinds of known amino acids, and each amino
acid is usually represented by a three-letter string or one character. Since proteins are a
biomacromolecule, there are many amino acids in a single protein. The amino acid sequence
expressed in characters is similar to the text. In our work, each protein is represented by
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1000 characters in length. If the number of amino is less than 1000, the sequence will be
filled with 0, and if the number is more than 1000, the sequence will be cut. The amino acid
sequence is vectorized in a manner similar to text processing. The word embedding is used
to convert each amino acid into a 128-dimensional vector. Thus, the amino acid sequence is
transformed into a feature matrix with 128 × 1000 size.

The 1D convolutional neural networks, which are composed of three 1D convolutional
blocks, are utilized to extract the global feature. Each convolutional block includes one
convolutional layer, one LeakyRelu function and one maximum pooling layer. The con-
volutional process is shown in Figure 4. Take the first convolutional layer as an example.
The size of the convolutional kernel is 5, and 64 convolutional kernels are utilized in the
first convolutional layer.
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The convolutional process for the amino acid sequences is as follows:

sk
(l+1) =

N−1

∑
j=0

s(k−j)
l wj

l + bl (3)

where s(k−j)
l is the feature vector of amino acid sequence at the position (k− j) in the l-th

layer, wj
l is the corresponding convolutional kernel and bl is the bias.

2.3. The Molecular Feature Based on Graph Convolutional Network

The molecule is described as a graph with topological connection. Each node in the
graph corresponds to an atom, and the edge corresponds to a chemical bond between
atoms in the molecule. The atom has many attributes, such as atom type, atomic degree,
number of connected hydrogen atoms, etc. These attributes, which are regarded as the
feature of atoms, are described as one-hot vectors. The details are shown in Table 1.

Table 1. The attributes of each atom.

No Attributes Value Dimension

1 Atom type

C, N, O, S, F, Si, P, Cl, Br, Mg, Na, Ca,
Fe, As, Al, I, B, V, K, Tl, Yb, Sb, Sn, Ag,
Pd, Co, Se, Ti, Zn, H, Li, Ge, Cu, Au,
Ni, Cd, In, Mn, Zr, Cr, Pt, Hg, Pb, X

44

2 The degree of an atom 0,1,2,3,4,5 6

3 The number of Hs on the
atom 0,1,2,3,4,5,6,7,8,9,10 11

4 The number of implicit Hs
on the atom 0,1,2,3,4,5,6,7,8,9,10 11

5 Aromatic 1 1

Total 73
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One molecule is described as G = (V, E), where V corresponds to all atoms in the
molecule and E is the set of bonds. For the atomic node i, its feature is represented as xi.
The feature of the molecular graph is expressed as XN×L, where N represents the number
of nodes and L represents the feature dimension of each node. The topological connection
of molecules is represented by the adjacency matrix AN×N . If there is a connection between
the node i and the node j, then A(i,j) = 1; otherwise A(i,j) = 0. In addition, the number
of adjacent atoms connected to each atom in the molecular graph is recorded in the
degree matrix.

A graph convolutional network [28] is performed on the molecular graph in order to
extract the molecular feature. The convolutional method is composed of three convolutional
layers and three pooling layers. The convolutional operation in each layer is calculated
as follows:

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 HlWl

)
(4)

where Ã = A + IN refers to the adjacency matrix of undirected molecular graphs contain-
ing self-connection, D is the degree matrix of the molecular graph, D̃ii = ∑

j
Ãij.Wl is the

weight matrix and σ(.) is the activative function.

3. Model Training

In the predictive task of the compound–protein interaction, the local feature of the
protein from the binding site is obtained through the multi-channel 3D convolutional
neural network. The global feature of the protein from the amino acid sequence is ob-
tained through the 1D convolutional neural network, and the molecular feature is ob-
tained through the graph convolutional network. These three features are combined as
Equation (5) to predict the compound–protein interaction in order to determine whether
the molecule can effectively dock with the protein. The overall process is shown in Figure 5.

XCPI = [XL, XG, XM] (5)

where XL indicates the local feature of the protein, XG indicates the global feature of the
protein and XM indicates the molecular feature.
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Molecules that can bind to the protein are labeled as positive samples, and others
are labeled as negative samples. There are hundreds of millions of molecules in nature
or generated with the aid of computer-aided technology, but there are a small number of
molecules that can effectively bind to specific proteins. A huge imbalance between positive
samples and negative samples results in the inefficiency of the training process. In order to
minimize the interference caused by the imbalance, the focal loss [29] is introduced as the
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loss function, which was originally proposed to address the problem of the imbalance in
the field of target detection. The focal loss is described as Equation (6).

LF =

{
−α(1− y′)γlogy′, y = 1
−(1− α)y′ γlog(1− y′), y = 0

(6)

where α is the balance factor to adjust the proportion of positive and negative samples,
γ factor is set to ensure the model pays more attention to samples that are difficult to
distinguish and y′ is the predicted value.

Assume that the number of positive samples is P and the number of negative samples
is N. The coefficient of positive samples is P

P+N and the coefficient of negative samples is
N

P+N . The final loss is calculated as the following equation.

Lm =

{
− N

P+N (1− y′)γlogy′, y = 1
− P

P+N y′γlog(1− y′), y = 0
(7)

4. Results
4.1. Dataset

Directory of Useful Decoys, Enhanced (DUD-E) is a dataset that provides 102 unique
proteins that correspond to 124 docking molecules on average. As for each docking
molecule, 50 decoys are prepared. These decoys own similar properties to the actives.
In our experiment, 91 target proteins and their corresponding compounds constitute a
dataset, since it is hard to extract the precise channel information from the rest targets.
For each target protein, there are multiple docking molecules that are recorded as positive
samples, and others that are labeled as negative samples. In the experiment, one sample
pair contains one protein, one compound and one label. To compare our model with
other models more objectively, the splitting of the dataset followed the same experimental
setting of Lim et al. [30] and Tsubaki et al. [11]. The training set and the test set are divided
according to the type of protein. For each protein target, the ratio of ligands (positive)
and decoys (negative) is set to 1:1. The details are shown in Tables 2 and 3. There are
29,030 sample pairs in the training dataset and 10,746 sample pairs in the test dataset in
total, which contain both positive and negative ones.

Table 2. The target details of the training dataset in DUD-E and the number of positive samples (P) for each target.

ID P ID P ID P ID P ID P

adrb1 247 adrb2 231 akt2 117 Ampc 48 andr 269

aofb 122 bace1 283 Braf 152 cah2 492 cdk2 474

cp2c9 120 csf1r 166 cxcr4 40 Def 102 dhi1 330

drd3 480 dyr 231 esr1 383 esr2 367 fa7 114

fabp4 47 fak1 100 fkb1a 111 fpps 85 gcr 258

glcm 54 hdac2 185 Hivint 100 hivpr 536 hivrt 338

hmdh 170 hs90a 88 hxk4 92 igf1r 148 inha 43

ital 138 jak2 107 kif11 116 Lck 420 mapk2 101

mcr 94 mk01 79 mk10 104 mk14 578 mmp13 572

nos1 100 nram 98 pde5a 398 pgh2 435 plk1 107

pnph 103 ppara 373 Ppard 240 pparg 484 prgr 293

pur2 50 reni 104 rock1 100 rxra 131 sahh 63

src 524 thb 103 try1 449 tryb1 148 tysy 109

urok 162 vgfr2 409 Xiap 100
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Table 3. The target details of the test dataset in DUD-E and the number of positive samples (P) for each target.

ID P ID P ID P ID P ID P

aa2ar 482 abl1 182 Aces 453 ada 93 casp3 199

cp3a4 170 egfr 542 fa10 537 fgfr1 139 fnta 592

grik1 101 hdac8 170 Kit 166 kith 57 kpcb 135

pa2ga 99 parp1 508 pgh1 195 ptn1 130 pygm 77

pyrd 111 tgfr1 133 wee1 102

4.2. The Performance of the Model

In the DUD-E dataset, each sample pair contains a protein, a molecule and a label.
The label shows whether the protein and molecule in the sample pair could be docked.
If they are docking, the corresponding label is 1; otherwise it is 0. For the test set, given
a protein and a molecule, the model needs to predict the docking possibility, which is a
classification task. The general ROC AUC is used as the measurement indicator. A higher
AUC value indicates a better performance.

In order to evaluate the performance of the proposed model objectively, we compared
it with seven other models. These models contain open source molecular docking programs
that are widely used in virtual screening tasks (AutoDock Vina [25] and Smina [31]), deep
learning models (Tsubaki’s model [11], AtomNet [20], 3D-CNN [21]) and the latest graph-
based model (L+LP+R [32] and Lim’s model [30]).

Tsubaki’s model [11] applied 1DCNNs to extract protein features and used GCN to
extract molecular features. The AtomNet [20] used a 3D convolutional neural network
to extract the combined feature from the 3D grid of the compound–protein complex for
the interaction prediction. Similar with AtomNet, the 3D-CNN [21] method also extracted
the feature of the complex. The docking poses were obtained from the docking software.
The L+LP+R model [32] constructed two topological graphs L and LP based on the binding
structure of the protein and molecules. Besides, the author merged the ranking R of the
docking posture into the model. Lim’s model [30] embedded structural information of the
binding pose in a graph and introduced an attention mechanism into the prediction.

Table 4 shows the comparison of the performance of multiple models on the DUD-E
dataset for distinguishing actives and decoys. The AUC values of other models in Table 4
are derived from AtomNet [20], 3D-CNN [21], L+LP+R [32], Tsubaki’s model [11] and Lim’s
model [30]. As shown in Table 4, the proposed model obtains the best result. The AUC
value (0.975) of our model is higher than the deep learning models, such as AtomNet
(0.895), 3D-CNN (0.868), L+LP+R (0.93) and Lim’s model (0.968). Different to the above
four models, in the proposed model, the docking structure of the protein and the molecule
is not extracted. The features of the protein and the molecule are extracted separately.
Generally speaking, the feature extracted by the docking structure of compound–protein
complexes could contain more precise information. However, the experimental results
indicate that the proposed model is superior to the model that extracts features from the
docked complex structure, which further shows that the proposed model is capable of
predicting the compound–protein interaction.

Table 4. The performance of different models on the DUD-E dataset.

Model Smina [20] AutoDock
Vina [21]

AtomNet
[20]

3D-CNN
[21]

L+LP+R
[32]

Tsubaki’s
Model [11]

Lim’s
Model [30] Our Model

AUC 0.696 0.716 0.895 0.868 0.93 0.94 0.968 0.975
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4.3. The Performance of the Model on Different Proteins

In order to further evaluate the model’s ability to predict the interaction between
different proteins and molecules, in this section, the AUC values for different proteins are
shown in Figure 6. The proteins are sorted in the order of Tables 2 and 3. Since the names
of the 91 proteins are long, the corresponding indexes are listed. A total of 23,866 sample
pairs are randomly selected for the test (262 sample pairs for each protein on average),
which contained 3987 actives and 19,879 decoys.

Biomolecules 2021, 11, 1119 10 of 14 
 

 
Figure 6. The performance of the model on different proteins. 

It can be seen from Figure 6 that the AUC values of most proteins are higher than 0.9, 
and some of them reach 1. In addition, the number of proteins whose AUC value exceed 
a predetermined threshold in different models were counted. The comparative results of 
these models are shown in Table 5. It is worth noting that the number of proteins in the 
models of AtomNet and Smina is 102. It can be seen from Table 5 that Smina has the lowest 
prediction accuracy, with 53 proteins exceeding 0.7 and only 1 exceeding 0.9. The Atom-
Net model is better than Smina, in which the AUC values of 99 targets are higher than 0.7 
and the AUC values of 59 targets are over 0.9. However, the AUC values of 88 targets in 
the proposed model exceed 0.9, which shows that the proposed model is more robust in 
predicting the compound–protein interaction. 

Table 5. The performance on different proteins. 

Model >0.7 >0.8 >0.9 
AtomNet 99 88 59 

Smina 53 17 1 
Our model 90 90 88 

4.4. The Analysis of the Model 
In order to objectively evaluate the performance of the model and reduce the overfit-

ting to a certain extent, we use 5-fold cross-validation to determine the hyperparameters. 
When the model was trained well, the average of five results for each hyperparameter 
combination was regarded as the final result of this set of hyperparameters. Then, the 
optimal hyperparameter was set to the model, which was retrained on the whole training 
set and evaluated with the test set. 

4.4.1. The Impact of Different Feature Combinations on the Model Performance 
In the proposed model for the task of predicting the compound–protein interaction, 

considering the relevant information of proteins and molecules, the model extracts the 
local feature (the spatial feature of the binding site) and the global feature (the feature of 
the composition of the amino acid sequence) from the protein and extracts the topological 
feature from the molecular structure. 

In this section, a comparative experiment was set up to evaluate the impact of differ-
ent feature combinations, especially different features of the protein. Due to the fact that 
the molecular feature is indispensable, we combined different features of the protein with 
the molecular feature. The different feature combinations are: the local feature and molec-
ular feature, the global feature and molecular feature and the combination of all three. The 

Figure 6. The performance of the model on different proteins.

It can be seen from Figure 6 that the AUC values of most proteins are higher than 0.9,
and some of them reach 1. In addition, the number of proteins whose AUC value exceed
a predetermined threshold in different models were counted. The comparative results of
these models are shown in Table 5. It is worth noting that the number of proteins in the
models of AtomNet and Smina is 102. It can be seen from Table 5 that Smina has the lowest
prediction accuracy, with 53 proteins exceeding 0.7 and only 1 exceeding 0.9. The AtomNet
model is better than Smina, in which the AUC values of 99 targets are higher than 0.7
and the AUC values of 59 targets are over 0.9. However, the AUC values of 88 targets in
the proposed model exceed 0.9, which shows that the proposed model is more robust in
predicting the compound–protein interaction.

Table 5. The performance on different proteins.

Model >0.7 >0.8 >0.9

AtomNet 99 88 59
Smina 53 17 1

Our model 90 90 88

4.4. The Analysis of the Model

In order to objectively evaluate the performance of the model and reduce the overfit-
ting to a certain extent, we use 5-fold cross-validation to determine the hyperparameters.
When the model was trained well, the average of five results for each hyperparameter
combination was regarded as the final result of this set of hyperparameters. Then, the
optimal hyperparameter was set to the model, which was retrained on the whole training
set and evaluated with the test set.

4.4.1. The Impact of Different Feature Combinations on the Model Performance

In the proposed model for the task of predicting the compound–protein interaction,
considering the relevant information of proteins and molecules, the model extracts the
local feature (the spatial feature of the binding site) and the global feature (the feature of
the composition of the amino acid sequence) from the protein and extracts the topological
feature from the molecular structure.
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In this section, a comparative experiment was set up to evaluate the impact of different
feature combinations, especially different features of the protein. Due to the fact that
the molecular feature is indispensable, we combined different features of the protein
with the molecular feature. The different feature combinations are: the local feature
and molecular feature, the global feature and molecular feature and the combination of
all three. The models with different combinations own the same network architecture
and hyperparameter configuration. A 5-fold cross validation was performed on all three
combinations. From Figure 7, we can see that the combination of the three features achieved
the best AUC value.
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After the training is completed, the three models are also tested on the test set, and
the ROC curve is shown in Figure 8. We can see that the feature combination of the site
structure, amino acid sequence and molecule achieves the best AUC.
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Figure 8. The performance of models with different feature combinations on the test dataset.

Besides, in order to explore the difference between models with three feature combi-
nations, we calculated four indicators: the AUC value, precision value, recall value and
F1-score. The results are shown in Table 6. The combination of three features achieves the
best AUC value, precision value and F1-score. It should be noted that the calculation of each
precision, recall and F1-score is based on specified thresholds. The threshold that achieves
the best F1-score is determined as the final threshold, which are 0.209, 0.215 and 0.295 for
the three feature combinations separately. The results show that the combination of three
features (global feature + local feature + molecular feature) is superior to the combination
of two features (global feature + molecular feature or local feature + molecular feature).



Biomolecules 2021, 11, 1119 12 of 15

Table 6. The comparison of different feature combinations.

Combinations AUC Precision Recall F1-Score

Site + molecule 0.967 0.902 0.918 0.910

Sequence +
molecule 0.972 0.890 0.936 0.912

Site + sequence +
molecule 0.975 0.905 0.929 0.917

4.4.2. The Model Performance on Imbalanced Dataset

This section shows the model performance on the balanced and imbalanced dataset.
For each ligand, we randomly selected one, three and five decoys consisting of the training
dataset, and the ratio of positive and negative is 1:1, 1:3 and 1:5, respectively. Four indicators
are set for these three ratios, which includes the AUC value, precision value, recall value
and F1-score. It can be seen from Table 7 that the AUC value, precision value and F1-score
of the ratio 1:5 have a little advantage when compared with other ratios. However, the
ratio 1:5 is the most imbalanced training dataset. The results show that the imbalance of
the dataset has no obvious effect on the model performance.

Table 7. The model performance on the balanced and imbalanced dataset.

Positive:Negative AUC Precision Recall F1-Score

1:1 0.975 0.905 0.929 0.917

1:3 0.975 0.901 0.938 0.919

1:5 0.977 0.915 0.929 0.922

4.4.3. The Impact of Different Convolutional Layers on the Model Performance

In the proposed compound–protein interaction predictive model, there are three
convolutional networks, including the 3D convolutional network performed on the 3D
structure of the binding site, the 1D convolutional network performed on the 1D amino acid
sequence of the protein, and the graph convolutional network performed on the molecular
structure. Each convolutional network could consist of multiple layers. The purpose of the
experiments in this section is to evaluate the influence of different numbers of convolutional
layers on the model. In this section, the number of convolutional layers in each model
is set from one to three. The number of convolutional layers here corresponds to three
convolutional networks (3D convolutional network, 1D convolutional network and graph
convolutional network). For example, in a model where the number of convolutional layers
is set to one, all three convolutional networks consist of one layer. The results are shown in
Figure 9, from which it can be concluded that when the number of convolutional layers is
three, the model predicts compound–protein interactions most accurately.
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4.4.4. The Impact of Different 3D Convolutional Channels on Model Performance

As for the feature extraction from the spatial structure of the binding site, a multichan-
nel 3D convolutional neural network is applied. The channel setting detail of the proposed
model is listed in the first line of Table 8. In this section, in order to evaluate the influence
of the number of channels on the performance of the model, two comparative groups are
set up. The comparative group is also based on a three-layer 3D convolutional neural
network. The difference is the number of channels in each group. The configuration of the
different comparative groups is shown in the second and third line in Table 8. Except for
the different number of channels of the 3D convolutional neural network, the settings of
other hyperparameters are consistent with the proposed model. The validation result is
shown in Table 8, from which it can be seen that the model with the higher number of
channels (first line in Table 8) achieves the best result.

Table 8. The effect of the 3D convolutional channels on the model performance.

Layer1 (in, out) Layer2 (in, out) Layer3 (in, out) AUC (std)

3DCNN (8,32) 3DCNN (32,64) 3DCNN (64,128) 0.953 (0.022)
3DCNN (8,8) 3DCNN (8,4) 3DCNN (4,2) 0.948 (0.022)
3DCNN (8,32) 3DCNN (32,32) 3DCNN (32,8) 0.947 (0.023)

5. Conclusions

In this work, we proposed a compound–protein interaction predictive model based
on multiscale convolutional neural networks, which combined the global and local feature
of the protein and the feature of molecular topology. Aimed at the binding characteristics
of proteins and molecules, three convolutional networks were designed to extract the
spatial feature of the binding sites, the feature of amino acid sequences and the feature of
molecules. These three features were fed into the model to identify whether the protein
and molecules can effectively bind. The model in our work does not rely on the binding
conformation of the protein and the molecule, and the experimental results show that the
model reaches an AUC value of 0.975, which is better than current deep learning models.
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