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Abstract: Nerve growth factor (NGF) and its precursor form, proNGF, are critical for neuronal
survival and cognitive function. In the brain, proNGF is the only detectable form of NGF. Dysreg-
ulation of proNGF in the brain is implicated in age-related memory loss and Alzheimer’s disease
(AD). AD is characterized by early and progressive degeneration of the basal forebrain, an area
critical for learning, memory, and attention. Learning and memory deficits in AD are associated
with loss of proNGF survival signalling and impaired retrograde transport of proNGF to the basal
forebrain. ProNGF transport and signalling may be impaired by the increased reactive oxygen and
nitrogen species (ROS/RNS) observed in the aged and AD brain. The current literature suggests that
ROS/RNS nitrate proNGF and reduce the expression of the proNGF receptor tropomyosin-related
kinase A (TrkA), disrupting its downstream survival signalling. ROS/RNS-induced reductions in
TrkA expression reduce cell viability, as proNGF loses its neurotrophic function in the absence of TrkA
and instead generates apoptotic signalling via the pan-neurotrophin receptor p75NTR. ROS/RNS also
interfere with kinesin and dynein motor functions, causing transport deficits. ROS/RNS-induced
deficits in microtubule motor function and TrkA expression and signalling may contribute to the
vulnerability of the basal forebrain in AD. Antioxidant treatments may be beneficial in restoring
proNGF signalling and axonal transport and reducing basal forebrain neurodegeneration and related
deficits in cognitive function.

Keywords: oxidative stress; nitrative stress; neurotrophin; p75NTR; basal forebrain;
retrograde transport

1. Nerve Growth Factor Receptors and Signalling

Mature nerve growth factor (NGF) is a 13.2 kD protein that is essential for cell survival,
synaptic plasticity, neurite outgrowth, and differentiation [1,2]. NGF binds to the tyrosine
kinase receptor, TrkA, to elicit its neurotrophic functions [1,3]. NGF-induced TrkA activa-
tion initiates three main signalling cascades, the phosphatidylinositol-3-kinase (PI3K)-Akt
pathway, the Ras-mitogen activated protein kinase-extracellular signal regulated kinase
(Ras-MAPK-ERK) pathway, and the phospholipase C-gamma (PLC-γ) pathway [4–7]. Ac-
tivation of the PI3K-Akt pathway is required for NGF-induced cell survival, while both
Ras and PLC-γ signalling contribute to NGF-induced neurite outgrowth [4,8,9]. In addi-
tion to activation of the ERK signalling cascade, NGF activates the p38 MAPK pathway
downstream of Ras [10]. Both of these pathways induced by NGF contribute to activating
phosphorylation of the transcription factor cAMP-response element binding protein (CREB)
at serine-133 [10]. CREB regulates various genes associated with beneficial functions in-
cluding neurogenesis, neuronal survival, synaptic plasticity, and cognitive function [11].

Mature NGF also binds with low affinity to the pan-neurotrophin receptor, p75NTR [1].
In the absence of TrkA, NGF-induced activation of p75NTR induces apoptosis by activating
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ceramide and c-Jun N-terminal kinase (JNK) signalling [1,7,12]. However, in the presence
of TrkA, p75NTR enhances the neurotrophic functions of NGF by increasing the affinity of
NGF for TrkA, increasing NGF/TrkA internalization, and inducing signalling via Akt to
increase cell viability [1,7,13]. Activation of TrkA inhibits the apoptotic signalling of p75NTR

via the PI3K-Akt and Ras-MAPK-ERK pathways, which inhibit apoptotic signalling factors
and activate anti-apoptotic factors, respectively [7].

The NGF gene contains two different promoters, and the resulting transcripts can
be alternatively spliced to produce two major and two minor mRNA sequences [14,15].
Translation of NGF from the two major transcripts results in preproNGF species of 34 kDa
and 27 kDa [16]. Following removal of the signal peptide in the endoplasmic reticulum, 32
and 25 kDa proNGF species remain [14,17–20]. These species can be further processed by
various proteases to produce the mature, 13.2 kDa form of NGF [21–23]. However, in the
human, rat, and mouse brain, proNGF is the predominant species, while mature NGF is not
detected [24]. ProNGF exists as a 64 kDa dimer that has similar biological activity to mature
NGF, although with lower potency [25,26]. Several studies indicate that proNGF binds to
TrkA, albeit more weakly than mature NGF, and elicits TrkA phosphorylation and activation
of downstream signalling factors including MAPK, ERK1/2, and Akt [25,27–29]. There
is extensive literature indicating that proNGF exhibits a similar neurotrophic function to
mature NGF in its ability to promote cell survival and neurite outgrowth [25,27–33]. Several
of these studies utilized cleavage-resistant proNGF mutants and performed experiments in
the presence of protease inhibitors to confirm that the observed neurotrophic effects were
induced by proNGF rather than its mature form [25,27–29]. In these studies, the lack of
proNGF cleavage was also confirmed via Western blot, providing further confidence that
proNGF is neurotrophic [25,27–29].

Despite extensive literature supporting the role of proNGF as a neurotrophic factor,
other evidence implicates proNGF in apoptosis [21,34]. These contradictory results can
be explained by differences in proNGF receptor expression [28]. In the absence of TrkA,
proNGF activates apoptotic signalling through p75NTR, together with sortilin [21,28,29,34].
However, in the presence of TrkA, proNGF retains neurotrophic activity [25–29].
Therefore, receptor expression is critical in determining the cellular outcome of proNGF
activity [28,29,35].

2. Basal Forebrain Cholinergic Neurons: Dependence on NGF and Implications in
Alzheimer’s Disease

Alzheimer’s disease (AD), the most common form of dementia, is characterized
by progressive learning and memory deficits and accumulations of amyloid-beta and
hyperphosphorylated tau proteins [36]. One brain area that is particularly vulnerable to
AD is the basal forebrain [37]. Degeneration of basal forebrain cholinergic neurons (BFCNs),
which are critical for learning, memory, and attention, contributes to the cognitive decline
seen in aging and AD [38–42]. BFCN degeneration is also a feature of Down’s syndrome
(DS), a trisomy of chromosome 21 that includes the amyloid precursor protein gene and
produces AD-like pathology [43,44].

BFCNs rely on NGF for their survival and function [35,45–51]. Early studies demon-
strated the presence of NGF mRNA overlapping with cholinergic subfields within the
horizontal limb and diagonal band of broca within the basal forebrain, suggesting that
these neurons supplied their own NGF [52,53]. However, later studies revealed that this
NGF was present exclusively within GABAergic, not cholinergic, neurons within these
regions [54]. Early in vivo work indicated that fimbria–fornix transection results in BFCN
cell death and reduced learning and memory functions, both of which can be rescued by
the addition of NGF [51,55]. These observations, coupled with the high levels of NGF
present within the cortical and hippocampal targets of BFCNs, suggest that these neurons
are reliant on retrograde axonal transport for their supply of NGF [53].

Mature NGF, bound to its receptors on axon terminals, is retrogradely transported
from synaptic terminals to cell bodies in signalling endosomes, which contain TrkA and
its downstream signalling factors and activate downstream signalling pathways along the
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length of the axon and in the cell body [56–60]. Recent evidence indicates that proNGF
is also retrogradely transported by neurons in both the central and peripheral nervous
systems and is transported in signalling endosomes, similarly to mature NGF [61–63].

The aged basal forebrain exhibits impairments in the retrograde transport of NGF
as well as in general axonal transport [64–66]. In AD and DS, NGF immunoreactivity
accumulates throughout the cortex and hippocampus and is reduced in the basal forebrain,
indicating a deficit in its retrograde transport (Figure 1) [59,67–71]. However, these studies
did not differentiate mature NGF from its precursor form, as the molecular weight of the
detected proteins was not analyzed. The antibodies used for NGF detection via EIA, ELISA,
dot blot, and immunohistochemistry in these studies, directed against mature NGF, also
recognize proNGF. More recent studies demonstrate that the previously reported accu-
mulations of mature NGF are actually proNGF rather than its mature form [24,63,72,73].
Similar proNGF accumulations are observed in the cortex of patients with DS, AD, and
mild cognitive impairment, as well as in DS and AD rodent models [72–75]. Processing
of proNGF to its mature form may be impaired in DS and AD, which may contribute to
proNGF accumulation [75–77]. However, the lack of detectable NGF in healthy or diseased
brain, the regional specificity of proNGF accumulation and the decreased immunoreactivity
in the basal forebrain are highly suggestive of impaired retrograde transport deficits. No
differences in the expression of NGF mRNA are observed in the aged or AD brain despite
observed increases in NGF-immunoreactive protein in the hippocampus and cortex and
decreases in the basal forebrain, supporting the role of retrograde transport [69,78,79].
Furthermore, deficits in proNGF retrograde axonal transport have been reported in BFCNs
aged in vitro [35,63]. Similar reductions in the retrograde transport of 125I-NGF and cholin-
ergic deficits are observed in DS mice and aged rats [59,64]. Thus, retrograde transport
of proNGF in BFCNs is impaired in cellular models of aging and in DS and AD animal
models and likely also in DS and AD.
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Figure 1. Alterations in proNGF distribution and receptor expression in aging and Alzheimer’s disease. Basal forebrain
cholinergic neurons (BFCNs) send projections widely throughout the cortex and hippocampus. In the healthy brain, BFCNs
receive neurotrophic support from these brain areas via retrograde transport of pro-nerve growth factor (proNGF). In aging
and Alzheimer’s disease (AD), proNGF accumulates throughout the cortex and hippocampus, with accompanying decreases
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in proNGF/NGF-immunoreactive material in the basal forebrain. Decreased tropomyosin-related kinase A (TrkA) levels
are observed in the basal forebrain, cortex, and hippocampus, with either increased or no change in levels of the pan-
neurotrophin receptor, p75NTR. These alterations are associated with BFCN degeneration and loss of learning, memory, and
attention in aging and AD. Diagram was created using BioRender.com (accessed on 4 August 2021).

The accumulation of proNGF in the cortex and hippocampus reduces BFCN survival
and function. In mild cognitive impairment and early stages of AD, cortical proNGF
accumulation is inversely correlated with cognitive scores [72,80]. The accumulation of
proNGF in the rat cortex, mimicking the accumulation seen in AD, causes degenera-
tion of the BFCNs that innervate this area, indicated by decreased BFCN soma size and
reduced cortical cholinergic innervation and synapses as well as reduced learning and
memory [80,81].

Reductions in TrkA expression and signalling are also observed in the AD brain, with
either no observed differences or an elevation in p75NTR expression (Figure 1) [64,82–88].
Similar reductions in TrkA and no change in p75NTR expression are found in animal and
cellular models of aging, DS, and AD, and are related to a loss of cholinergic markers
and deficits in cognitive function [63,64,89]. The etiology of deficits in proNGF retrograde
transport and TrkA expression and signalling in aging, AD, and DS basal forebrain has yet
to be confirmed. Emerging literature indicates that oxidative and nitrative stress may be
contributing factors. Supporting evidence is discussed in the remainder of this review.

3. Oxidative and Nitrative Stress in Neurodegenerative Disease

Highly reactive molecules with unpaired electrons in their outer valence, called
free radicals, are a natural by-product of cellular energy metabolism [90]. Free radicals
containing oxygen are classified as reactive oxygen species, while those that also contain
nitrogen are considered reactive nitrogen species. Reactive oxygen and nitrogen species
(ROS/RNS) are commonly produced in mitochondria and are released from microglia
during inflammatory responses [90]. ROS/RNS add oxidative and nitrative modifications
to cellular components that result in cell damage and death when they are present in high
amounts [91]. Under normal conditions, ROS/RNS are quenched by antioxidant systems,
preventing them from causing cellular and molecular damage [92].

Oxidative and nitrative stress result when there is an imbalance between ROS/RNS
production and ROS/RNS removal by antioxidants [90,92]. In aging and AD, mitochon-
drial deficits and overactivation of microglia, along with a concurrent decline in antioxidant
systems, contribute to the overproduction of ROS/RNS [92–95]. The resulting oxidative
and nitrative stress generates extensive cellular and molecular damage in the AD brain [93].
Increased markers of oxidative and nitrative damage, including lipid peroxidation, ox-
idation of macromolecules, protein carbonyls, and nitrotyrosine residues, are observed
in human post-mortem brain tissue from AD patients [95–100]. Elevations in ROS/RNS
occur prior to AD pathology in animal models, suggesting that the increases in oxidative
and nitrative stress that occur in normal aging are further exacerbated in pathological
aging such as AD [101]. Oxidative and nitrative modifications are present within tau
neurofibrillary tangles and amyloid-beta plaques [102–104]. Several studies show that
ROS stimulate amyloid-beta production and accumulation as well as tau phosphorylation
and oligomerization, indicating that oxidative stress contributes to the generation of AD
pathology [105]. Amyloid-beta accumulation also generates ROS, indicating that ROS may
interact with AD pathology in a positive feedback loop [93].

4. ROS/RNS-Induced Deficits in BFCN Viability and Cognitive Function Are
Associated with Nitration of proNGF and Reduced TrkA Expression and Signalling

The basal forebrain is especially vulnerable to ROS/RNS [106]. Extensive literature
indicates that oxidative and nitrative damage and deficits in antioxidant systems are associ-
ated with the cholinergic dysfunction and cognitive decline seen in aging and AD [107–114].
Oxidative stress contributes to BFCN degeneration and the associated cognitive decline,
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and antioxidant treatment delays these pathologies [115]. RNS also produces nitration of
proNGF in the cortex of aged and cognitively impaired rats [107]. Nitrated proNGF is the
main NGF species detected in the AD brain and is correlated with a loss of cholinergic
markers and impaired memory performance [107,116]. Nitrated proNGF accumulates in
both the human AD cortex and in rodent models of AD [116]. Further investigation is
required to elucidate the cause of such accumulation. Potential contributing factors include
impaired retrograde transport of proNGF to the basal forebrain and deficits in proNGF
maturation. Nitration reduces the ability of mature NGF to activate TrkA and may have a
similar affect on proNGF due to the similarity between mature NGF and proNGF in TrkA
binding and activation [27,116]. However, this must be tested for proNGF specifically, as
proNGF and mature NGF exhibit differences in their TrkA binding affinity and potency of
activation of signalling factors [25,27].

ROS/RNS-induced deficits in cognitive and cholinergic functions are also associated
with decreased expression of TrkA [117]. Amyloid-beta, which increases oxidative stress
in the brain, causes cholinergic dysfunction that is associated with reductions in TrkA
expression and memory impairments [106,117]. Antioxidant treatments increase NGF-
dependent activation of ERK and CREB and rescue TrkA expression and cognitive and
cholinergic functions in rodent models of neurodegenerative disease [117,118]. Together,
these findings indicate that the loss of cognitive function induced by oxidative and nitrative
stress is associated with disruptions in TrkA expression and signalling.

Several studies indicate that mature NGF is protective against oxidative stress by
stimulating antioxidant responses [119,120]. Conversely, deprivation of mature NGF
increases ROS, possibly by decreasing mitochondrial function [121]. In PC12 cells, treatment
with mature NGF increases cell survival via the PI3K pathway in response to oxidative and
nitrative stress [122,123]. In SH-SY5Y cells treated with hydrogen peroxide, antioxidant
treatment increases mature NGF protein levels and rescues cell survival via a mechanism
dependent on TrkA activation and the activity of the downstream MAPK/ERK signalling
pathway, implicating TrkA signalling in defense against oxidative damage [124]. Thus,
NGF availability and signalling contribute to cellular protection against oxidative and
nitrative insult. However, these effects have yet to be tested specifically for proNGF in the
basal forebrain. Nevertheless, overall, these studies highlight the importance of preserving
TrkA signalling in the basal forebrain to maintain neuronal protection against oxidative
damage and ROS-associated cognitive decline.

5. Oxidative and Nitrative Stress Alter the Expression and Signalling of
proNGF Receptors

Elevations in ROS may cause an imbalance in TrkA and p75NTR receptors in the aging
and AD basal forebrain, as several studies indicate that oxidative and nitrative stress alter
the expression of these receptors. Similar to what is observed in the aging and AD brain,
treatment with ethanol or amyloid-beta, both of which generate oxidative stress, decreases
TrkA mRNA and protein expression in the basal forebrain and hippocampus [117,125–127].
TrkA immunoreactivity is also decreased in the basal forebrain of DS mice and in BFCNs
aged in vitro, both of which exhibit elevations in ROS [63,115]. Reductions in TrkA mRNA
and protein expression in vitro and in vivo can be rescued via antioxidant treatment,
indicating a causal role of ROS in TrkA depletion [115,117,124,127,128]. Together, these
studies indicate that oxidative stress likely contributes to the decreases in TrkA expression
observed in the aging and AD brain.

The reported effects of ROS/RNS on p75NTR expression are inconsistent. Oxidative
treatment via ethanol or monocrotophos does not affect p75NTR protein expression in
the rat basal forebrain or in neural stem cells [125,129]. These results are consistent with
evidence indicating no differences in p75NTR expression in the human AD basal forebrain,
aged rodent basal forebrain, or rat BFCNs aged in vitro [63,64,82,83]. However, other
studies indicate that the protein levels of p75NTR are increased by oxidative and nitrative
stress induced by hydrogen peroxide, amyloid-beta, peroxynitrite, monocrotophos, and
chlorpyrifos in the mouse SN56 basal forebrain cell line, human SH-SY5Y cells and retina,
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and rat cortex and hippocampus [128–131]. These results are consistent with other liter-
ature indicating an elevation of p75NTR in the human AD basal forebrain and entorhinal
cortex [86,88]. Differing results may be due to differences in cell types, species, and brain
areas studied, as well as variations in treatment conditions used to generate oxidative and
nitrative stress.

Maintaining the balance of TrkA and p75NTR levels at the axon terminals is critical for
regulation of proNGF survival vs. apoptotic signalling [28,29]. ProNGF is neurotrophic in
the presence of TrkA but exerts apoptotic effects via p75NTR when TrkA is absent [28,29,35].
Therefore, ROS-induced reductions in axonal TrkA expression, with concurrent main-
tenance or elevation in p75NTR expression, are expected to decrease proNGF-TrkA sur-
vival signalling while increasing proNGF-p75NTR apoptotic signalling. In fact, oxidative
and nitrative stress increase the activation of apoptotic signalling factors downstream of
p75NTR, such as caspase-3, Bax, JNK, and nuclear factor kappa light chain enhancer of
activated B cells (NF-κB), in a variety of cell types including neurons, astrocytes, and PC12
cells [123,129,132,133]. Conversely, oxidative stress prevents TrkA phosphorylation and
activation of downstream signalling factors such as Akt, ERK1/2, and CREB in neural
stem cells, PC12 cells, and astrocytes [129,132,134]. Further, SH-SY5Y cells expressing a
presenilin-1 (PS1) mutation causing increased amyloid-beta production, which generates
oxidative stress, exhibit impaired NGF-stimulated activation of TrkA and MAPK and mis-
localization of TrkA from the membrane to the cytoplasm and nucleus [135]. NGF-induced
TrkA phosphorylation and activation of MAPK are also reduced by nitrative stress caused
by peroxynitrite in PC12 cells [136]. In the diabetic retina, peroxynitrite decreases TrkA
phosphorylation at tyrosine 490 (Y490), the site required for stimulation of the PI3K-Akt
survival pathway. This prevents Akt activation, implicating nitrative stress in decreased
TrkA signalling and associated reductions in cell viability [130]. Decreased Akt activity is
also associated with the TrkA nitration observed in retinal ganglion neurons [130]. TrkA
nitration has yet to be assayed in the degenerating basal forebrain. Together, these results
highlight that oxidative and nitrative stress decrease TrkA signalling while increasing that
of p75NTR, leading to neurodegeneration and cell death.

On the other hand, some studies indicate that TrkA signalling is maintained or elevated
in response to oxidative and nitrative stress. Nutrient deprivation-induced ROS elevation
activates TrkA by decreasing membrane cholesterol in PC12 cells, while hydrogen peroxide
and peroxynitrite induce activation of p38 in PC12 cells and diabetic retina [130,137,138].
These findings may be due to differences in reagents used to generate oxidative and
nitrative stress as well as differences in the extent and duration of the stress [133]. The
effects of ROS/RNS on TrkA and p75NTR signalling in the basal forebrain require further
investigation.

Although many of these studies use mature NGF to stimulate TrkA and to investigate
the relationship between ROS/RNS and downstream signalling, it is likely that these
mechanisms are conserved between proNGF and mature NGF. ProNGF is similar to mature
NGF in its ability to activate TrkA, induce pro-survival signalling and neurite outgrowth,
and be retrogradely transported [25,27–33,61,62]. However, because the two NGF species
exhibit minor differences in their affinity for TrkA binding and activation, the effects of
oxidative and nitrative stress on proNGF signalling must be tested [27].

6. Oxidative and Nitrative Stress Interfere with the Axonal Transport Machinery
Required for Retrograde Transport of proNGF

Cytoplasmic dynein is the molecular motor required for the retrograde transport
of proNGF and activated Trks [139,140]. The motor domain of dynein, which allows it
to interact with and move along the microtubules, is contained within its heavy chain
subunit [141]. The dynein heavy chain forms a complex with intermediate and light chains,
which regulate cargo binding and heavy chain motor activity [141]. Sequencing studies
indicate that dynein intermediate and light chains in flagellar dynein, which have sequence
homology to that of cytoplasmic dynein, contain redox-sensitive regions that may be
involved in alteration of dynein motor activity [141–143]. These regions contain dithiol
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groups that are highly sensitive to oxidative changes. Oxidation of these residues alters
dynein ATPase activity, suggesting that oxidative stress may impair dynein-dependent
transport by modification of the dithiol-containing regions [141–143]. Interestingly, dynein
intermediate and light chains contain the same active site as thioredoxin, an enzyme
involved in redox signalling [142,143]. The active site of thioredoxin can be oxidized to
repress its activity, providing further evidence that dynein motor function may be inhibited
by oxidative stress [144].

Oxidative and nitrative stress may also affect dynein-dependent axonal transport by
altering the expression of key components of the dynein motor [145]. Nitrated tubulin,
which is elevated in conditions of nitrative stress, decreases the dynein heavy chain protein
and alters its distribution, indicating an impaired association between dynein and micro-
tubules [146]. Similarly, rotenone, a chemical that elevates ROS and generates oxidative
damage, decreases the protein expression of dynein heavy chain in cell cultures obtained
from the hippocampus, locus coeruleus, and substantia nigra [145,147,148]. Similar de-
creases are also seen in aged rats following in vivo treatment with rotenone [145]. Protein
expression of dynactin, a dynein-associated protein, is also decreased in the hippocampus
by rotenone treatment [145]. Interestingly, in the locus coeruleus and substantia nigra,
dynactin protein levels increase following in vivo rotenone treatment, which may be a
compensatory response to the reduction in dynein protein levels [145]. The expression of
kinesin, the motor protein required for anterograde transport, is also decreased by rotenone,
and this decrease is associated with impairments in mitochondrial axonal transport [149].

Another mechanism by which oxidative and nitrative stress may disrupt axonal
transport is by decreasing microtubule stability [150]. Peroxynitrite-induced tau nitration
decreases the affinity of tau for microtubules and increases its aggregation [150]. Cells
containing nitrated tau have altered morphology and neurite retraction, evidence of mi-
crotubule destabilization and degradation [150]. Similarly, oxidative stress induced by
hydrogen peroxide causes axonal degeneration [151]. Because microtubules are critical for
axonal transport, their degeneration caused by oxidative and nitrative stress may cause
reductions in retrograde axonal transport [152]. Both tau nitration and microtubule degen-
eration are observed in the AD brain, suggesting that these pathologies may contribute to
deficits in the retrograde transport of proNGF in AD [72,73,150,153].

Nitrative stress decreases axonal transport mediated by KIF1A, the kinesin motor
responsible for the anterograde transport of TrkA [154–156]. Anterograde transport of TrkA
is required for its expression at the axon terminals and subsequent retrograde transport of
TrkA–neurotrophin receptor complexes [139,157]. When anterograde transport of TrkA is
impaired by interfering with KIF1A, retrograde transport of TrkA is also disrupted [156].
Furthermore, mutations in presenilin-1 (PS1), which are linked to amyloid-beta accumula-
tion and the generation of oxidative stress, cause the accumulation of TrkA in the cytosol
and nucleus rather than expression at the cell surface [135]. These studies highlight that
ROS/RNS may disrupt the kinesin-dependent axonal transport of TrkA.

7. Conclusions

Oxidative and nitrative stress produce multiple modifications that may impair the
retrograde transport and signalling of proNGF by a variety of mechanisms (Figure 2A,B).
The resulting reduction in proNGF in the basal forebrain is detrimental to BFCN survival
and cognitive function. Which of these mechanisms are most relevant to the basal forebrain
and its susceptibility to oxidative insult, neurodegeneration, and the associated cognitive
decline in AD is an important area for future investigation.
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induces TrkA autophosphorylation, internalization, and dynein-dependent retrograde transport. These events activate
pro-survival signalling factors in the axon and at the cell body to maintain neuronal health. Kinesin motors transport
somal TrkA receptors anterogradely to replenish and maintain axonal expression of TrkA. Kinesin and dynein molecular
motors are expressed in the neuron and efficiently bind to microtubules to facilitate axonal transport of TrkA. (B) In
conditions of oxidative and nitrative stress, such as in aging, Down’s syndrome (DS), and Alzheimer’s disease (AD), reactive
oxygen and nitrogen species (ROS/RNS) decrease both protein and mRNA expression of TrkA. When nitrated, NGF is
less efficient at activating TrkA and its downstream signalling factors, including mitogen-activated protein kinase (MAPK),
phosphatidylinositol-3-kinase (PI3K), Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), and cAMP response element-
binding protein (CREB). ROS have the opposite effect on activation of signalling factors downstream of the pan-neurotrophin
receptor, p75NTR, including c-Jun N-terminal kinase (JNK), nuclear factor kappa B (NF-κB), caspase-3, and Bcl-2-associated
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X protein (Bax), as all of these are increased in conditions of oxidative and nitrative stress. ROS/RNS decrease protein
expression of kinesin and dynein molecular motors and interfere with their interaction with microtubules. ROS/RNS also
suppress dynein motor activity and interrupt the interaction between kinesin and its cargo. Finally, ROS/RNS cause axonal
degeneration and decrease the affinity of tau for microtubules, leading to microtubule instability and further disruption of
axonal transport. Antioxidant treatments are effective in restoring TrkA expression, activation, and retrograde transport. The
contributing ROS/RNS generators include amyloid-beta (Aβ), hydrogen peroxide (H2O2), ethanol (EtOH), monocrotophos
(MC), methylglyoxal (MG), and peroxynitrite (ONOO−). Diagram was created using BioRender.com. 3NT: 3-nitrotyrosine.
Up arrow represents increase, down arrow represents decrease.

Oxidative and nitrative stress decrease TrkA expression while either maintaining or
elevating p75NTR expression in the basal forebrain. The resulting receptor imbalance is
accompanied by decreased survival signalling via TrkA and increased apoptotic signalling
via p75NTR. Nitration of proNGF, altered function of dynein and kinesin molecular motors,
and decreased microtubule stability may also contribute to these deficits. The effects of
ROS/RNS-induced deficits in TrkA signalling on cell viability and cognitive function can
be rescued with antioxidant treatment. Therapeutic interventions targeting elevations
in oxidative and nitrative stress may therefore be beneficial in rescuing the retrograde
transport of proNGF in the basal forebrain in aging and AD and subsequently improving
BFCN survival and associated cognitive function.
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