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Abstract: Background: The effect of Leg-Length Discrepancy (LLD) on dynamic gait parameters has
been extensively discussed. Podobarography is the study of foot-to-ground pressure distribution.
It has been used to test plantar footprint deviations that could reveal pathology. Purpose: The aim
of this study is to determine the effects of simulated LLD on dynamic gait parameters measured
with a pressure platform in healthy subjects. Methods: Thirty-seven healthy subjects participated
in observational cross-sectional research. A procedure was performed to capture the dynamic
parameters of each participant under five different simulated LLD conditions. Support time, mean
pressure, and peak pressure measures were registered on three trials for each foot and LLD level per
session. An analysis of variance (ANOVA) test for repeated measures was performed to check for
differences between the different simulated LLD levels. Results: The stance time of the short leg had
no significant changes. The stance time of the long leg increased by 3.51% (p < 0.001), mean pressure
of the short leg increased by 1.23% (p = 0.005), and decreased by 5.89% in the long leg (p < 0.001).
Peak pressure of the short leg decreased by 2.58% (p = 0.031) and the long leg decreased by 12.11%
(p < 0.001). Conclusions: This study demonstrates that increasing LLD causes an asymmetrical
foot-loading pattern, with decreased mean and peak pressure on the longer limb, and consequently
an overload on the short side. Furthermore, an increasing LLD causes increased stance time on the
long leg.

Keywords: leg length inequality; gait; reliability analysis; pressure platform; lower limbs

1. Introduction

Leg-length discrepancy (LLD) is a condition frequently described in the literature as
the unequal length of lower limbs. It is estimated to involve 40–70% of the population
and can exceed 2 cm of inequality in close to 0.1% [1]. Knutson et al. concluded in a meta-
analysis of 573 subjects that only 10% of the population had equal-length lower limbs [2].
LLD has been a cause of controversy in the clinical and research community for a long time.
There is no agreement on many facets, such as its impact on various neuromusculoskeletal
disorders, assessment of measurement methods, prevalence, and the degree of its clinical
significance [3].
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LLD can be classified as anatomical when the difference is caused by structural
deformities that can be measured directly in the lower limb bones, or as functional when
the inequality is caused by postural defects [4]. Both categories have been associated with
hip or knee osteoarthritis and other mechanical pathologies as a result of an incorrect
distribution of load [5,6].

Asymmetries in the kinematics of gait have been associated with different degrees of
true LLD [5]—essentially pelvic drop and hip adduction in the stance phase [7,8]. Several
authors have found flexion anomalies in the sagittal plane of the hip, knee, and ankle [7,9].
Furthermore, LLD has been related to decreased load times, stride length, and gait velocity
of the shorter limb and increased cadence [10]. Kinetics asymmetries induced by LLD also
appear to be related to the etiology of plantar fasciitis, lower back pain, and knee [11–13].

Clinically, two methods are commonly used to measure LLD: the direct method,
which measures the distance between anterior superior iliac spine and medial malleolus
when in a supine decubitus using a calibrated tape measure [13]; and the indirect method,
measuring LLD using lifts to level the pelvis, rather using a pelvic leveling device, in a
standing position [14]. Radiographic scanogrammetry is considered the gold standard for
limb-length measurement but exposes patients to ionizing radiation [15]. These methods
cannot assess dynamic changes in leg length, as they are performed in a static position.

In the literature, there are two ways to approach the study of LLD: examining subjects
with diagnosed LLD, or simulating LLD on healthy subjects, appraising its role on gait
anomalies. Some authors consider the first method to be limited by physical anomalies
that commonly develop in subjects with real LLD as a result of compensations. Thus, these
cannot be treated as pure LLD subjects [3].

Betsch et al. described a non-invasive method to simulate and evaluate LLD and its
impact on human gait using plantar lifts [16,17].

Podobarography is the study of foot-to-ground pressure distribution. It has been
used to evaluate foot static and dynamic interactions with terrain, posture [18], and the
screening of plantar footprint deviations that could reveal pathology [19].

The aim of this study is to analyze the effect of simulated LLD on dynamic parameters
obtained from a pressure platform in normal individuals. We hypothesized that subjects
would asymmetrically alter their foot-loading pattern.

2. Materials and Methods
2.1. Design and Sample

The sample size was calculated with software from Grupo de Investigación en Riesgo
Cardiovascular y Nutrición and Grupo de Investigación en Epidemiología y Genética
Cardiovascular, IMIM-Hospital del Mar. Barcelona [20], to detect the correlation between
dynamic parameters of the gait and different degrees of simulated LLD, which were
standard deviation (SD) 4.34–3.48 [21] with 80% statistical power (β = 20%) and an interval
of confidence 95% (α = 0.05) and 2-tailed test. A total of 37 participants were required to
detect a difference equal or higher than 0.4 units. An SD of 0.86 and loss to follow-up rate
of 0% is assumed.

Thirty-seven healthy test subjects (13 men and 24 women) aged 19 to 61 years old
participated in the study. An observational cross-sectional research design according
to Strengthening The Reporting of Observational Studies in Epidemiology (STROBE)
criteria [22] and non-random consecutive sampling technique were used. The inclusion
criteria were: being over 18 years, a European footwear size of 36–45, and no history of
musculoskeletal damage or pain during the last year. Furthermore, clinical exploration
was accomplished by the principal researcher to exclude real LLD > 5 mm, limited joint
range, or asymmetrical pronated feet [23].

2.2. Ethical Considerations

The Research and Ethics Committee of Universidad Rey Juan Carlos, Spain, issued a
favorable authorization certificate n◦ 0904201907519 for this study, following the ethical
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principles of the Helsinki declaration [24]. All subjects signed an informed consent before
participating in this study.

2.3. Dynamic Data Collection

LLD was simulated with Ethyl-Vinyl-Acetate plantar lifts of 70A shore hardness and
5, 10, 15, and 20mm height, secured to the right shoe of each subject. This proceeding
emulates LLD by generating pelvic obliquity.

In order to capture the dynamic parameters, we used a Podoprint® platform (Namrol
Group, Barcelona, Spain), which, in a previous publication, was used to assess the intra
and intersession repeatability and reliability in healthy subjects with simulated LLD [25].
A self-calibrating system, with 1600 10 × 10 mm resistive sensors and a sample rate of
100 Hz, was installed into the center of a flat 4.8 m walkway at ground level (Table 1).

Each volunteer was instructed to walk normally, looking straight ahead. The starting
position was set to match the footstep on the platform. Participants walked at a self-
selected speed for all the trials; however, it was controlled with digital video recording to
ensure the normal cadence under laboratory conditions, which range from 81 to 138 steps
per minute [26]. The procedure was performed to register the dynamic parameters of
each participant under five different simulated LLD levels (0, 5, 10, 15, and 20 mm) in
randomized order. Stance time (ms), mean pressure (g/cm2), and peak pressure (g/cm2)
measures were recorded. These parameters were considered the most frequently employed
in functional foot assessment of pathological conditions [27–29].

Two testing sessions were held on seven separate days. Three trials were performed
for each foot and LLD level per session. Before capturing the dynamic data, all volunteers
completed a three-minute walk on the walkway to habituate themselves with the platform
and plantar lifts. Four steps of each foot were collected per trial using the platform’s “Mul-
tiple Dynamic” mode, which directly provides the averaged parameters. The sample rate
was 100 Hz. The same researcher tested all the participants (Figure 1). The data obtained
from the pressure platform system were stored and processed using manufacturer-specific
software Podoprint® for Windows®, version 8.6.5 (Namrol Group, Barcelona, Spain).

Table 1. Technical specifications of the pressure platform.

Specification Description

Size (Length/Width/Height) 615 × 565 × 23 mm
Weight 3.15 kg

Sensor type Calibrated resistive
Active surface 400 × 400 mm

Sensor size 10 × 10 mm
Sensor number 1600 (40 × 40)

Minimum/maximum pressure range per sensor 0.4 N/m2 (0.0004 kPa) to 100 N/m2 (0.1 kPa)
Acceptable temperature 0 ◦C to +40 ◦C
Acquisition frequency 100 Hz

Power Via Universal Serial Bus (USB) 5V, 400 mA
Operating system required Windows® 7, 8 or 10

2.4. Statistical Analysis

All data were verified for outliers and normal distribution by the one-sample Shapiro–
Wilk test. Normally distributed data were presented as mean and standard deviation.
Samples were removed individually if found to be greater than 3 SD from the group mean.
The intrasession reliability was obtained by three repeated trials for each simulated DLL
condition and each foot at the first and second testing sessions. The coefficient of variation
(CoV) [30] was used to indicate the relationship between the size of the mean and the vari-
ability of each of the variables studied and it was calculated as CoV(%) = DS/Mean ∗ 100.
The intraclass correlation coefficient (ICC) obtained using the (2,1) model (two-way ran-
dom, single measurement, absolute agreement ICC model) was calculated in order to
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analyze the reliability between trials [31]. The standard error of measurement (SEM)
was calculated as SEM = SD

√
(1− ICC) and expressed as a percentage of the mean:

SEM% = SEM/Mean ∗ 100 [32].
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Furthermore, the minimum detectable change (MDC) was calculated. This was
described as the magnitude of the value variation of each scale, below which change
can be interpreted as inherent to the variability of the measurement method, without
any real change to the clinical situation of the subject. It was obtained as a standardized
mean as MDC = 1.96 ∗ SEM

√
2 and expressed as a percentage of the mean: MDC% =

MDC/Mean ∗ 100 [33,34].
Intersession reliability was determined by retesting all subjects seven days after the

first session. The average of the measurements for each session, for each subject and LLD
condition, was used to calculate the ICC3,1. For absolute comparison of the results obtained
in the two sessions, CoV, SEM and MDC were expressed as percentages of the mean [33,34].

An analysis of variance (ANOVA) test for repeated measures was performed to check
for differences between the different simulated LLD levels [35]. Bonferroni was used to
adjust the type I error for multiple comparisons. To verify sphericity assumption, Mauchly’s
test was used and subsequently corrected for lack of sphericity using the Greenhouse–
Geisser correction. The level of significance was set at p < 0.05. To estimate the effect size,
partial eta squared (η2

p) were calculated. Cohen [36] provided benchmarks to define small
(η2 = 0.01), medium (η2 = 0.06), and large (η2 = 0.14) effects.

The IBM® SPSS® for Windows®, version 22.0 statistical package, was used for data
analysis and graphics (SPSS, Inc., Chicago, IL, USA).

3. Results

Thirty-seven healthy test subjects (13 men and 24 women) aged 19 to 61 years partici-
pated in the study (Table 2).

The measurements were reproducible for an individual even if repeated during the
same test session or when tested seven days later. Descriptive statistics, represented by
mean and standard deviation, and reliability data, represented by CoV, ICC, SEM and
MDC, were calculated for the first session. The Cov for intrasession reliability ranged from
0.13% to 2.13%, and the ICC ranged from 0.760 to 0.980. The SEM% ranged from 0.03% to
0.70%, and the MDC% ranged from 0.07% to 1.93%.

In the second session, CoV for intrasession reliability ranged from 0.12% to 1.64%, and
the ICC ranged from 0.771 to 0.980. The SEM% ranged from 0.03% to 0.78%, and MDC%
ranged from 0.08% to 1.91%.
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Table 2. Descriptive data of the study participants showing demographics and anthropometric characteristics for the total
sample by gender.

Variable
Male n = 13 Female n = 24 Total n = 37

Mean ± SD (95% CI) Mean ± SD (95% CI) Mean ± SD (95% CI)

Age (years) 39.21 ± 11.52 (32.56–45.87) 38.91 ± 11.80 (33.81–44.02) 39.03 ± 11.54 (35.18–42.87)
Weight (kg) 73.50 ± 8.23 (68.74–78.25) 61.08 ± 10.13 (56.70–65.47) 65.78 ± 11.16 (62.06–69.50)
Height (m) 1.75 ± 0.09 (1.69–1.80) 1.64 ± 0.08 (1.61–1.68) 1.68 ± 0.10 (1.65–1.72)

MBI 23.99 ± 2.75 (22.40–25.58) 22.40 ± 2.83 (21.17–23.63) 23 ± 2.87 (22.04–23,96)
Foot size (EC) 42.03 ± 2.07 (40.83–43.23) 37.86 ± 1.20 (37.34–38.39) 39.44 ± 2.57 (38.58–40.30)

BMI, body mass index; SD, standard deviation; 95% CI, 95 percent confidence interval; EC, European countries.

The average measurements from both test sessions and intersession reliability data,
represented by CoV, ICC, SEM% and MDC%, are presented in Table 3. The CoV for
intersession reliability ranged from 0.39% to 1.65%, and the ICC ranged from 0.866 to 0.988.
The SEM% ranged from 0.06% to 0.58% and MDC% ranged from 0.18% to 1.61%.

Table 3. Intersession reliability of time and pressure variables for each foot under simulated LLD conditions.

Variable Mean (SD) CoV (%) ICC (95% CI) SEM% MDC%

0 mm of LLD
Stance time short (ms) 761.42 (7.19) 0.94 0.957 (0.932–0.976) 0.20 0.54
Stance time long (ms) 754.05 (2.96) 0.39 0.960 (0.936–0.977) 0.08 0.22

Mean pressure short (g/cm2) 748.74 (5.12) 0.68 0.955 (0.927–0.974) 0.15 0.40
Mean pressure long (g/cm2) 750.95 (12.37) 1.65 0.931 (0.889–0.960) 0.43 1.20
Peak pressure short (g/cm2) 1427.82 (16.46) 1.15 0.928 (0.886–0.959) 0.31 0.86
Peak pressure long (g/cm2) 1417.26 (13.03) 0.92 0.918 (0.869–0.953) 0.26 0.73

5 mm of LLD
Stance time short (ms) 762.16 (5.77) 0.76 0.981 (0.969–0.989) 0.10 0.29
Stance time long (ms) 759.73 (5.03) 0.66 0.980 (0.968–0.988) 0.09 0.26

Mean pressure short (g/cm2) 746.61 (5.44) 0.73 0.955 (0.928–0.974) 0.15 0.43
Mean pressure long (g/cm2) 747.13 (11.88) 1.59 0.866 (0.785–0.923) 0.58 1.61
Peak pressure short (g/cm2) 1443.52 (14.39) 1.00 0.925 (0.879–0.957) 0.27 0.76
Peak pressure long (g/cm2) 1338.84 (9.45) 0.71 0.927 (0.883–0.958) 0.19 0.53

10 mm of LLD
Stance time short (ms) 763.82 (14.15) 0.54 0.986 (0.977–0.992) 0.06 0.18
Stance time long (ms) 765.09 (4.23) 0.55 0.984 (0.974–0.991) 0.07 0.19

Mean pressure short (g/cm2) 756.19 (7.65) 1.01 0.970 (0.952–0.983) 0.18 0.49
Mean pressure long (g/cm2) 723.24 (11.83) 1.64 0.918 (0.869–0.953) 0.47 1.30
Peak pressure short (g/cm2) 1435.58 (11.95) 0.83 0.924 (0.878–0.956) 0.23 0.64
Peak pressure long (g/cm2) 1274.77 (15.55) 1.22 0.898 (0.837–0.941) 0.39 1.08

15 mm of LLD
Stance time short (ms) 760.54 (4.39) 0.58 0.988 (0.981–0.993) 0.06 0.18
Stance time long (ms) 775.58 (4.19) 0.54 0.986 (0.977–0.992) 0.06 0.18

Mean pressure short (g/cm2) 760.41 (5.54) 0.73 0.972 (0.955–0.984) 0.12 0.34
Mean pressure long (g/cm2) 711.58 (5.25) 0.74 0.929 (0.886–0.959) 0.20 0.55
Peak pressure short (g/cm2) 1423.44 (17.28) 1.21 0.928 (0.884–0.958) 0.33 0.90
Peak pressure long (g/cm2) 1265.21 (17.58) 1.39 0.935 (0.895–0.962) 0.35 0.98

20 mm of LLD
Stance time short (ms) 766.98 (5.22) 0.68 0.983 (0.976–0.990) 0.09 0.25
Stance time long (ms) 783.51 (4.31) 0.55 0.984 (0.974–0.991) 0.07 0.19

Mean pressure short (g/cm2) 758 (3.51) 0.46 0.962 (0.940–0.978) 0.09 0.25
Mean pressure long (g/cm2) 706.71 (5.47) 0.77 0.890 (0.824–0.937) 0.26 0.71
Peak pressure short (g/cm2) 1409.33 (21.37) 1.52 0.906 (0.850–0.946) 0.46 1.29
Peak pressure long (g/cm2) 1245.60 (16.16) 1.30 0.900 (0.841–0.943) 0.41 1.14

SD, standard deviation; CoV, coefficient of variation; ICC, intraclass correlation coefficient; 95% CI, 95 percent confidence interval; SEM,
standard error of measurement; MDC, minimum detectable change.

The results of repeated-measures ANOVA showed statistically significant changes
in five of six studied variables under different simulated LLD conditions (Table 4). In
addition, a pairwise comparison based on the estimated marginal means between different
LLD levels of each dynamic variable was calculated (Table 5).
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Table 4. Repeated-measures analysis of variance (RM-ANOVA) including a test of influence of the sphericity assumption,
analysis of effect, and a contrast analysis of the significant interaction effect.

Variable MT (p) SS DF MS F p η2
p

Stance time short a <0.001 682.97 2.18 313.00 0.30 0.758 0.008 †
Stance time long a <0.001 21043.48 2.09 10025.73 11.90 <0.001 ** 0.249 †††

Mean pressure short 0.165 * 5330.90 4 1332.72 3.92 0.005 ** 0.098 ††
Mean pressure long a <0.001 70469.07 2.63 26732.11 15.31 <0.001 ** 0.299 †††
Peak pressure short a 0.003 35130.29 2.79 12554.20 3.16 0.031** 0.081 ††
Peak pressure long a <0.001 754051.37 2.15 350219.50 32.54 <0.001 ** 0.475 †††

MT(p), Mauchly test probability; SS, sum of squares; DF, degrees of freedom; MS, mean square; F, variance ratio; p, probability; η2
p, partial

eta squared; a, Greenhouse–Geisser adjusted; *, sphericity assumed; **, reached level of significance; †, small effect; ††, medium effect;
†††, large effect.

Table 5. Pairwise comparison based on estimated marginal means.

STS STL MPS MPL PPS PPL

LLD
(mm)

MD
(SE) p a MD

(SE) p a MD
(SE) p a MD

(SE) p a MD
(SE) p a MD (SE) p a

0 5 −0.73
(5.08) 1.000 −5.67

(4.40) 1.000 2.13
(3.87) 1.000 3.824

(8.10) 1.000 −14.80
(10.12) 1.000 78.41

(12.38) <0.0001*

10 −2.40
(7.28) 1.000 −11.03

(6.48) 0.973 −7.63
(4.89) 1.000 27.71

(9.48) 0.060 −6.86
(10.84) 1.000 142.49

(18.32) <0.0001*

15 0.88
(6.97) 1.000 −21.53

(6.78) 0.031 * −11.66
(4.57) 0.15 39.37

(10.12) 0.004 * 3.47
(13.35) 1.000 152.05

(21.64) <0.0001 *

20 −5.28
(7.49) 1.000 −29.45

(6.68) 0.001 * −9.25
(4.87) 0.66 44.24

(10.16) 0.001 * 16.68
(15.49) 1.000 171.65

(23.79) <0.0001 *

5 0 0.73
(5.08) 1.000 5,67

(4.40) 1.000 −2.13
(3.87) 1.000 −3.82

(8.10) 1.000 14.80
(10.12) 1.000 −78.41

(12.38) <0.0001 *

10 −1.66
(3.89) 1.000 −5.36

(3.65) 1.000 −9.76
(4.50) 0.37 23.89

(6.95) 0.015 * 7.94
(10.64) 1.000 64.07

(14.81) 0.001 *

15 1.62
(4.30) 1.000 −15.85

(4.16) 0.005 * −13.79
(4.33) 0.03 * 35.55

(6.89) <0.0001 * 18.27
(14.04) 1.000 73.63

(20.84) 0.011*

20 −4.55
(4.91) 1.000 −23.78

(4.26) 0.0001 * −11.38
(4.77) 0.23 40.42

(7.86) <0.0001 * 31.48
(13.89) 0.3 93.24

(21.03) 0.001 *

10 0 2.40
(7.28) 1.000 11.03

(6.48) 0.973 7.63
(4.89) 1.000 −27.71

(9.48) 0.060 6.86
(10.84) 1.000 −142.49

(18.32) <0.0001 *

5 1.66
(3.89) 1.000 5.36

(3.65) 1.000 9.76
(4.50) 0.37 −23.89

(6.95) 0.015 * −7.94
(10.64) 1.000 −64.07

(14.81) 0.001 *

15 3.28
(3.63) 1.000 −10.49

(3.78) 0.087 −4.03
(3.75) 1.000 11.66

(5.77) 0.511 10.33
(10.15) 1.000 9.55

(12.77) 1.000

20 −2.88
(3.70) 1.000 −18.42

(3.96) 0.0001 * −1.62
(3.71) 1.000 16.53

(5.92) 0.083 23.54
(11.04) 0.4 29.16

(12.56) 0.261

15 0 −0.88
(6.97) 1.000 21.53

(6.78) 0.031 * 11.66
(4.57) 0.15 −39.37

(10.12) 0.004 * −3.47
(13.35) 1.000 −152.05

(21.64) <0.0001 *

5 −1.62
(4.30) 1.000 15.85

(4.16) 0.005 * 13.79
(4.33) 0.03 * −35.55

(6.89) <0.0001 * −18.27
(14.04) 1.000 −73.63

(20.84) 0.011 *

10 −3.28
(3.63) 1.000 10.49

(3.78) 0.087 4.03
(3.75) 1.000 −11.66

(5.77) 0.511 −10.33
(10.15) 1.000 −9.55

(12.77) 1.000

20 −6.17
(3.21) 0.63 −7.92

(2.76) 0.069 2.41
(3.41) 1.000 4.86

(6.46) 1.000 13.20
(13.20) 1.000 19.60(12.94) 1.000

20 0 5.28
(7.49) 1.000 29.45

(6.68) 0.001 * 9.25
(4.87) 0.66 −44.24

(10.16) 0.001 * −16.68
(15.49) 1.000 −171.65

(23.79) <0.0001 *

5 4.55
(4.91) 1.000 23.78

(4.26) 0.0001 * 11.38
(4.77) 0.23 −40.42

(7.86) <0.0001 * −31.48
(13.89) 0.296 −93.24

(21.03) 0.001 *

10 2.88
(3.70) 1.000 18.42

(3.96) 0.0001 * 1.62
(3.71) 1.000 −16.53

(5.92) 0.083 −23.54
(11.04) 0.4 −29.16

(12.56) 0.261

15 6.17
(3.21) 0.63 7.92

(2.76) 0.069 −2.41
(3.41) 1.000 −4.86

(6.46) 1.000 −13.20
(9.66) 1.000 −19.60

(12.94) 1.000

STS, stance time short; STL, stance time long; MPS, mean pressure short; MPL, mean pressure long; PPS, peak pressure short; PPL, peak
pressure long; LLD, leg length discrepancy; MD, mean difference; SE, standard error; p, Probability; a, Bonferroni adjustment for multiple
comparisons; *, reach level of significance.
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Changes were observed in all pressure parameters, in the short and long leg, and in
the stance time of the long leg: stance time of the long leg increased by 3.51% (p < 0.001),
mean pressure of the short leg increased by 1.23% (p = 0.005) and decreased by 5.89% in
the long leg (p < 0.001). Peak pressure of the short leg decreased by 2.58% (p = 0.031) and
decreased by 12.11% in the long leg (p < 0.001). (Figure 2)
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4. Discussion

Different reports expose that LLD can generate substantial gait parameters devia-
tions [3]. We can find in the literature two methods to evaluate LLD effects on gait: mea-
suring subjects with real LLD or simulating LLD on healthy subjects. Using subjects with
real LLD, it is more difficult to obtain a homogeneous sample, due to a greater diversity of
LLD, ages, or associated pathologies that could potentially lead to confounding variables.

The objective of the current study was to understand the effect of simulated LLD on
dynamic parameters measured with a pressure platform in healthy subjects. The number
of participants was 37, a total of 74 limbs were evaluated, comprising 444 measurements.
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This study demonstrates that as LLD increases, there is a decreased mean pressure
and peak pressure on the long leg. As a result, the subjects asymmetrically alter their foot
loading pattern. According to White [37], the shorter limb for the simulated LLD group
supported greater loads and loading rates. In his study, the results showed short-term
responses to an induced change in LLD. Over time, asymmetric limb loading could be
reduced by compensatory strategies [38]. Disproportionate pressures and higher load rates
under dynamic conditions could make the shorter limb susceptible to limb joint damage.
Golightly et al. [39] found a positive relationship of LLD ≤20 mm with radiographic knee
and hip osteoarthritis.

Total hip replacement surgery [40] usually results in mild postoperative LLD that could
lead the prosthesis to higher pressures and potentially reduce the success of the surgery.

Evaluating which limb is bearing the greater load is a crucial issue after surgery
because of the potential for stress to the prosthesis. It could contribute to patient dissatis-
faction even when intervention had an outstanding result.

Furthermore, our research showed that stance times increased on the long leg when
LLD increased. These findings are consistent with other studies [21,41]. The changes
produced by mild LLD may appear minimal when viewed in simple measurements. How-
ever, they could generate major effects when it comes to repetitive loading. According
to the meta-analysis by Crawford et al. [42], patients with foot plantar pressure overload
and extended contact times have a high risk of developing a foot ulcer. The early eval-
uation of LLD with a pressure platform system in patients with diabetes mellitus could
prevent ulcerations.

It should be noted that, in this study, lifts were always located under the right shoe.
Some studies found differences between the dominant and non-dominant leg [43], which
would be clinically interesting to test and evaluate in future studies. Furthermore, time
and pressure parameters were evaluated for the total plantar surface. Previous studies
have found intrasession variability when using regional analysis [27,44]. Future research
should consider the study of asymmetries on pressure dynamic patterns as the predictive
condition of LLD.

5. Conclusions

Increasing leg length discrepancy causes a decrease in both mean and peak pressure
on the longer limb, and consequently, an overload on the short side. Furthermore, an
increasing LLD causes an increased stance time on the long leg. Contrary to other studies,
our findings suggest that an LLD smaller than 20 mm should not be ignored.
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