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Abstract

Background: Metagenome sampling bias for geographical location and lifestyle is partially responsible for the
incomplete catalog of reference genomes of gut microbial species. Thus, genome assembly from currently under-
represented populations may effectively expand the reference gut microbiome and improve taxonomic and
functional profiling.

Methods: We assembled genomes using public whole-metagenomic shotgun sequencing (WMS) data for 110 and
645 fecal samples from India and Japan, respectively. In addition, we assembled genomes from newly generated
WMS data for 90 fecal samples collected from Korea. Expecting genome assembly for low-abundance species may
require a much deeper sequencing than that usually employed, so we performed ultra-deep WMS (> 30 Gbp or >
100 million read pairs) for the fecal samples from Korea. We consequently assembled 29,082 prokaryotic genomes
from 845 fecal metagenomes for the three under-represented Asian countries and combined them with the Unified
Human Gastrointestinal Genome (UHGG) to generate an expanded catalog, the Human Reference Gut Microbiome
(HRGM).

Results: HRGM contains 232,098 non-redundant genomes for 5414 representative prokaryotic species including 780
that are novel, > 103 million unique proteins, and > 274 million single-nucleotide variants. This is an over 10%
increase from the UHGG. The new 780 species were enriched for the Bacteroidaceae family, including species
associated with high-fiber and seaweed-rich diets. Single-nucleotide variant density was positively associated with
the speciation rate of gut commensals. We found that ultra-deep sequencing facilitated the assembly of genomes
for low-abundance taxa, and deep sequencing (e.g., > 20 million read pairs) may be needed for the profiling of low-
abundance taxa. Importantly, the HRGM significantly improved the taxonomic and functional classification of
sequencing reads from fecal samples. Finally, analysis of human self-antigen homologs on the HRGM species
genomes suggested that bacterial taxa with high cross-reactivity potential may contribute more to the
pathogenesis of gut microbiome-associated diseases than those with low cross-reactivity potential by promoting
inflammatory condition.
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Conclusions: By including gut metagenomes from previously under-represented Asian countries, Korea, India, and
Japan, we developed a substantially expanded microbiome catalog, HRGM. Information of the microbial genomes
and coding genes is publicly available (www.mbiomenet.org/HRGM/). HRGM will facilitate the identification and
functional analysis of disease-associated gut microbiota.

Keywords: Metagenomic shotgun sequencing, Human gut microbiome, Metagenome-assembled genome, Cross-
reactive antigen

Background
Human gut microbiome is considered the “second hu-
man genome” and plays a crucial role in various diseases
[1, 2]. Therefore, targeting gut microbes and their func-
tional elements may provide novel therapeutic oppor-
tunities. The assembly of human reference genome,
together with a catalog of protein-coding genes and gen-
omic variants, led us to the era of genomic medicine.
Likewise, transformation of human medicine by harnes-
sing the gut microbes requires the cataloging of refer-
ence microbial genomes and their encoded functional
elements. Conventional approaches for microbial gen-
ome assembly require microbial isolation and culture.
Indeed, with the development of culturomics technology,
the number of culturable gut microbes has increased
greatly [3–6]. However, the culturable taxa are biased to-
wards specific clades, and a large portion of the human
gut microbiome remains unculturable [7–9]. To address
this, culture-independent methods of metagenome as-
sembly from whole-metagenomic shotgun sequencing
(WMS) data have been developed.
Recently, three independent studies have consecutively

released large collections of prokaryotic genomes, in-
cluding many based on metagenome assembly (Add-
itional file 1: Table S1) [8–10]. The metagenome-
assembled genomes (MAGs) from these studies were
then combined with the genomic information deposited
in public databases to generate integrated catalogs of
prokaryotic genomes and proteins in the human gut
[11], the Unified Human Gastrointestinal Genome
(UHGG) and Unified Human Gastrointestinal Protein
(UHGP) catalogs, respectively. The UHGG contains
204,938 non-redundant genomes that represent 4644
prokaryotic species and the UHGP catalogs approxi-
mately 95 million unique proteins.
Despite the latest advances, the current human gut

microbiome catalog is incomplete, partially because the
metagenome sampling is biased for geographical location
and lifestyle. Specifically, the UHGG is strongly biased
towards fecal samples collected in China, Denmark,
Spain, and the USA. In the present study, to account for
the under-sampling of certain metagenomes, we assem-
bled genomes for fecal samples collected from Korea,
India, and Japan. Since the genome assembly of low-
abundance species in most human fecal samples may

require a much deeper sequencing than usually
employed, we performed ultra-deep WMS (> 30 Gbp or
> 100 million read pairs) of 90 fecal samples collected
from Korea. We also collected public WMS data for 110
and 645 fecal samples from India and Japan, respectively.
We consequently assembled 29,082 prokaryotic genomes
and combined them with the UHGG genomes to gener-
ate the Human Reference Gut Microbiome (HRGM),
which substantially expands the list of representative
species, genomes, proteins, and single-nucleotide vari-
ants (SNVs) in the human gut microbiome.

Methods
Whole-metagenome sequencing data for fecal samples
from Korea, India, and Japan
We performed de novo genome assembly on WMS data
for 90, 110, and 645 fecal samples from Korea, India,
and Japan, respectively. WMS data for India and Japan
populations were obtained from published but not in-
cluded studies in the UHGG [12, 13]. Fecal WMS data
for India were generated from 110 healthy donors in
North-Central and Southern India [12]. Although the se-
quencing depth was relatively low (1.2 Gbp on average),
it was expected that many novel genomes would be as-
sembled because MAGs from India are not included in
the existing catalogs. By contrast, 805 MAGs from Japan
are included in the UHGG. However, it was expected
that the inclusion of the recently published deep sequen-
cing WMS data for 645 Japanese fecal samples (6.5 Gbp
on average) [13] would greatly expand the number of
MAGs for Japan. Ultra-deep WMS data (31 Gbp on
average) were newly generated for fecal samples from 90
Koreans recruited at the Severance Hospital (Seoul,
Korea). We collected fecal samples from donors using
Norgen’s stool nucleic acid collection and preservation
systems (Norgen Biotek Corp.; #63700). The UHGG
does not contain any MAGs from Korea.
The libraries were prepared as described in the TruSeq

Nano DNA Library Prep Reference Guide (Illumina
#15041110). Briefly, 100 ng DNA was fragmented using
LE220 Focused ultrasonicator (Covaris, Inc.). Fragmen-
ted DNA was end-repaired and approximately 350-bp
fragments were obtained after size selection. After
adapter ligation, eight PCR cycles were performed. Li-
brary quantification was performed as described in the
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Kapa Illumina Library Quantification Kit (Kapa Biosys-
tems, #KK4854). Next, 150 bp × 2 paired-end sequencing
was performed using Illumina HiSeq4000. In summary,
new WMS data for 845 fecal samples collected from
Korea, India, and Japan were obtained. The total read
length was 7.2 Tbp. All samples used in the current
study are described in Additional file 1: Table S2.

Metagenome assembly and binning
The adapter sequences were trimmed, and low-quality
bases and short reads were removed from WMS data
using Trimmomatic v0.39 [14]. Next, the reads were
aligned with the human genome GRCh38.p7 using Bow-
tie2 v2.3.5 [15], and the aligned reads were then re-
moved. The majority of quality-controlled reads were
assembled as contigs using metaSPAdes [16], which is a
metagenome-specific pipeline of SPAdes v3.13.0. For un-
known reasons, and regardless of sample size, metaS-
PAdes runtime was excessively long for 107 samples. In
those cases, MEGAHIT v1.2.8 [17] was used (Additional
file 1: Table S2).
Genome bins were generated using the ensemble ap-

proach and three binning tools: MetaBAT2 v2.13 [18],
MaxBin2.0 v2.2.6 [19], and CONCOCT v1.1.0 [20]. First,
the reads from each sample were first aligned with the
assembled contigs from the previous step using Bowtie2,
and the three binning programs were initiated. The
minimum size of a contig for binning was set at 1000 bp,
except for MetaBAT2, which requires at least 1500 bp.
The three binning predictions were combined for im-
proved binning results using the bin refinement module
of MetaWRAP v1.2.2 [21], which uses CheckM v1.0.18
[22] to evaluate the quality of genome bins in terms of
completeness and contamination rate. The minimum
completeness was set at 50%, the maximum contamin-
ation at 5%, and the minimum quality score (Complete-
ness − 5 × Contamination) at 50. The same threshold
values for CheckM results were applied during the con-
struction of the UHGG. This resulted in 7767 genomes
from Korean samples, 563 genomes from Indian sam-
ples, and 20,752 genomes from Japanese samples (29,082
genomes in total).

Generation of genomic species clusters
Groups of genomes that corresponded to species were
generated using a two-step iterative procedure. Prelimin-
ary clustering was performed using Mash v2.2 [23] algo-
rithm. Mash distances were calculated for all possible
pairs of genomes using the “-s 10,000” parameter. Next,
the average-linkage–based hierarchical clustering was
performed, at a cutoff of 0.2. Mash algorithm is suffi-
ciently fast to calculate all-by-all distances for hundreds
of thousands of genomes in a timely manner. However,
this compromises the accuracy, especially for low-

coverage genome pairs [24], which are common in
MAGs. Therefore, to improve cluster quality, average
nucleotide identity (ANI) was calculated for every pair of
genomes within each initial cluster by ANImf [24]. To
avoid the overestimation of ANI by local alignment, a
minimum coverage threshold was applied for each pair.
The coverage cutoff of genome A and genome B was de-
termined at min(0.8, Completeness of genome A × Com-
pleteness of genome B). If the alignment coverage
between two genomes was lower than the cutoff, they
were regarded as different genomes. The genomes were
then clustered using the average-linkage–based hierarch-
ical clustering at a cutoff of 0.05 (or 95% identity), which
is a widely accepted ANI threshold for species-level
boundary [4, 9–11, 25]. The genome intactness score (S)
[9, 11], S = Completeness − 5 × Contamination + 0.5 ×
log10(N50), was then calculated. For clusters containing
more than two genomes, a genome with the highest S
was selected as the representative genome for the clus-
ter. The above two-step procedure was iterated until the
clusters ceased to change. Hence, 2199 species clusters
were generated for 29,082 genomes from KIJ samples,
with eight iterations of the aforementioned procedure.
Finally, the 2199 genomes were combined with 4644 ge-
nomes from the UHGG, generating 5414 species clusters
for the HRGM at the fourth iteration.

Assessment of genome quality
The assembled microbial genomes were classified into
three categories: high-quality (HQ), genomes with 5S,
16S, 23S rRNA, ≥ 18 tRNAs, ≥ 90% completeness, and <
5% contamination; near complete (NC), genomes with ≥
90% completeness and < 5% contamination; and medium
quality (MQ), genomes with 50 ~ 90% completeness and
< 5% contamination. We used barrnap v0.9 [26] software
for annotating the 5S, 16S, and 23S rRNA. We applied
the “--evalue 1e-05” parameter, and “--kingdom bac”
and “--kingdom arc” parameters for bacterial and ar-
chaeal genomes, respectively. We searched for tRNA
with tRNAscan-SE v2.0.7 [27] with “-B” option for bac-
terial genomes and “-A” options for archaeal genomes.
Genome quality of the 5414 representative species are
summarized in Additional file 1: Table S4.
To evaluate the novelty of the new species generated

from KIJ samples, we estimated ANI of their representa-
tive genomes to the UHGG genomes. Because calculat-
ing all pairwise ANIs takes a huge computational cost,
we calculated ANImf for the 10 closest UHGG species
representative genomes from each of the novel species
representative genomes based on the IQ-tree distance,
which is based on the concatenated sequence of 120
marker genes.
We calculated strain heterogeneity as described in pre-

vious studies [10, 11]. Briefly, we aligned sequencing
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reads of the originated sample against MAGs using Bow-
tie2, and the alignment results were sorted and indexed
with Samtools [28]. Next, the number of non-
synonymous and synonymous mutations was calculated
with the polymut.py script of CMSeq package [10]. We
used “--mincov 10” and “--minqual 30” parameters for
concordance with previous analyses [10, 11]. The num-
ber of non-synonymous mutations divided by the total
number of considered positions was used as the strain
heterogeneity of a genome.

Non-redundant genome counting
To count the number of non-redundant genomes, the
redundant genomes were removed, similar to what was
done for the UHGG pipeline [11]. First, the pairwise
genome distance was calculated using Mash [23] and the
entire genomes were clustered using average-linkage–
based hierarchical clustering, with a 0.001 cutoff (Mash
ANI 99.9%). To reduce the computation time, the hier-
archical clustering was performed only for the connected
components with the distance of 0.1, because it is highly
unlikely that genomes that are not within the distance of
0.1 are clustered together by a distance of 0.001. In the
process, 22,761 genomes were clustered into 8508 con-
specific clusters. Multiple genomes from the same sam-
ple for the same species cluster were counted only once.

Taxonomic and functional annotation of representative
species genomes
The taxonomic annotation of 5414 representative spe-
cies genomes was performed using the “classify_wf”
function of GTDB-Tk v1.0.2 [29]. The reference version
was GTDB R04-RS89, released in June 2019. Genomic
features, such as CDS, rRNA, and tRNA, were identified
and annotated in each genome using Prokka v1.14.5 [30]
with “--kingdom Bacteria” and “--kingdom Archaea” pa-
rameters for the bacterial and archaeal genomes, re-
spectively. With the protein sequences predicted by
Prokka, the antibiotic resistance genes were annotated
using RGI v5.1.0 [31] with default parameters. Finally,
the secondary metabolite gene cluster was annotated
using antiSMASH v5.1.2 [32]. For the full-featured anno-
tation, the “--cb-general, --cb-knownclusters, --cb-sub-
clusters, --asf, --pfam2go, --smcog-trees, --cf-create-
clusters” parameters were set.
To render the HRGM useful for the 16S rRNA se-

quencing–based metagenomic analysis, the 16S rRNA
regions for 5414 representative species genomes were
predicted using barrnap v0.9 [26] tool and the “--evalue
1e-05” parameter, and “--kingdom bac” and “--kingdom
arc” parameters for bacterial and archaeal genomes, re-
spectively. The 16S rRNA sequences were thus directly
predicted from 1364 representative species genomes. For
the remaining 4050 representative species, the search for

16S rRNA sequences was expanded to their conspecific
genomes. The barrnap analysis was used for the ge-
nomes from KIJ samples and pre-established 16S rRNA
region annotations were used for the genomes from the
UHGG. Within the expanded search space, 16S rRNA
sequences were identified for 1178 additional genomes.
Consequently, 16S rRNA sequences were generated for
2542 species in the HRGM.

SNV analysis
For the species clusters with more than three genomes,
SNVs were identified using the codes provided by the
UHGG [11]. Briefly, every non-representative genome, g,
was aligned with the representative genome, r, in the
species cluster using nucmer 4.0.0beta2 [33]. Best bi-
directional alignments were identified using the delta-
filter program and “-q –r” options, and SNVs were an-
notated using the show-snp program; nucmer, delta-
filter, and show-snp are software packages of MUMmer
v3 [34]. For each species cluster (G) whose representa-
tive genome is r, we calculated the SNV density with
normalization of the number of SNV by the aligned gen-
ome length and the number of genomes in the G.

SNV per kb ¼

X

g∈ G− rf gð Þ

#SNV r;g

Aligned lengthr;g=1000

n Gð Þ−1
SNV per kb was only calculated for 1521 species clus-

ters with ≥ 10 genomes to reduce sampling bias. For the
1521 genomes, the average phylogenetic distance to the
five nearest species was calculated using the IQ-Tree
[35].
To evaluate the normality of SNV frequency across

genomic regions for the 1521 Gs, we counted the num-
ber of SNV in the chunk (fragment) of the aligned re-
gion between r and g. We used 50-kb and 100-kb
chunks for the r with SNV per kb > 5 and SNV per kb ≤
5, respectively. The normality of the number of SNVs
per chunk was tested for each r–g pair using Kolmogo-
rov–Smirnov test.

Cataloging gut prokaryotic proteins and their functional
annotation
Overall, 64,661,728 CDS were identified in 29,082 ge-
nomes from the KIJ samples using Prodigal v2.6.3 [36]
and “-c -m -p single” parameters. Since many proteins
were derived from conspecific genomes, the catalog may
have included many homologous proteins. To reduce
the redundancy in the protein catalog, CD-HIT v4.8.1
[37] was adopted. To reduce CD-HIT running time,
identical proteins were first clustered and then CD-HIT
was executed at 100% similarity level. The cataloged pro-
teins were then combined with those in UHGP-100 [11].

Kim et al. Genome Medicine          (2021) 13:134 Page 4 of 20



The consolidated protein catalog was subsequently sub-
mitted to CD-HIT clustering analysis at five different se-
quence similarity levels, 100%, 95%, 90%, 70%, and 50%.
For accurate and efficient clustering, a multi-step itera-
tive clustering method recommended by the CD-HIT tu-
torial was adopted. For instance, the CD-HIT-95 protein
catalog (a 95% similarity level protein catalog) was con-
structed based on CD-HIT-100 proteins, and the CD-
HIT-90 protein catalog was constructed based on CD-
HIT-95 proteins. This resulted in approximately 103.7
million, 20.0 million, 14.8 million, 8.5 million, and 4.7
million proteins at the sequence similarity levels of
100%, 95%, 90%, 70%, and 50%, respectively.
Representative protein sequences in the five protein

catalogs were functionally annotated using eggNOG-
mapper v2.0.1 [38], which is based on the eggNOG pro-
tein database v5.0 [39]. The resultant annotations in-
clude eggNOG orthologs and functional terms from
several databases, including Gene Ontology (GO) [40]
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
[41]. Further, for each protein cluster, taxonomic origins
of all member proteins and the lowest common ancestor
of the cluster were tracked and annotated.
The numbers of shared species and shared phyla of

proteins in the HRGM-50 protein catalogs were anno-
tated based on the taxonomic annotation of member
proteins. The number of shared species was binned at
the bin size of 10, then the annotation rate for each pro-
tein bin was calculated as the number of annotated pro-
teins divided by the number of proteins in the bin.

Reconstruction of the phylogenetic tree
For the bacterial and archaeal genomes, 120 and 122
universal marker genes, respectively, were predicted by
the GTDB-Tk [29]. Using the concatenated sequences of
marker genes, the maximum-likelihood tree was gener-
ated using IQ-TREE [35]. The phylogenetic tree of bac-
terial genomes was visualized using iTOL [42].

Kraken2 databases
The Kraken2 v2.0.8-beta [43] custom database for the
HRGM representative genomes was prepared based on
the taxonomic annotations in GTDB-TK [29]. When
two or more genomes were annotated to the same
taxon, they were discriminated at the succeeding lower
rank. For example, if genome a and genome b were both
annotated to species_A, genome a and genome b were an-
notated as Species_A;strain_1 and Species_A;strain_2, re-
spectively. By doing so, the user can select a taxonomic
rank, thereby measuring species abundances together or
individually. The Kraken2 database for the UHGG [11]
was downloaded from UHGG FTP on March 6, 2020.
The Kraken2 standard database was downloaded and

constructed using “kraken2-build --standard” command
on July 14, 2020.

Measuring taxonomic classification rate of sequencing
reads
WMS data were compiled for publicly available data for
926, 54, and 26 fecal samples from the USA [44],
Cameroon [45], and Luxembourg [46, 47], respectively.
WMS data for 16 fecal samples collected from Korea,
which were not included in the HRGM, were also used.
These 1022 fecal samples were neither used for the
UHGG nor for the HRGM. The data were pre-processed
and taxonomically classified using Kraken2 with stand-
ard database, UHGG-based database containing 4644
representative genomes, and HRGM-based database
containing 5414 representative genomes. The taxonomic
classification rate was then calculated based on the pro-
portion of aligned sequence reads in a sample with re-
spect to the database.

Measuring functional classification rate of sequencing
reads
The functional classification rate of sequencing reads
was determined based on the number of aligned reads
against the protein catalog. For the analysis, WMS data
were randomly selected for ten fecal samples from each
of the Cameroon, Korea, USA, and Luxembourg cohorts
(the same cohorts were used for the measuring taxo-
nomic classification rate). After pre-processing, 40 sam-
ples were aligned with the UHGP-95 and HRGM-95
protein databases using blastx of DIAMOND v0.9.35.136
[48]. The results were filtered at > 80% query coverage
(read coverage) and > 95% alignment identity thresholds.
A pair of reads was treated as two independent reads.
For multiple alignments of a read, only the best align-
ments by bit score and E-value were considered.

Evaluation of the effect of sequencing depth on de novo
genome assembly
Nine Korean samples with sequencing depth of > 52.5
Gbp (Additional file 1: Table S2) were selected for ana-
lysis. Then, 0.5, 2.5, 5, 10, 20, 40, 80, 125, and 175 mil-
lion read pairs were randomly sampled from each of
these samples. As the average read-pair length was 300
bp, the sequencing depths of these random samples cor-
responded to 150 Mbp, 750 Mbp, 1.5 Gbp, 3 Gbp, 6
Gbp, 12 Gbp, 24 Gbp, 37.5 Gbp, and 52.5 Gbp, respect-
ively (Additional file 2: Fig. S2). For the 81 simulated
samples (9 samples × 9 depths), de novo genome assem-
bly was performed using the same pipeline as that used
for the database construction.
Two adjacent sequencing depths (e.g., 125 vs. 175 mil-

lion read pairs) were compared to evaluate the effect of
sequencing depth on the de novo genome assembly.
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Samples with a greater sequencing depth may yield more
MAGs with over 50% completeness, yet with a lower
average quality than those with a lower sequencing
depth because of MAGs that barely pass the complete-
ness threshold. Therefore, instead of the average quality
scores of all assembled genomes, two genomes assem-
bled at different sequencing depths for the same species
clusters were compared. Mash [23] clustering of ge-
nomes from two random samples was performed for a
comparison based on the average-linkage–based hier-
archical clustering, at a threshold of 0.1 (90% identity).
Mash clustering was sufficient for clustering conspecific
genomes in the simulated samples. Indeed, no cluster
had more than two genomes from the same sequencing
depth. The assembly quality (completeness, contamin-
ation, N50, and genome size) of conspecific genomes at
adjacent sequencing depths was then compared.

Evaluation of the effect of sequencing depth on
taxonomic profiling
To avoid overestimation of performance, WMS data for
16 Korean fecal samples that have not been used for the
HRGM construction and generated at a sequencing
depth of > 24.5 Gbp were used. From each of the 16
samples, 1, 5, 10, 20, 40, 60, and 80 million read pairs
that corresponded to 300 Mbp, 1.5 Gbp, 3 Gbp, 6 Gbp,
12 Gbp, 18 Gbp, and 24 Gbp, respectively, were ran-
domly sampled. Taxonomic profiling was then con-
ducted using Kraken2 and the HRGM-based database.
Based on the hypothesis that profiling of low-abundance
taxa is more affected by sequencing depth than abun-
dant ones, the taxonomic features were stratified at eight
different levels of relative abundance, ranging from 1e
−07 to 1 with every ten-fold increase. Pearson correl-
ation coefficient (PCC) and Spearman correlation coeffi-
cient (SCC) between the taxonomic profiles at different
sequencing depths were then calculated for each group
of features for different levels of relative abundance.

Analysis of cross-reactivity potential of microbes and
their association with diseases
Epitope sequences from autoimmune disease-related
self-antigen were compiled from the Immune Epitope
Database (IEDB) [49]. “Epitope: Linear epitope”, “Anti-
gen: Organism: Homo sapiens”, “Host: Homo sapiens”,
and “Disease: Autoimmune Disease” filters of the IEDB
web portal were applied. Epitope sequences that re-
quired post-translational modification (e.g., citrullination
and deamination) and epitopes shorter than five amino
acids were ignored. Next, 24,461 unique epitope se-
quences were aligned with the protein sequences
encoded by 5414 species representative genomes using
BLASTP [50]. For meticulous alignment of short peptide
sequences, “-word_size 4”, “-evalue 10000”, and “-max_

target_seqs 100000” options were applied. For every
epitope-to-gene pairwise alignment, the Alignment
Score (AS) was calculated, as follows:
AS = (match length - gap length) / epitope length
Alignments with AS = 1 were used to count the num-

ber of epitope-containing genes (ECGs) for every repre-
sentative species. The number of ECGs was positively
correlated with the number of genes of the species ge-
nomes. Therefore, the number of ECGs was normalized
by the total number of genes for each species genome.
To identify epitope-enriched taxonomic clades, ECGs
per gene of each taxonomic group were compared with
the entire 5414 genomes, and Mann–Whitney P values
and fold-change were calculated. We identified trans-
membrane helices (TMHs) and signal peptides of the
ECGs using the TMHMM v2.0c and SignalP v5.0b, re-
spectively. We ran TMHMM with default parameters
and SignalP with -org arch for archaeal proteins and ap-
plied both “-org gram+” and “-org gram-” parameters
for bacterial proteins.
To systematically evaluate associations of ECG-

enriched taxa with human gut microbiome-associated
diseases, we compiled taxon-disease pairs annotated by
gutMDisorder database [51] as of May 2021. We defined
high cross-reactivity taxa by ECG count enrichment (P <
1e−05) and then included the child taxa for the follow-
ing ECG-enriched taxa: Atopobiaceae (level: family,
NCBI txid: 1643824), Bacteroidia (class, 200643), Bifido-
bacteriaceae (family, 31953), Oscillospiraceae (family,
216572), Sutterella (genus, 40544), and Verrucomicro-
biota (phylum, 74201). The taxa without NCBI txid were
manually classified. All other taxa were defined as low
cross-reactivity taxa. We tested associations of the high
cross-reactivity taxa for the diseases with more than 40
annotated taxa using gutMDisorder. The associations
were assessed by odds ratio (OR) (odds that high cross-
reactivity taxa are annotated for the disease / odds that
low cross-reactivity taxa are annotated for the disease)
and their significance by Fisher’s exact test. Here, OR >
1 indicates that high cross-reactivity taxa are more asso-
ciated with the disease than low cross-reactivity taxa are.
The direction of association was also assessed by OR
(odds that high cross-reactivity taxa are annotated to in-
crease in the disease / odds that low cross-reactivity taxa
are annotated to increase in the disease) and their sig-
nificance by Fisher’s exact test. Here, OR > 1 indicates
that high cross-reactivity taxa tend to increase in the
disease.

Results
Assembly of gut microbial genomes from Korea, India,
and Japan
We assembled prokaryotic genomes using an in-house
bioinformatics pipeline (Additional file 2: Fig. S1a,
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Methods), which is more exhaustive than similar ap-
proaches [8–11] (Additional file 1: Table S1). For in-
stance, we adopted an ensemble method for binning
assembled contigs, as it showed better performance than
individual binning tools [21, 52]. We hypothesized that
metagenomes harbored by individuals from under-
represented geographical locations and lifestyles would
expand the current catalog of human gut microbiome.
Therefore, we performed de novo genome assembly of
fecal samples from three Asian countries: Korea, India,
and Japan (referred to here as KIJ samples, Additional
file 1: Table S2). At the start of the current study, WMS
data for 645 and 110 fecal samples from Japan and India,
respectively, were publicly available but not included in
the UHGG [12, 13]. To complement these public data,
we generated additional WMS data for fecal samples col-
lected from 90 donors recruited in Korea. We set the
minimum completeness at 50%, the maximum contam-
ination at 5%, and the minimum quality score (Com-
pleteness − 5 × Contamination) at 50 for genomes of
minimum quality. This yielded 29,082 MAGs: 7767 from
Korea, 563 from India, and 20,752 from Japan.

Ultra-deep sequencing facilitates the genomic assembly
of low-abundance taxa
To investigate the impact of metagenome sequencing
depth on de novo genome assembly, we performed
ultra-deep sequencing of the 90 Korean fecal samples (>
30 Gbp or > 100 million read pairs); the depth was ap-
proximately 5-fold deeper than the normal sequencing
depth (Fig. 1a). Despite sequencing at the normal depth,
fecal samples from Japan had a larger total read length
than Korean samples because of a much larger sample
size (Fig. 1b). For nine of the 90 Korean samples, ap-
proximately 60 Gbp was sequenced for the study of se-
quencing depth effect on genome assembly. We then
generated 81 simulated WMS datasets (9 different
depths for each of the 9 original samples with ~ 60 Gbp
depth) and used the same pipeline of de novo genome
assembly for all samples. As expected, the number of all
MAGs with minimum quality (HQ + NC + MQ) in-
creased with the increasing sequencing depth. However,
the growth rate simultaneously decreased and the pro-
portion of (HQ + NC) MAGs became stable after the
initial phase of rapid growth (Fig. 1c). Next, we investi-
gated whether the increased sequencing depth improved
the quality of MAGs. We compared the assembly quality
of MAGs for the same species in two different simulated
samples at adjacent sequencing depths (Additional file 2:
Fig. S2, Methods). The quality of MAGs from the greater
sequencing depth was significantly higher than that of
genomes from the lower sequencing depth in terms of
completeness, contamination, N50, and genome size
(Fig. 1d, e, Additional file 2: Fig. S3a-b). However, the

degree of improvement of the assembly quality dimin-
ished as the sequencing depth increased.
We then examined the effect of sequencing depth

using the actual WMS data for KIJ samples. The number
of all MAGs with minimum quality from each cohort
was the highest in the ultra-deep sequenced samples
from Korea (Fig. 1f). However, the proportion of (HQ +
NC) MAGs in samples from Korea and Japan was not
significantly different (Fig. 1g; Additional file 2: Fig. S3c).
Notably, the genome assembly yield, i.e., the number of
assembled genomes divided by the total sequencing
length, was highest for samples from Japan (Fig. 1 g).
This suggests that sequencing hundreds of samples at a
depth of 5–10 Gbp may constitute the most effective
strategy for cataloging MAGs for a given population.
The ultra-deep sequencing may be advantageous for

the genome assembly for low-abundance taxa. To test
this, we used representative MAGs for the species clus-
ters composed of MAGs from exclusively one of the
three Asian countries and not included in the UHGG,
i.e., representative MAGs for 224, 388, and 18 species
clusters from Korea, Japan, and India, respectively.
Therefore, these representative species MAGs were spe-
cific to each country. The average completeness and
contamination of these country-specific representative
species MAGs were 86.06% and 1.4%. We then esti-
mated their relative abundance in fecal samples in an in-
dependent population of 926 fecal samples from the
USA [44] using Kraken2 [43]. The Korea-specific repre-
sentative species MAGs shifted towards low-abundance
taxa compared with representative species MAGs spe-
cific to other countries (Fig. 1h), which supports our hy-
pothesis. We also found that some family taxa were
enriched or depleted among the MAGs specific to each
country (Additional file 1: Table S3, P < 0.05 by Fisher’s
exact test).

Cataloging reference genomes of 5414 prokaryotic
species from the human gut
To construct the most comprehensive reference data-
base for the human gut microbiome, we integrated the
newly generated 29,082 MAGs from KIJ samples with
the UHGG genomes using dereplication approach (Add-
itional file 2: Fig. S1b, Methods). Dereplication of the
29,082 MAGs resulted in 2199 clusters of genomes. We
selected a representative genome from each cluster to
catalog the genomes for 2199 representative species,
which we then integrated with 4644 representative ge-
nomes from the UHGG, via dereplication, resulting in
5414 clusters of genomes. Finally, we selected 5414 rep-
resentative genomes and assigned their phylogenetic
classifications using GTDB-Tk [29] (Fig. 2a, Additional
file 1: Table S4). Based on the three categories of assem-
bled genome quality (“Methods”), we found 763 (14.1%),
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Fig. 1 Effect of sequencing depth on de novo genome assembly. a Sequencing depth of samples from Korea, Japan, and India. Red data points,
nine samples used for the generation of simulated samples for different sequencing depths. b Total read length of samples from Korea, Japan,
and India. c The average number of genomes (left axis) and the proportion of (HQ + NC) genomes (right axis) from nine samples. d, e
Completeness (d) and N50 (e) of assembled genomes from lower sequencing depth (left box of each column) and greater sequencing depth
(right box of each column). f The number of the assembled genomes from Korea, Japan, and India. g Total number of the assembled genomes
from Korea, Japan, and India, and genome assembly yields. h The relative abundance of 224 Korea-specific, 338 Japan-specific, and 18 India-
specific assembled genomes in independent fecal samples from the USA (n = 926). P values were calculated by two-sided Mann–Whitney U test
(**: P < 0.01; ***: P < 0.001).
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2933 (54.2%), and 1718 (31.7%) representative genomes
belonging to HQ, NC, and MQ categories, respectively.
Among these representative genomes, 4531 (83.7%) ge-
nomes were exclusively assembled from metagenomic
data, which confirmed the notion that the major portion
of the human gut microbiome has not yet been isolated.
We identified 16S rRNA sequences in 2542 representa-
tive genomes (47%) (Additional file 2: Fig. S4), covering
the majority of phylogenetic clades.
The inclusion of MAGs from KIJ samples in the new

database allowed several improvements from the UHGG.
First, we reduced the data bias towards China among
Asian countries (Additional file 2: Fig. S5a). Second, we
expanded the total number of non-redundant reference
genomes by 13.25% and the number of representative
species by 16.6% (Additional file 1: Table S5). Among
the 5414 species clusters, 780 (14.4%) were generated by
KIJ samples only, and representative genomes for 536
species clusters of the UHGG (9.9%) were replaced with
the new MAGs from KIJ samples. Hence, in total, 1316
representative genomes (24.3%) were updated in the
HRGM. The remaining 4098 species clusters (75.7%)
inherited their representative genomes from the UHGG
(Fig. 2a, Additional file 2: Fig. S5b). To evaluate whether
the 780 novel species were based on spurious clusters or
not, we examined the ANI of their representative ge-
nomes to the UHGG representative species genomes.
We found that most of the 780 novel species by HRGM
showed ≤ 0.1, and none of them showed ≥ 0.95 for mean
ANI to the 10 closest UHGG species representative ge-
nomes (Additional file 2: Fig. S5c). We also found that
only 15 out of the 780 species (1.92%) had maximum
ANI > 0.95, indicating that most of the species fulfill the
criterion of species discrimination. This small fraction of
spurious novel species might be due to the widely used
two-step clustering procedure for genome dereplication
that includes preliminary clustering using Mash algo-
rithm [23]. Therefore, we conclude that most of the 780
species clusters generated from KIJ samples represent
genuinely novel species.

New species from Korea, India, and Japan are associated
with diet-related lifestyles
Notably, Bacteroidaceae family (red tree branches in Fig.
2a) was enriched in the new species (P < 0.001, Fisher’s
exact test). Almost half the species from this family are
from the Bacteroides genus and approximately two-
thirds of the other half are from the Prevotella genus
(Fig. 2b). Functional enrichment analysis for the new
species belonging to these genera (Additional file 1:
Table S6-7) revealed that new species belonging to the
Bacteroides genus are enriched for enzymes involved in
carbohydrate metabolism. Interestingly, four regions in
the phylogenetic tree were highly enriched in the new

species. The “region 1” encompasses a portion of the
Prevotella genus and includes 30 species annotated as
Prevotella copri. Previously, westernized populations
with a typically high-fat and low-complex carbohydrate
diet were reported to exhibit low prevalence and diver-
sity of P. copri compared with non-westernized popula-
tions [53]. The “region 2” encompasses a portion of the
Bacteroides_A genus and includes 22 species annotated
as Bacteroides_A plebeius. It has been suggested that
Bacteroides plebeius harbors genes encoding an enzyme
specific for algal carbohydrates, acquired from marine
microbes [54]. This species is typically found in Japanese
subjects whose diet includes seaweed-rich food, such as
sushi. We found that most of the 22 species belonging
to Bacteroides_A plebeius contain homologous genes for
porphyranase, an enzyme responsible for the degrad-
ation of porphyrin, which composes the cell wall of red
algae (Fig. 2c, Additional file 1: Table S8). We also found
that 21 out of 22 species belonging to Bacteroides_A ple-
beius were assembled from samples from Japan. These
results validate the previous report of the association be-
tween gut bacterium Bacteroides plebeius and Japanese
lifestyle. Not only the enzyme porphyranase but also
many functions involved in carbohydrate metabolism
were found to be enriched among 61 species belonging
to Bacteroides_A genus (Additional file 1: Table S9). The
“region 3” encompasses a portion of the Bacteroides_B
genus and includes 12 species annotated as Bacteroides
vulgatus, which is typically present in the human distal
gut, where undigested plant polysaccharides and pro-
teins exist in large quantities [55]. The “region 4” en-
compasses a portion of the Bacteroides genus and
includes 13 species annotated as Bacteroides xylanisol-
vens, a xylan-degrading bacterium isolated from human
faces [56]. Together, these observations suggest that the
new species from KIJ samples are associated with the
diet-related lifestyles.

Identification of subspecies clades that are endemic to
specific East Asian countries
Owing to the substantially increased coverage of gut mi-
crobial genomes for two East Asian countries, Korea and
Japan, we had the opportunity to investigate whether
there are gut bacterial subspecies genomes that are en-
demic to specific East Asian countries. We first selected
HQ and NC genomes that have been assembled from
four East Asian countries (Korea, Japan, China, and
Mongolia) for the 74 species clusters with more than
1000 member genomes. For the selected genomes, we
extracted 120 bacterial marker genes and performed
multiple sequence alignment with the align module of
GTDB-TK. Next, we generated the maximum-likelihood
phylogenetic tree using IQ-Tree with default parameters
and visualized tree with country annotation with iTOL.
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Fig. 2 (See legend on next page.)
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Through visual inspection of the subspecies trees for the
74 species, we identified two species with distinct sub-
species clades that are endemic to specific countries. We
observed a subspecies clade of Escherichia coli D that is
endemic to Japan (Additional file 2: Fig. S6a). We veri-
fied that the most enriched KEGG ortholog for this sub-
species clade of the species was mhqR, a multiple
antibiotics resistance regulator (MarR) (Additional file 1:
Table S10) [57]. We also observed a subspecies clade of
Bifidobacterium adolescentis that is endemic to
Mongolia (Additional file 2: Fig. S6b). These subspecies
were found to be depleted in KEGG orthologs for type
IV pilus assembly proteins and various transporters,
both of which are potentially associated with antibiotic
resistance (Additional file 1: Table S11). Notably, the en-
demic subspecies clade to Mongolia has higher abun-
dance of genes for β-galactosidase, also called lactase,
compared with other subspecies. These subspecies of
Bifidobacterium adolescentis with high potential of lac-
tase production can be attributable to the Mongolian
cuisine, which predominantly consists of dairy products.
Taken these results together, utilizing expanded genome
catalogs by new MAGs, we could demonstrate that there
are gut bacterial subspecies endemic to different coun-
tries within geographic regions in Asia.

SNV density is positively associated with the speciation
rate of gut commensals
We then aligned genomes of species clusters containing
≥ 3 genomes with the representative genome and
mapped SNVs (“Methods”). This yielded 274,543,071
SNVs from 2821 species clusters, representing 10.07%
and 13.34% increases, respectively, from the UHGG. We
calculated SNV density across genomes based on SNV
per kb for only 1521 species clusters with ≥ 10 genomes
to reduce sampling bias. The Actinobacteriota phylum
had the highest SNV density (Fig. 3a). Parts of a genome
with a relatively higher level of SNV density would sug-
gest possible chimerism. To test whether the SNVs were

evenly distributed across the genome, we investigated
the distribution of the number of SNVs per chunk (frag-
ments of 50 kb or 100 kb) for the 1521 species clusters
(“Methods”). There were 304,769 representative genome
and non-representative genome (r–g) pairs with ≥ 5
chunks. If SNV density is significantly affected by the
chimeric region, the distribution of the number of SNV
per chunk may not follow a normal distribution. We
found that most of the r–g pairs (300,545/304,769,
98.61%) followed a normal distribution (Kolmogorov–
Smirnov test, q-value > 0.05) (Additional file 1: Table
S12 and Additional file 2: Fig. S7), which suggests that
the level of chimerism is low for most of the assembled
genomes.
Phylogenetically overdispersed branches of Actinobac-

teriota phylum were apparent in both, the HRGM and
UHGG. The majority of genomes from the overdis-
persed tree region belonged to the Collinsella genus. We
divided these genomes into ones from a tree region with
a modest phylogenetic dispersion (MD, 20 genomes) and
those with a high phylogenetic dispersion (HD, 619 ge-
nomes) (Fig. 3b). Although the majority of genomes
were not annotated at the species level, Collinsella aero-
faciens was enriched in the HD group and other known
Collinsella species were enriched in the MD group (Fig.
3c). SNV density in HD group was significantly higher
than that of MD group (Fig. 3d). To test whether strain
heterogeneity affects SNV density, we compared strain
heterogeneity between the groups. We found that strain
heterogeneity of HD group is significantly lower than
that of non-Collinsella Actinobacteriaota species (P <
0.001 by Mann–Whitney U test) but not significantly
different from that of MD group (Additional file 2: Fig.
S8a). Given that SNV density of HD group is higher than
that of non-Collinsella Actinobacteriaota species, this re-
sult suggests that strain heterogeneity is not associated
with SNV density. Furthermore, we observed no correl-
ation between strain heterogeneity and SNV density
among all species that can be analyzed (Additional file 2:

(See figure on previous page.)
Fig. 2 Phylogenetic trees of 5386 representative species of HRGM and species from KIJ samples. a Maximum-likelihood phylogenetic tree
reconstructed from 120 bacterial marker genes (“Methods”). Representative genomes were annotated by their isolated genome availability (1st
layer from the inside), phylum classification (2nd layer), whether they were from UHGG or assembled from KIJ samples (3rd layer), 16S rRNA
sequence availability (4th layer), and genome completeness (the outermost layer). Red branches represent 410 species belonging to
Bacteroidaceae family that are enriched in the representative species updated by including KIJ samples. b Bacteroidaceae family includes many
new species from KIJ samples. The inner color strip indicates genus classification by GTDB-TK, and the outer color strip marks novel genomes
from KIJ samples. Region 1 belongs to Prevotella genus and includes 30 species of Prevotella copri. Region 2 belongs to Bacteroides_A genus and
includes 22 species of Bacteroides_A plebeius. Red branches indicate Bacteroides_A genus. Region 3 belongs to Bacteroides_B genus and 12 species
of the region are annotated as Bacteroides_B vulgatus. Region 4 includes Bacteroides genus and all 13 species are classified as Bacteroides
xylanisolvens by GTDB-TK. c Phylogenetic tree of 61 species of Bacteroides_A genus, the red branches in b. The uppermost color strip represents
the novel species from KIJ samples. The second strip indicates the species harboring Porphyranase gene. Other gradient bars indicate the
abundance of the gene with corresponding functional categories. P values indicate the statistical significance of enrichment of the function for
the novel genomes compared with others in the Bacteroides_A genus. P values were calculated by the two-sided Fisher’s exact test (for the
presence of Porphyranase) or two-sided Mann–Whitney U test (for abundance functional categories).
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Fig. S8b), which also suggests that SNV density is not af-
fected by strain heterogeneity.
SNV, a within-species genetic variation, is a major

mechanism for the adaptation of commensal species to a
distinct host environment. Wide dispersion of species
branches indicates rapid speciation. Accordingly, high
SNV density for a species with an overdispersed tree
may indicate that the degree of within-species genetic
variation may be positively associated with the speciation
rate of gut commensals. To test this hypothesis, we

examined the correlation between SNV density of 1521
representative species with ≥ 10 subspecies genomes and
their phylogenetic distance to the five nearest species.
The branch length to the neighboring species in the
phylogenetic tree of a species that arose during rapid
speciation tends to be short. We observed an inverse
correlation between the average phylogenetic distance to
the five nearest species and their SNV density (Fig. 3e),
and a significantly higher SNV density for the top 10%
species with shorter phylogenetic distance to the nearest

Fig. 3 SNV density analysis of the relationship between within-species variation and speciation of gut microbes. a The number of SNVs per kb
pair of the aligned region. SNV density is summarized for each phylum. Boxes are sorted by the median. Arc, archaeal phylum. b The
phylogenetic tree for Actimobacteriota phylum. Inside annotation indicates the Collinsella genus, divided into Collinsella with modest
phylogenetic dispersion (MD Collinsella, Red) and Collinsella with high phylogenetic dispersion (HD Collinsella, Orange). Black annotations in the
outer circle represent Collinsella aerofaciens, Collinsella aerofaciens_A, Collinsella aerofaciens_E, and Collinsella aerofaciens_F, according to the GTDB-
TK annotation. c GTDB-TK based taxonomic annotation of MD Collinsella and HD Collinsella. d SNV density of HD Collinsella, MD Collinsella, Non-
collinsella actinobacteriota, and other species. e Scatter plot analysis of SNV density of 1521 representative species with ≥ 10 subspecies genomes
in the cluster and their average phylogenetic distance to the five nearest species of each representative species. Orange points denote species of
HD Collinsella and black points represent other species. f Comparison of SNV density between the top 10% and bottom 90% of the 1521 species
sorted from the lowest average phylogenetic distance to the five nearest species. Statistical significance was calculated by two-sided Mann–
Whitney U test (n.s.: not significant; *: P < 0.05; ***: P < 0.001)
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five species than those for the bottom 90% of the 1521
species (Fig. 3f). This supports the model of a positive
correlation of SNV density and the speciation rate of gut
commensals.

Functional landscape of 103 million proteins from human
gut prokaryotes
Information on proteins encoded in the human gut mi-
crobes will facilitate the functional characterization of
disease-associated microbiota. Using an in-house com-
putational pipeline for cataloging human gut prokaryotic
proteins (Additional file 2: Fig. S1c and Additional file 2:
Fig. S9), we first identified 64,661,728 CDS (coding se-
quences) from 29,082 genomes from KIJ samples using
Prodigal [36]. To reduce redundancy in the protein cata-
log, we first executed CD-HIT [37] at 100% similarity
level and then combined with proteins cataloged by the
UHGP-100 [11]. The consolidated protein catalog was
next consecutively clustered by CD-HIT at lower se-
quence similarity levels: 95%, 90%, 70%, and 50%. This
led to approximately 103.7, 20.0, 14.8, 8.5, and 4.7 mil-
lion proteins at the sequence similarity levels of 100%,
95%, 90%, 70%, and 50%, respectively.
Unexpectedly, we observed that the UHGP contains

proteins that are 100% identical, even in a catalog at 50%
sequence similarity level. For instance, among the
UHGP-50 proteins, GUT_GENOME232012_01109 and
GUT_GENOME231777_00918 have an identical amino
acid sequence. We identified 8663, 82,507, 243,362, and
75,620,150 proteins that are redundant at 100% similar-
ity in the UHGP-50, UHGP-90, UHGP-95, and UHGP-
100, respectively. Exclusion of the UHGP proteins that
were 100% identical revealed that the HRGM contains
more proteins than UHGP at all levels of sequence simi-
larity except for 50% (Additional file 1: Table S5).
To facilitate the functional interpretation of gut micro-

biome profiles, we next annotated functional genomic el-
ements and proteins in the HRMG. We predicted and
annotated non-coding RNAs and functional peptides,
using Prokka [30]; antibiotic resistance genes, using RGI
[31] (Additional file 2: Fig. S10a); biosynthetic gene clus-
ters, using antiSMASH [32] (Additional file 2: Fig. S10b);
and 16S rRNA regions, using barrnap [26]. For func-
tional annotation of proteins, we used eggNOG-mapper
[38]. Notably, the landscape of antibiotic resistance
ontology revealed that phylogenetically close species in
the human gut tend to share antibiotic resistance mech-
anisms. A significantly large portion of the human gut
prokaryotic proteins has not yet been functionally anno-
tated. For the HRGM protein catalogs at 100%, 95%,
90%, 70%, and 50% similarity levels, 13.13%, 28.05%,
29.17%, 36.35%, and 47.62% of proteins, respectively, had
no functional annotation, according to eggNOG-
mapper. This effect appears to be amplified by

redundant proteins, resulting in a reduced annotation
rate at a low similarity level. Further, the annotation rate
of proteins that are shared by many species is higher
than that of species-specific proteins (Additional file 2:
Fig. S11).

HRGM improves taxonomic and functional classification
of sequencing reads
According to a recent benchmark study, whole-DNA–
based methods outperform marker-based methods for
taxonomic classification of metagenomic sequencing
reads [58]. The performance of whole-DNA–based
methods relies on the quality of the reference genome
database. The standard databases lack numerous ge-
nomes of species that exist in the human gut, which
leads to false-negatives, while including many genomes
from other microbial communities, which leads to false-
positives [58]. We hypothesized that the HRGM, which
is specific to the human gut microbiome and more com-
prehensive than other databases, can improve the taxo-
nomic classification of sequencing reads. We used
Kraken2 [43] to compare the taxonomic classification of
three genome databases: a standard database that con-
tains RefSeq [59] complete genomes (RefSeq CG) of bac-
terial, archaeal, and viral domains; the UHGG-based
database containing 4644 representative genomes; and
the HRGM-based database containing 5414 representa-
tive genomes. To generate independent test datasets, we
compiled WMS data for 1022 fecal samples from the
USA, Cameroon, Luxembourg, and Korea, which were
not included in the UHGG nor HRGM. We then evalu-
ated the efficacy of Kraken2 classification based on the
proportion of classified reads (“Methods”). The average
classification efficacy using the UHGG and HRGM-
based databases was 44.6% and 54.4% higher, respect-
ively, than that of the standard database (Fig. 4a-b, P <
0.001, two-sided Wilcoxon signed-rank test). In addition,
the variance of the read classification rate of custom da-
tabases was significantly smaller than that of the stand-
ard database, except for the Cameroon population (Fig.
4a, P < 0.001, Brown–Forsythe test). Importantly, the
read classification efficacy of the HRGM-based database
was significantly improved by 6.9% on average compared
with that of the UHGG-based database for the four test
samples (Fig. 4a and c, P < 0.001, two-sided Wilcoxon
signed-rank test), which suggests that the updated refer-
ence genome database improves taxonomic classification
of the gut metagenomic sequencing data.
Next, we investigated the efficacy of functional classifi-

cation based on the number of aligned sequencing reads
from reference protein databases. Because of the ex-
tremely large number of reference proteins, we used
only 40 samples randomly selected from the 1022 fecal
samples (10 samples from each population), and aligned
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Fig. 4 (See legend on next page.)
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the sequencing reads with the UHGP-95 and HRGM-95
protein catalogs (Methods). The number of aligned reads
was 1.31% higher, on average, with HRGM-95 in all
tested samples than with UHGP-95 (Fig. 4d), although
HRGM-95 contains 0.4% more proteins than UHGP-95.
Searching for the factors that contribute to the im-

proved classification of sequencing reads, we compared
classified reads by UHGG- and HRGM-based databases.
Among a total of 12,612.3 million reads aligned by any
of the databases, 11,681.8 million reads (92.6%) were
classified by both databases. The number of reads
aligned by HRGM-based database only (831.6 millions)
was 8.4-fold larger than that by UHGG-based database
only (98.9 millions) (Fig. 4e). We then investigated the
highest contributing taxa to the 831.6 million reads
aligned by HRGM-based database only (i.e., the most
aligned taxa by the 831.6 million reads). We found Bac-
teroidaceae as a dominant contributing family and Bac-
teroides, Prevotella, Bacteroides_B, and Bacteroides_A as
the top four contributing genera (Fig. 4f, panels on the
left and center). These results are consistent with our
observation that Bacteroidaceae family was enriched for
the new species from KIJ samples (Fig. 2a) and that the
majority of its species belong to the Bacteroides and Pre-
votella genera (Fig. 2b). Notably, the top contributing
species taxa also were the regions of the phylogenetic
tree that were enriched for the new species: Region 1
(Prevotella copri), Region 2 (Bacteroides_A plabeius_A),
Region 3 (Bacteroides_B vulgatus), and Region 4 (Bacter-
oides xylanisolvens) (Fig. 4f, right panel). Therefore,
these results suggest that the MAGs for the new 780
species from under-represented Asian countries were
the main contributors to the improved taxonomic and
functional classification of sequencing reads.

Deep sequencing is recommended for profiling low-
abundance taxa
In a previous study, taxonomic profiles obtained by shal-
low sequencing (0.5–2 million reads) showed a high cor-
relation with those obtained by ultra-deep sequencing
(2.5 billion reads) [60]. However, this evaluation was
based on entire taxa, in which highly abundant or core
taxa govern the correlation measure. Further, low-
abundance taxa likely play important, as yet unknown,
biological roles in the gut microbial communities [61,

62]. We therefore evaluated the impact of sequencing
depth on the reliability of taxonomic profiling for differ-
ent ranges of taxon abundance. We generated simulated
datasets at various sequencing depths using WMS data
for 16 new Korean fecal samples that were not included
in the HRGM. We then stratified the taxonomic features
into eight different groups, according to the mean rela-
tive abundance (Fig. 5a, b). We calculated the mean PCC
and the mean SCC between the taxonomic profiles at
different sequencing depths for different mean relative
abundances (“Methods”). The taxonomic profile similar-
ity between two groups showed increasing PCC and
SCC with an increasing sequencing depth. For example,
> 10 million read pairs (3 Gbp) may be needed for taxo-
nomic profiles that highly correlate (PCC > 0.9) with
those based on 80 million read pairs (25 Gbp) to ac-
count for the features with the lowest 13.92% of relative
abundance (relative abundance <1e−06) (Fig. 5c and
Additional file 2: Fig. S12a). For SCC > 0.9, the required
sequencing depth increased to 20 million read pairs (6
Gbp) for taxonomic features with a similar level of rela-
tive abundance (Fig. 5d and Additional file 2: Fig. S12b).
Overall, these observations based on Korean gut meta-
genomes suggest that deep sequencing (e.g., > 20 million
read pairs) may be needed for reliable taxonomic profiles
of low-abundance taxa.

Bacterial taxa with high cross-reactivity potential may
promote inflammation
Microbial peptides homologous to the host self-antigens
may stimulate immune cells and, hence, the hypothesis
of molecular mimicry has emerged as a mechanism
underlying autoimmune diseases [63]. To systematically
evaluate the contribution of cross-reactive microbial an-
tigens to human diseases, we analyzed human self-
antigen homologs on the HRGM species genomes. We
first compiled epitope sequences involved in auto-
immune diseases from the IEDB [49], and then we used
them for homology-searches against 5414 representative
species genomes to find ECGs (“Methods”). We found
that these ECGs were enriched for core functions that
were highly conserved between bacteria and human. For
example, “enolase (K01689)” which exists in both bacter-
ial species and humans was enriched among ECGs by >
544-fold compared with non-ECGs (Additional file 1:

(See figure on previous page.)
Fig. 4 Improvement of taxonomic and functional classification of sequencing reads by HRGM. a Proportion of taxonomically classified
sequencing reads of WMS data from four different populations. The significance of the improvement was calculated by Wilcoxon signed-rank
test. Brown–Forsythe test was used to evaluate the decrease of variance. b, c Percent improvement of the read classification proportion in
HRGM-based database compared with the standard database (b) and the UHGG-based database (c). d The number of reads aligned to the
UHGP-95 and HRGM-95 protein catalogs. Statistical significance was calculated by using Wilcoxon signed-rank test. e The number of sequencing
reads that are classified by UHGG and HRGM-based kraken2 database. f Top six most aligned families (left), genera (center), and species (right) by
831.6 million reads that are classified by HRGM-based database but not by UHGG-based database
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Table S13). This result can be explained by the fact that
gut commensal bacterial proteins with high sequence
homology to host human proteins may have high prob-
ability of harboring cross-reactive peptides. We also
accessed enrichment of TMHs and signal peptides for
ECGs and found that TMHs were depleted in ECGs
(odds ratio = 0.784 and P value = 5.43e−228 by Fisher’s
exact test), whereas signal peptides were enriched in
ECGs (odds ratio = 1.171 and P value = 1.23e−71 by
Fisher’s exact test). Next, we identified bacterial species
with high cross-reactivity potential based on the density
of the encoded cross-reactive epitopes. Because the
number of ECGs increases as the number of coding
genes increases (Fig. 6a), we divided the ECG count
by the total number of genes for each species. Some
human gut commensals had a relatively high cross-
reactivity potential (Fig. 6b, c, “Methods”). On the
genus level, Akkermansia, Alistipes, Bifidobacterium,

Lawsonibacter, Oscillibacter, Prevotella, and Sutterella
have a high cross-reactivity potential (Fig. 6d). All
other taxa were defined as low cross-reactivity taxa.
We systematically evaluated association between the
high cross-reactivity taxa and each disease, based on
taxon-disease pairs annotated by gutMDisorder data-
base [51]. We then examined the direction of the as-
sociation (tendency to increase or decrease of the
high cross-reactivity taxa in the disease). Among hu-
man diseases with ≥ 40 associated taxa by gutMDisor-
der, we found that obesity and inflammatory bowel
disease were significantly more associated with high
cross-reactivity taxa than to low cross-reactivity taxa
(Fig. 6e, Additional file 1: Table S14). Presumably,
cross-reactive bacterial antigens induce inflammation,
which is an underlying pathogenic mechanism in not
only inflammatory bowel disease but also in obesity
[64]. This suggests that bacterial taxa with high cross-

Fig. 5 Effect of sequencing depth on the reliability of taxonomic profiles. a The distribution of taxonomic features over different mean relative
abundances. b The cumulative proportion of taxonomic features at different thresholds of mean relative abundance. c, d Pearson correlation
coefficient (PCC) (c) and Spearman correlation coefficient (SCC) (d) of the taxonomic profiles at the given sequencing depth and 80 M fragments.
The x-axis (the mean relative abundance threshold) indicates the upper boundary of the mean relative abundance
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reactivity potential may contribute more to the patho-
genesis of gut microbiome-associated diseases than
those with low cross-reactivity potential by promoting
inflammatory conditions. We also found that high

cross-reactivity taxa tend to decrease in both associ-
ated diseases, which may be explained by the action
of immune cells with specificity to the cross-reactive
antigens.

Fig. 6 Analysis of cross-reactivity potential of gut bacterial taxa. a The number of genes and autoimmune epitope-containing genes (ECGs) in
5414 genomes of species representatives. Red and orange points, species with the top 1% and 5% ECG per gene, respectively. b Volcano plot of
the enrichment of ECG density. Taxonomic clades with positive log2 fold-change and P < 1e−5 are highlighted with different colors. Taxonomic
clades denoted by the same color have an inclusive relationship (e.g., g_Prevotella belongs to f_Bacteroidaceae), with the exception of
p_Bacteroidota, c_Bacteroidia, and o_Bacteroidales. The first character of each clade name indicates the taxonomic levels (p: phylum; c: class; o:
order; f: family; and g: genus). c The red-highlighted area from b. d Maximum-likelihood phylogenetic tree with taxonomic annotations of clades
with high ECG density. The first layer represents clades with the top 1% (red) and 5% (orange) ECG density [annotations and color designations
are the same as in a]. The second and third layers represent enriched taxonomic clades in the volcano plot [taxonomic annotations and color
designations are the same as in b and c]. The second layer represents above-genus-level annotations. The third layer represents genus-level
taxonomic clades. e Odds ratio (odds that high cross-reactivity taxa are associated with the disease / odds that low cross-reactivity taxa are
associated with the disease) for diseases with ≥ 40 annotated taxa by gutMDisorder database. Statistical significance was calculated by Fisher’s
exact test (*: P < 0.05; ***: P < 0.005)
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Discussion
In the present study, we constructed an improved cata-
log of the human reference gut prokaryotic genomes
and their proteins, by including MAGs from fecal meta-
genomes from under-represented Asian countries. Inclu-
sion of the newly assembled genomes expanded the
catalog size by over 10%. In addition, we demonstrated
that database expansion also significantly improved the
taxonomic and functional classification of sequencing
reads. Many new species obtained from this study were
associated with diet-related lifestyles at the sampled geo-
graphic locations. Therefore, complementation of meta-
genome datasets to account for under-sampled
geographical locations and lifestyles might be an effect-
ive strategy for improving the human reference gut
microbiome.
We also demonstrated that the analysis of microbial

DNA and peptide sequences facilitates the understand-
ing of gut commensal speciation and interactions with
the host immunity. The colonizing commensal microbes
adjust to their host environment via genetic changes and
selection, which lead to genetic variation within species.
We cataloged the SNVs of conspecific genomes and
found that the SNV density of gut prokaryotic species is
inversely correlated with the phylogenetic distance to
their neighboring species. This may suggest that the de-
gree of within-species genetic variation is positively asso-
ciated with the speciation rate of gut commensal
microbes. Whether SNV actually enhances the speci-
ation rate should be addressed in future investigations.
Finally, we showed that gut bacterial taxa with high
cross-reactivity potential are more associated with
pathogenic inflammatory conditions than are those with
low cross-reactivity potential through systematic analysis
of microbial peptide sequences homologous to the host
auto-antigens. Such analysis is only possible if microbial
protein sequences are available with the corresponding
taxonomic information.
As the WMS analysis for population-wide human gut

microbiome profiling increases in popularity, the choice
of sequencing depth is an important factor to consider
in study design. In the present study, we found that deep
sequencing (e.g., > 20 million read pairs) was necessary
for reliable taxonomic profiling of low-abundance com-
mensals in the Korean gut microbiome samples. The
current knowledge of human gut microbiome is biased
towards core taxa that are usually highly abundant. Low
sequencing depth (e.g., 0.5–2 million read pairs) may be
sufficient for the profiling of core taxa, but not those
with low abundance. Deep sequencing may therefore be
needed for the WMS-based analysis of human gut
microbiome to investigate the function of relatively un-
explored low-abundance species. However, there are
additional factors that affect recovery of taxa other than

sequencing depth. For example, the complexity of a
metagenome that also affects the efficacy of taxonomic
profiling substantially varies between individuals, disease
status, and ages. Accordingly, the results from this study
may provide guidelines for the choice of sequencing
depth for the analysis of human gut microbiome in fu-
ture studies.

Conclusions
In summary, by including gut metagenomes of previ-
ously under-represented Asian countries, Korea, India,
and Japan, we developed a substantially expanded micro-
biome catalog, HRGM. Sequence data and functional in-
formation for 232,098 non-redundant genomes of 5414
representative prokaryotic species along with protein se-
quences and SNVs will be available from a web server
(www.mbiomenet.org/HRGM/). We will periodically up-
date the genome and protein catalogs as new WMS data
for new fecal samples become available. HRGM will pro-
vide a versatile resource for functional dissection of
disease-associated gut microbiota.
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