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Abstract

Many behavior genetics models follow the same general structure. We describe this general

structure and analytically derive simple criteria for its identification. In particular, we find that

variance components can be uniquely estimated whenever the relatedness matrices that define the

components are linearly independent (i.e., not confounded). Thus, we emphasize determining

which variance components can be identified given a set of genetic and environmental

relationships, rather than the estimation procedures. We validate the identification criteria with

several well-known models, and further apply them to several less common models. The first

model distinguishes child-rearing environment from extended family environment. The second

model adds a gene-by-common-environment interaction term in sets of twins reared apart and

together. The third model separates measured-genomic relatedness from the scanner site variation

in a hypothetical functional magnetic resonance imaging study. The computationally easy analytic

identification criteria allow researchers to quickly address model identification issues and define

novel variance components, facilitating the development of new research questions.
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Introduction

Many models in the field of behavior genetics take the form
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Σ(θ) = Cov(y) = ∑
i = 1

m
Riσi

2 = R1σ1
2 + R2σ2

2 + … + Rmσm
2

(1)

where Σ(θ) is the expected covariance matrix as a function of the vector of free parameters

θ = σ1
2, σ2

2, …, σm
2 , y is the vector of all observed outcome variables for all members of a

family, Cov(y)is the model-implied approximation to the covariance of the observed outcome

variables, Ri is a relatedness matrix, and σi
2 is the variance attributable to Ri. Models of this

form occur in both classical twin and family designs, and in modern molecular designs. In

this paper we will (1) show how several common designs in classic and modern behavior

genetics fit this general pattern, (2) derive the analytic solution for model identification of

any model in this form, (3) validate several example models with previously known

identification, and (4) show how this analytic identification solution can aid in (a) evaluating

novel research designs and (b) finding problems of identification and their solutions in these

novel settings. To illustrate this last point, we use two examples: first, a twin and family

model that separates child-rearing environmental effects from broader extended family

effects, and second, a modern molecular model that separates additive genetic similarly from

similarity that may be due to the same measurement instrument (e.g., fMRI scanner site).

Throughout, we emphasize model identification – the ability to uniquely determine

parameter estimates – rather than the particular parameter estimation method. By creating

easily computed model identification criteria, other research can then conceive new kinds of

variance components to address novel research questions.

Common Designs

Classical Twin Design

In the classical twin design for a single phenotype, the ACE model of additive genetics,

common environments, and unique environments separates Equation 1 into two special

forms: one for monozygotic (MZ) twins and one for dizygotic (DZ) twins. For MZ twins

Equation 1 takes the form of Equation 2.

ΣMZ(θ) = 1 1
1 1

RAMZ

σA
2

+ 1 1
1 1
RC

σC
2 + 1 0

0 1
RE

σE
2

(2)

For DZ twins Equation 1 takes the form of Equation 3.
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ΣDZ(θ) = 1 .5
.5 1
RADZ

σA
2

+ 1 1
1 1
RC

σC
2 + 1 0

0 1
RE

σE
2

(3)

Equations 2 and 3 show the common form of the classical twin design for a single

phenotype. There is a model-implied covariance matrix for the MZ twins and a model-

implied covariance matrix for the DZ twins. The two covariance matrices have different

structures, but depend on the same free parameters (σA
2 , σC

2 ,σE
2 ). The model cannot be

estimated using only MZ twin pairs or only DZ twins pairs. Rather, the two kinds of twin

pairs and their model-implied covariance matrices must be combined into a multiple group

model: one group for MZ twins and one group for DZ twins. The combined multiple group

model for MZ and DZ twins is merely the block-diagonal form of Equation

Σ(θ) =
ΣMZ(θ) 0

0 ΣDZ(θ)

=

1 1 0 0
1 1 0 0
0 0 1 .5
0 0 .5 1

RA

σA
2

+

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

RC

σC
2 +

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

RE

σE
2

(4)

The block-diagonal multigroup construction of the ACE model is less common in behavior

genetics writings, but is entirely equivalent to that of Equations 2–3 and has advantages for

understanding model identification. Consequently, the remainder of this work will use the

block-diagonal construction and variations on it.

The scores for a single phenotype are stored in the 4-dimensional vector y and thus have a

corresponding 4 × 4 model-implied covariance matrix, Σ(θ). The additive genetics

relatedness matrix is RA; the common environments relatedness matrix is RC; and the

unique environments relatedness matrix is RE. The variance components associated with

each relatedness areσA
2 , σC

2 , andσE
2 , respectively.
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Each matrix describes the relation between pairs of twins for the defined component. The 1s

on the diagonal of RA imply that each twin is genetically identical to themselves. The off-

diagonal 1s in the upper left block of RA are for MZ twins, representing their genetic

equivalency. The off-diagonal .5s in the lower right block of RA are for DZ twins,

representing that they share on average half of their segregating genes. The blockwise unit

matrices of RC indicate which pairs of twins have the same rearing environment. Finally, the

identity matrix of RE represents the unique variance contribution of each twin whatever its

source. The variance σE
2  is generally considered a combination of several attributes,

including unique environmental effects, model misspecification1, and measurement error (cf.

Plomin, 2011; Turkheimer & Waldron, 2000).

Twins Raised Apart and Together Design

In the twins raised apart and together design, MZ and DZ twins raised apart are added to the

classic twin design. For brevity, we often refer to this design as the “twins reared apart

design”. The special case of Equation 1 now becomes Equation 6.

Σ(θ) =

1 1 0 0
1 1 0 0
0 0 1 .5
0 0 .5 1

1 1 0 0
1 1 0 0
0 0 1 .5
0 0 .5 1

σA
2

+

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

σC
2

+

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

σE
2

(5)

1Of course, model misspecification may also impact any component of the model (see Keller & Coventry, 2005; Coventry & Keller,
2005, for a detailed analysis)
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=
RA

RA
σA

2 +
RC

RE
σC

2 +
RE

RE
σE

2
(6)

The empty off-diagonal blocks in Equation 6 signify zero entries. The first of the two

diagonal blocks is identical to the classical twin design. The second diagonal blocks (i.e., the

lower right) create the unique feature of the twins reared apart design: the additive genetic

and unique environments blocks are the same as the classical twin design, but the common

environments blocks differ. The first block for the shared environmental relatedness

corresponds to twins raised together, whereas the second block corresponds to twins raised

apart. One of the novel features of this design relates to its identification. Additional

variance components for dominance-genetic effects and other nonlinear effects are identified

in the twins reared apart design that are not identified in the classical twin design2. This will

be shown analytically in the section on identification.

General Pedigree Design

In the general pedigree design, the block design of Equation 6 is further extended to as many

families as desired. Suppose there are F families, where a family is defined as the union of

all people in a data set with nonzero relatedness and relatedness may be along any known

genetic or environmental pathway3. The covariance structure for such a pedigree model is

block diagonal with F blocks each of size equal to that family’s number of members. No

blocks need to be the same size for different families, but all the blocks for a single family

need to be the same size across all contributing variance components. The general schema is

in Equation 7.

Σ(θ) =
RA1

⋱
RAF

σA
2 +

RC1
⋱

RCF

σC
2

+
RE1

⋱
REF

σE
2

(7)

We illustrate with A, C, and E variance components, but depending on the family structure

more or fewer components may be identified.

Modern Molecular Design

In the modern molecular design with nominally unrelated people, all people in the data are

considered to be members of the same family. Thus, at a conceptual level the modern

2So-called ACE and ADE models are identified in the classical twin design, but not ACDE models. All of these are identified in the
twins reared apart design.
3The border where one family ends and another begins may differ for different research purposes. For example, the definition of a
“family” here does not exclude people related only by marriage because these people are “related” along the environmental pathway of
marriage, regardless of whether a marriage variance component is in the fitted model.
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molecular design is the limiting case of the pedigree design in which there is only one, large

family. Equation 1 now takes the special form of Equation 8,

Σ(θ) = ∑
i = 1

m
Riσi

2 + IσE
2

(8)

where each Ri is a relatedness matrix the size of the whole sample and the σi
2 are variance

components associated with each relatedness matrix. The I matrix is the identity matrix,

equal in structure to the previous RE blocks corresponding to the σE
2  component. Of course,

the last variance component of Equation 8 could be incorporated into the sum (e.g., as in

Equation 1); however, conventionally the terms in the sum are conceived as additive genetic

relatednesses due to distinct biological sources (e.g., due to each chromosome or to specific

rare variants). Thus, the σi
2 terms form a genomic partitioning of the σA

2  component from

twin and family modeling.

The degree of genetic relatedness in each Ri is measured by the single nucleotide

polymorphism (SNP) correlations between all pairs of people rather than average genetic

relatedness due to inheritance for known descendants (see Yang, Lee, Goddard, & Visscher,

2011, for some details). The SNP correlation between person j and person k defines the row

j and column k entry of Ri:

Ri jk = 1
N ∑

h = 1

N xh j − 2ph xhk − 2ph
2ph 1 − ph

(9)

where N is the number of SNPs, xhj is the number of copies of the reference allele for person

j on SNP h, xhk is the number of copies of the reference allele for person k on SNP h, and ph

is the frequency of the reference allele.

Each Ri is generally a SNP-measured genomic relatedness matrix. For example with m = 1,

R1 is the genomic relatedness matrix across all chromosomes. With m = 22, the Ri could be

the SNP relatednesses due to each of the 22 autosomes, respectively. However, there is no

mathematical reason to require each Ri originate from a measured genetic association. The

subsequent section will show an example considering non-genetic components in at least

one of the Ri matrices.

In the next section, we consider the identification of models given by the general form of

Equation 1. Equations 4, 6, 7, and 8 are each special cases of the general model. We then

consider the identification of these special cases.

Identification

A model for the observed covariance matrix is identified when there is a unique set of

parameters that defines the model-implied covariance matrix (Bekker & Wansbeek, 2001).

The free parameters, θ, are mapped to the model-implied covariance matrix, Σ(θ).

Identification requires that this mapping between the free parameters and the model-implied
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covariance matrix be unique. A unique mapping has Σ(θa) = Σ(θb) if and only if θa = θb.

Colloquially, a model is identified when free parameters cannot trade off one another to

produce the same model-implied covariance matrix. A typical example of model non-

identification from psychometrics occurs in a one factor model when all factor loadings are

freely estimated along with the factor variance. The one factor model is typically identified

by constraining either one factor loading or the factor variance to some fixed value. When

both the factor variance and all the factor loadings are freely estimated, an increase in the

factor variance can be compensated for by a proportionate decrease in all the factor loadings

to produce an identical model-implied covariance matrix. Thus, more than one set of

parameter values produces the same model-implied covariance and consequently the same

fit to the data. Thus, the factor variances and the factor loadings are not mutually identified.

The same identification issue occurs in biometrics between the “path coefficients” (i.e.,

factor loadings) and the “variance components” (i.e., factor variances); these model

specifications either estimate the factor loadings or the factor variances, respectively,

because both are not simultaneously identified. However, the emphasis of the present work

is on which variance components are identified for a given set of genetic and environmental

relationships, rather than the method of specifying the components which is already well-

handled.

Within model identification, there are two types: global and local. Global identification

requires that the mapping between the free parameters and the model-implied covariance

matrix is unique over the entire parameter space, whereas local identification only requires

this mapping be unique in the neighborhood of the current free parameter values (Bollen &

Bauldry, 2010). That is, local identification requires that if Σ(θa) = Σ(θb) and θa and θb are

sufficiently close to one another then θa = θb. The closeness criterion means that local

identification depends on the numerical values of the free parameters. A model may be

locally identified for some free parameter values, but not others4. In the present work, we are

only concerned with the easier problem of resolving local model identification. A sufficient

condition for the local identification of a model for the covariance matrix is that the first

derivative (Jacobian) of the function that maps free parameters to the non-redundant

elements of the model-implied covariance matrix has full column rank (Bekker &

Wansbeek, 2001; Bekker, 1986; Bekker & ten Berge, 1997). We will next show how this

applies to the model of Equation 1.

The General Case

The vector of free parameters, σi
2, along with the fixed relatedness matrices, Ri, completely

specify the covariance matrix of a single phenotype across a family of arbitrary size and

structure as in Equation 1.

4A classic example of local but not global identification is a one-factor model with free factor loadings, but a fixed factor mean and a
fixed factor variance. Such a model is locally identified everywhere except where all the factor loadings are zero. So, the model is
locally identified where the factor loadings are all ones, but not where the factor loadings are all zeros. Therefore, the model is not
globally identified.
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According to the methods described by Bekker and colleagues (Bekker, 1986; Bekker & ten

Berge, 1997), such a model is (locally) identified if and only if the matrix of first partial

derivatives of the model-implied covariance matrix with respect to the free parameters has

rank equal to the number of free parameters. Thus, the model is identified when the columns

of the matrix of first partial derivatives are linearly independent. Conceptually, this means

that each free parameter leads to a unique, linearly separable change in the model-implied

covariance matrix. Mathematically, we derive from Equation 1 the half-vectorization5 of the

model-implied covariance matrix.

vech(Σ(θ)) = vech R1σ1
2 + R2σ2

2 + … + Rmσm
2

(10)

= vech R1 σ1
2 + vech R2 σ2

2 + … + vech Rm σm
2

(11)

= vech R1 vech R2 …vech Rm
X

σ1
2

σ2
2

⋮
σm

2

θ

(12)

= Xθ (13)

where X is the half vectorization of each relatedness matrix concatenated into separate

columns, and θ is the vector of all free parameters. Then taking the first partial derivatives

(Jacobian) of vech(Σ(θ)) with respect to θ yields

∂
∂θ vech(Σ(θ)) = ∂

∂θ (Xθ) = X (14)

Equation 14 implies that the general behavior genetics model in Equation 1 is identified if

and only if X has rank equal to the number of free parameters. Thus, identification occurs if

and only if the relatedness matrices are linearly independent.

Importantly, the identification criterion derived above does not depend on the phenotype, on

the observed covariance data, or even on the numerical values of the free parameters in θ.

Instead, the identification criterion only depends on the structural relations in the data. Thus,

a researcher can determine the identification of a model before collecting any data, provided

that the structural features of the data are know. All that is needed is the linear independence

of the structural features.

5The half vectorization of a matrix concatenates all the unique elements of a symmetric matrix into a single column vector. That is, the
half vectorization concatenates the lower triangle of a symmetric matrix into a single column vector. It is often notated by vech(), and
is distinct from the full vectorization notated by vec() which concatenates all elements of any matrix into a single column vector.
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For any given family structure, the linear independence of the relatedness matrices is

exceedingly simple to determine. Multiple methods exist for determining the linear

independence of a set of vectors. Introductory linear algebra and statistics books contain

many of them (e.g., Leon, 2006; Lay, 2003; Cohen, Cohen, West, & Aiken, 2003; Scharf,

1991). A matrix X as structured above will have linearly independent columns if any of the

following criteria are met:

1. The determinant of the Gram matrix, XTX, is nonzero: det (XTX) ≠ 0 (Scharf,

1991, p. 26, Theorem 2.1).

2. The rank of X as computed by its QR decomposition is equal to the number of

columns (Lay, 2003, p. 402–416).

3. The rank of the null space of X is equal to the number of rows of X minus the

number of columns of X (Leon, 2006, p. 164, rank-nullity theorem).

4. The multiple R2 coefficient of determination for all possible multiple regressions

between the columns of X is always less than 1 (Cohen et al., 2003, p. 631–632).

Computationally, Ri
2 = 1 − 1

diag Cor(X)−1
i

< 1 for all columns i, where diag( )i is

the ith diagonal element of a matrix and Cor(X)−1 is the inverse of the correlation

matrix of X.

There are numerous other criteria, but the above span a reasonable computational and

conceptual set of options. We next illustrate the linear independence method of local model

identification using the example models described above.

Classical Twin Design

Behavior geneticists have relied on the classical twin design for its ability to separate genetic

and family effects. Critically, both MZ and DZ twins are required to identify the A, C, and E

components. There are various ways to determine this, but we use Equation 14 here. For MZ

twins only, Equation 4 implies that X of Equation 14 is

XMZ =
1 1 1
1 1 0
1 1 1

(15)

Because the first two columns are equal, and thus linearly dependent, the model is not

identified. For DZ twins alone, the analogous X is

XDZ =
1 1 1
.5 1 0
1 1 1

(16)

which does not contain duplicated columns, but two times the first column minus the third

column is equal to the middle column, so this model is also not identified. However,

combining MZ and DZ twins as in Equation 4 yields
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X =

1 1 1
1 1 0
0 0 0
0 0 0
1 1 1
0 0 0
0 0 0
1 1 1
.5 1 0
1 1 1

Drop rows of zeros

1 1 1
1 1 0
1 1 1
1 1 1
.5 1 0
1 1 1

=
XMZ

XDZ
(17)

which is identified, as is well-known and previously established. Now we consider the

ACDE model.

Σ(θ) = RAσA
2 + RA

2 σD
2 + RCσC

2 + REσE
2

(18)

where RA
2  indicates that RA is multiplied by itself elementwise, rather than matrix

multiplied6. The X matrix in this case (omitting rows of all zeros) is

X =

1 1 1 1
1 1 1 0
1 1 1 1
1 1 1 1
.5 .25 1 0
1 1 1 1

(19)

which has rank 3 so it is not identified.

Twins Raised Apart Design

It follows from the classical twin design that the ACE model is also identified in the twins

raised apart design. The ACDE model, however, is now identified in the twins raised apart

design because its design matrix has rank 4. The D component in the ACDE model is a kind

of nonlinear gene-by-gene interaction. Not only is this gene-by-gene interaction identified,

but a gene-by-common-environment (i.e., A*C) interaction is also identified. Hunter,

McKee, and Turkheimer (2020) developed a mathematical model that suggests an A*C

interaction may account for some of the reduced heritability found in modern molecular

designs compared to that for twins and families (see e.g., Plomin, 2014; Sauce & Matzel,

2018; Turkheimer, 2011; Vinkhuyzen, Wray, Yang, Goddard, & Visscher, 2013, for further

information and reviews). For the present purpose, it is immaterial whether an A*C

interaction really leads to missing heritability. We want to know whether a model with an

A*C interaction is identified.

6Note that the dominance-genetic design matrix, RA
2 , could also be notated as RD but this would hide the mathematical relation

between additive-genetics and dominance-genetics: namely, that dominance-genetics are a kind of nonlinear gene-by-gene interaction.
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For the twins raised apart design, we consider a novel model with additive genetics, common

environments, a gene-by-common-environment interaction, a gene-by-gene dominance

interaction, and unique environments as given in Equation 20.

Σ(θ) = RAσA
2 + RARCσA ∗ C

2 + RCσC
2 + RA

2 σD
2 + REσE

2
(20)

We call the model of Equation 20 an A*CDE model because it includes the product of

additive genetics and common environments as an interaction term. The novel part of

Equation 20 is the RARCσA ∗ C
2  term which adds a variance component due to a gene-by-

common-environment interaction. The relatedness matrix for the A*C variance component,

RARC, is the elementwise product of the relatedness matrix for the additive genetics and

common environments relatedness matrix. We determine the identification of the model in

Equation 20 by creating the design matrix, XA*C, and checking its rank. After dropping all-

zero rows, XA*C, is given by Equation 21.

XA ∗ C =

MZT

DZT

MZA

DZA

A A * C C D E
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 0.00
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
0.50 0.50 1.00 0.25 0.00
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
1.00 0.00 0.00 1.00 0.00
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00
0.50 0.00 0.00 0.25 0.00
1.00 1.00 1.00 1.00 1.00

(21)

The columns are labeled with their corresponding variance components. The rows are

labeled with the blocks that make-up the four groups of the twins raised apart design: MZT
is for MZ twins raised together; DZT is for DZ twins raised together; MZA is for MZ twins

raised apart; and DZA is for DZ twins raised apart. The design matrix, XA*C, has rank 5 so

the model of Equation 20 is identified.

General Pedigree Design

For the purpose of model identification, the off-diagonal blocks in Equation 7 can be omitted

without influencing the rank of the design matrix. Therefore, for a general pedigree model

the design matrix for F families becomes
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Xpedigree =

vech RA1 vech RC1 … vech RE1

vech RA2 vech RC2 … vech RE2
⋮ ⋮ ⋮ ⋮

vech RAF vech RCF … vech REF

(22)

where arbitrarily many relatedness matrices can be included. Depending on the structure of

the relatedness matrices, a large number of novel variance components may be identified.

The strength of more complex family designs is that they afford the identification of novel

variance components. For example, Rodgers, Bard, Johnson, D’Onofrio, and Miller (2008)

used the intergenerational complex family structure of the National Longitudinal Survey of

Youth to conceive of the Mother-Daughter Aunt-Niece (MDAN) design which alters the

form of the equal environments assumption and affords the identification of novel variance

components. The prospect of easy analytic model identification opens new possibilities for

researchers to develop relatedness matrices that allow variance components to be conceived

that have not previously been possible.

Modern Molecular Design

The modern molecular design generalizes the AE model to measured genotypes. Depending

on the structure of the genomic relatedness matrices and on the structure of other known

relations in the data, a large number of additional variance components may be identified.

The additional identified variance components in modern molecular designs are almost

entirely unexplored. The conceptually limited set of variance components addressed in

molecular designs fails to fully utilize many aspects of the data collected. Example data

characteristics include geographic site of data collection as a member of a consortia, data

collector, residential area of the participant, and laboratory where assays are conducted.

Each of these characteristics may have critical methodological or theoretical import. We

therefore urge researchers to use the ability to analytically determine model identification to

conceptualize additional variance components that afford novel hypotheses. We illustrate

one such novel variance component.

Consider a sample of six people with measured genomes. The size of the sample is small

only for illustrative purposes; a real data example would be cumbersome to fully describe

here. For these six people, four different functional magnetic resonance imaging (fMRI)

scanners were used. In fMRI studies, scanner and site differences can lead to differences in

the measured phenotype across scanners, and an additional variance component for scanner

is one method of reducing these effects (Zhou et al., 2012). We would like to add a variance

component, σS
2, that accounts for variability due to the scanner.

The model for this scanner example takes the form of Equation 23, a special case of

Equation 8 with three components: one for measured genetic similarity, one for the scanner,

and one for the residual/environment.
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Σ(θ) =

0.94 0.04 −0.04 −0.01 −0.01 0.03
0.04 1.02 0.04 0.03 −0.01 0.03

−0.04 0.04 0.98 −0.01 −0.03 0.07
−0.01 0.03 −0.01 0.97 0.03 −0.04
−0.01 −0.01 −0.03 0.03 1.05 0.07
0.03 0.03 0.07 −0.04 0.07 0.99

σA
2

+

1
1 1
1 1

1 1
1 1

1

σS
2

+

1
1

1
1

1
1

σE
2

(23)

If the standard model in Equation 8 is a generalization of the AE model to measured

genomes, then the model in Equation 23 which adds an effect for scanner could be called an

ASE model.

The first 6 × 6 matrix is the genomic-relatedness matrix. The diagonals indicate “self-

relatedness” (i.e., how related each person is to themselves), but are often taken as a measure

of inbreeding. The off-diagonals of the genomic-relatedness matrix can be thought of as the

correlations between the genotypes of each pair of people.

The second 6 × 6 matrix is for the scanner. Participant 1 has scanner 1; participants 2 and 3

both have scanner 2; participants 4 and 5 both have scanner 3; and participant 6 has scanner

4. The structure illustrated here is block-diagonal for readability, but does not need to be.

The key feature to estimate a random effect for scanner is to have 1s on the diagonal, and 1s

on any off-diagonal element for a pair of participants with the same scanner. Other kinds of

random effects could be similarly defined for values other than 1s and 0s. The critical aspect

is to have the relatedness matrix indicate the degree of similarity between participants for the

desired random effect.

As before, the last matrix is for residual variance, measurement error, or any other feature of

the data that inflates the diagonals of the observed covariance relative to the expected

covariance matrix from the other components.

The model in Equation 23 is identified because the corresponding matrix XS has rank
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XS =

0.94 1 1
0.04 0 0

−0.04 0 0
−0.01 0 0
−0.01 0 0
0.03 0 0
1.02 1 1
0.04 1 0
0.03 0 0

−0.01 0 0
0.03 0 0
0.98 1 1

−0.01 0 0
−0.03 0 0
0.07 0 0
0.97 1 1
0.03 1 0

−0.04 0 0
1.05 1 1
0.07 0 0
0.99 1 1

(24)

Using methods similar to those outlined above, new variance components can be also be

considered for modeling in behavior genetics. The more general designs of modern

measured-genome methods afford many opportunities for such novel variance components.

Computational Examples

Appendix A defines several R (R Development Core Team, 2020) functions written by the

first author for (1) determining whether a model following the structure of Equation 1 is

identified, and (2) fitting such a model to covariance data. These functions are also available

as an R package on CRAN (Garrison, Hunter, Burt, & Trattner, 2020) and on GitHub

(https://github.com/R-Computing-Lab/BGMisc).

Consider the classical twin model with only MZ twins. We check its identification with the

following code.

identifyComponentModel(

A=matrix(1, nrow=2, ncol=2),

C=matrix(1, nrow=2, ncol=2),

E=diag(1, nrow=2))

This returns the following output.
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Component model is not identified.

Non-identified parameters are A, C

$identified

[1] FALSE

nidp

[1] “A” “C”

This means that the “A” and “C” components are not simultaneously identified in this

model. However, consider the classical twin design with both MZ and DZ twins. We check

its identification with the following code.

identifyComponentModel(

A=list(matrix(1, nrow=2, ncol=2),

matrix(c(1, .5, .5, 1),

nrow=2, ncol=2)),

C=list(matrix(1, nrow=2, ncol=2),

matrix(1, nrow=2, ncol=2)),

E=list(diag(1, nrow=2), diag(1, nrow=2)))

The above code returns the following output.

Component model is identified.

$identified

[1] TRUE

$nidp

character(0)

Thus, as is well-known, the classical twin model is identified. Again, the benefit here is not

to show that the classical twin model is identified. Rather, the benefit is to provide a way to

determine if any model following the broad structure of Equation 1 is identified.

One model with less established identification is the AC’RE model (Garrison et al., 2018).

In the AC’RE model, the structures for the additive genetics (A) and unique environments

(E) are left unchanged, but the common environments (C) are partitioned into a rearing

environment (R) and an extended community or family environment (C’). Its aim was to

produce results comparable to the twins-raised apart design, with less rare kinship groups,

such as cousins. Accordingly, a reasonable question then is: given a particular family

structure, are all the components of the AC’RE model identified?

In the classical twin design, the relatedness matrix for the C’ component and the R

component would be identical, and thus the AC’RE model would not be identified. However,

in the twins reared apart and together design the relatedness matrices for C’ and R are now
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distinct. We can construct the relatedness matrices for the AC’RE model by extending the

model in Equation 6 with the following R code:

arel <- rep(list(matrix(1, 2, 2),

matrix(c(1, .5, .5, 1), 2, 2)), times=2))

cprel <- rep(list(matrix(1, 2, 2)), times=4))

rrel <- list(matrix(1, 2, 2), matrix(1, 2, 2),

diag(1, 2), diag(1, 2)))

erel <- rep(list(diag(1, 8)), times=4)

Then we can determine this model’s identification in the twins reared together and apart

design with the helper function used previously.

identifyComponentModel(

A=arel,

Cp=cprel,

R=rrel,

E=erel)

The output from this function indicates that the AC’RE model is identified for the twins

reared apart and together design.

Component model is identified.

$identified

[1] TRUE

$nidp

character(0)

Similar to the identification problem, a model in the form of Equation 1 is simple to fit.

Using twin and sibling data from the National Longitudinal Survey of Youth (NLSY)

available in the NlsyLinks package (Beasley et al., 2016) along with kinship links created by

Rodgers et al. (2016), we fit such a model using ordinary least squares and compare our

estimates to standard maximum likelihood estimates from the same data.

First, we create a cleaned and structured data set for standardized math scores.

library(NlsyLinks)

# Start with the built-in data.frame in NlsyLinks

dsLinks <- Links79PairExpanded

# Use only Gen2 Siblings (NLSY79-C)

dsLinks <- dsLinks[dsLinks$RelationshipPath==‘Gen2Siblings’, ]

oName_S1 <- “MathStandardized_S1” #Stands for Outcome1

oName_S2 <- “MathStandardized_S2” #Stands for Outcome2
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dsGroupSummary <- RGroupSummary(dsLinks, oName_S1, oName_S2)

dsClean <- CleanSemAceDataset(dsDirty=dsLinks, dsGroupSummary, oName_S1, 

oName_S2)

# Drop small number of ambiguous relationships

dsClean <- dsClean[dsClean$R != .375, ]

Next, we create covariance matrices for each of the three relatedness types: cousins, DZ

twins and full siblings, and MZ twins.

cousinCov <- cor(dsClean[dsClean$R==.25, c(‘O1’, ‘O2’)], use=‘pair’)

sibCov <- cor(dsClean[dsClean$R==.5, c(‘O1’, ‘O2’)], use=‘pair’)

mzCov <- cor(dsClean[dsClean$R==1, c(‘O1’, ‘O2’)], use=‘pair’)

Finally, we fit the ACE model

# Fit model using maximum likelihood and NlsyLinks function

ace <- AceLavaanGroup(dsClean)

# Fit model using OLS regression

ols <- fitComponentModel(

covmat=list(mzCov, sibCov, cousinCov),

A=list(

matrix(1, nrow=2, ncol=2),

matrix(c(1, .5, .5, 1), nrow=2, ncol=2),

matrix(c(1, .25, .25, 1), nrow=2, ncol=2)),

C=list(

matrix(1, nrow=2, ncol=2),

matrix(1, nrow=2, ncol=2),

matrix(1, nrow=2, ncol=2)),

E=list(

diag(1, nrow=2),

diag(1, nrow=2),

diag(1, nrow=2))

)

ace

#[1] “Results of ACE estimation: [show]”

# ASquared CSquared ESquared CaseCount

# 0.6137716 0.2138675 0.1723609 8205.0000000

coef(ols)/sum(coef(ols))

# compmA compmC compmE

#0.81239650 0.10949326 0.07811024
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The estimated variances based on ordinary least squares and limited information pairwise

covariances broadly correspond to the full-information maximum likelihood estimates from

the same data.

The provided R functions will help other researchers readily determine whether a candidate

model of interest is identified given the structural patterns of relatedness found in their data.

The functions also provide preliminary estimates of the variances associated with each

component.

At this point, consideration of other available software to identify models is merited. The

OpenMx package (Neale et al., 2016) has a function called mxCheckIdentification() that

allows users to check whether a given OpenMx model is locally identified. The function

uses the same underlying mathematical methods as those discussed here, and will produce

identical identification results to the proposed methods for any model that meets the

applicable criteria for both packages.

We feel there are five advantages of the proposed software over the mxCheckIdentification()

function in OpenMx. First, the mxCheckIdentification() function uses a numerical Jacobian

for its version of Equation 14. Because the mxCheckIdentification() function is more general

than the methods proposed here, the numerical Jacobian is necessary, but it has much higher

computational cost than the more specialized solution we proposed. Second, the

mxCheckIdentification() function is not implemented for modern molecular designs (i.e., its

genomic-relatedness-matrix restricted maximum likelihood features; Kirkpatrick, Pritikin,

Hunter, & Neale, 2021). So, researchers interested in identifying novel components of

modern molecular designs would not be able to use mxCheckIdentification(). Third, there is

far less code needed to specify a variance component model and check its identification

using the current methods than is needed for the same process in OpenMx. Although

OpenMx is a powerful tool and can be used to identify a broad range of models, the

particularly simple solution for variance component models means a specialized solution is

beneficial. Moreover, we provide R code to exemplify our methods, but python, C/C++, or

FORTRAN routines would be much easier to write for this specialized problem than for the

general model identification problem solved by OpenMx.

The fourth and fifth advantages of the proposed model identification methods relate to

formulating the identification problem as one of ordinary least squares regression. Fourth,

the proposed methods yield initial estimates of all variance components using ordinary least

squares (OLS). These OLS estimates could then be used as starting values for maximum

likelihood estimation. The OLS estimates are only possible because the variance component

model has a particularly simple structure. More complicated models are not amenable to the

same OLS solution. Fifth, the OLS regression method readily yields estimates of

multicollinearity among the variance components: the tolerance and the variance inflation

factor. The multicollinearity regression diagnostics can suggest that although the variance

components are identified, they may be poorly estimated because their relatedness matrices

are collinear. These diagnostics alert researchers to estimation problems beyond mere

identification. The mxCheckIdentification() function cannot provide this information on

multicollinearity because the identification of most models yields no such information. It is
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only because variance component models have such simple identification criteria that

identification also provides information on multicollinearity.

Discussion

In this brief note, we have discussed a general modeling form that encompasses many

models in behavior genetics. In particular, we limited ourselves to the subset of behavior

genetics models characterized as variance component models. We then showed how several

common models fit this form. We next derived an analytic method of model identification

for this general model, and showed several special cases of its use to both common and

uncommon designs. We considered ACE and ACDE models in the context of twins, A*CDE

and AC’RE models in the context of twins raise apart and together, the mother-daughter-

aunt-niece model in the context of pedigrees, and AE and ASE models in the context of

modern molecular designs. The most important contribution of this work on model

identification is that it allows researchers to quickly, easily, and accurately test whether a

model is identified based purely on the structure of the relatedness matrices, independent of

the observed phenotypes. Thus, novel relatedness patterns and variance components can be

explored in the burgeoning data sources that involve large and complex family structures

including modern molecular studies of nominally unrelated people.

One further implication of the model identification described previously deserves special

comment. It follows immediately from Equation 13 that any arbitrary variance components

model is solvable as an ordinary least squares regression predicting the variances and

covariances from the half vectorized relatedness matrices. The variance components then

become the estimated regression weights7. This estimation method has been known for the

classical twin model for quite some time, but here it is generalized to (1) the case of

covariances rather than correlations, and more importantly (2) the case of arbitrarily many

relatedness matrices, each of any structure desired. The method could be conceived as a

version of DeFries-Fulker (DeFries & Fulker, 1985) analysis applied to summary statistics

and extended to arbitrary family designs. Alternatively, such a method similarly extends

“multiple abstract variance analysis” (MAVA; Cattell, 1960; Loehlin, 1965) and the detailed

classical formulas of Falconer and MacKay (1995). At minimum, the variances estimated

from this regression equation could be used as starting values for a maximum likelihood

estimation. A further use occurs when only summary statistics are available or permissible to

share.

A direct consequence of the regression method for fitting variance component models is

using regression-based multicollinearity diagnostics to gain more detailed information about

the identification of the model. A model may be identified but the relatedness matrices are

highly correlated which leads to poor precision for the variance estimates. The tolerance and

the variance inflation factor (Cohen et al., 2003, p. 423) are standard regression metrics for

multicollinearity that could easily shed light on the ability to distinguish variance

components. Even when the model is identified, some of its variance components might be

7If one applies this regression method it is important to not omit the all zero rows unless the half vectorized covariance also omits
these rows.
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correlated strongly enough to cause estimation problems no matter what model estimation

method is used.

Finally, the identification of a model should not be confused with its statistical power. Model

identification is necessary for power but not sufficient. That is, the power for a non-

identified variance component is necessarily zero, but not all identified variance components

have equal power. Once a novel variance component is identified, researchers should apply

the methods of van der Sluis, Dolan, Neale, and Posthuma (2007) and Wu and Neale (2012)

to determine what design factors influence the power to recover that component. With a

computationally easy and analytic solution to model identification for the variance

component models that frequently arise in behavior genetics, researchers are more free to

invent their own novel components.
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Appendix

Helpful R Functions for Determining Identification

The below code defines several useful functions for identification and fitting of model

following the structure of Equation 1. These R (R Development Core Team, 2020) functions

provide some basic error checking and some minimal roxygen2 (Wickham, Danenberg, &

Eugster, 2015) documentation.

require(Matrix)

##’ Determine if a variance components model is identified

##’

##’ @param … Comma-separated relatedness component matrices.

##’ @param silent logical. Whether to print messages about identification.

##’

##’ @details

##’ Returns of list of length 2. The first element is a single logical value:

##’ TRUE if the model is identified, FALSE otherwise. The second list element

##’ is the vector of non-identified parameters. For instance, a model might

##’ have 5 components with 3 of them identified and 2 of them not. The second

##’ list element will give the names of the components that are not

##’ simultaneously identified.

identifyComponentModel <- function(…, silent=FALSE){

dots <- list(…)

nam <- names(dots)

if(is.null(nam)){

nam <- paste0(‘Comp’, 1:length(dots))

}
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compl <- lapply(dots, comp2vech, include.zeros=TRUE)

compm <- do.call(cbind, compl)

rank <- qr(compm)$rank

if(rank != length(dots)){

if(!silent) cat(“Component␣model␣is␣not␣identified.\n”)

jacOC <- Null(t(compm))

nidp <- nam[apply(jacOC, 1, function(x){sum(x^2)}) > 1e-17]

if(!silent) {

cat(“Non-identified␣parameters␣are␣”,

paste(nidp, collapse=“,␣”), “\n”)

}

return(list(identified=FALSE, nidp=nidp))

} else{

if(!silent) cat(“Component␣model␣is␣identified.\n”)

return(list(identified=TRUE, nidp=character(0)))

}

}

##’ Fit the estimated variance components of a model to covariance data

##’

##’ @param covmat the covariance matrix of the raw data, possibly blockwise.

##’ @param … Comma-separated relatedness component matrices.

##’

##’ @details

##’ Returns a regression (linear model fitted with \code{lm}).

##’ The coefficients of the regression are the estimated variance components.

fitComponentModel <- function(covmat, …){

dots <- list(…)

compl <- lapply(dots, comp2vech, include.zeros=TRUE)

compm <- do.call(cbind, compl)

rank <- qr(compm)$rank

y <- comp2vech(covmat, include.zeros=TRUE)

if(rank != length(dots)){

msg <- paste(“Variance␣components␣are␣not␣all␣identified.”,

“Try␣identifyComponentModel().”)

stop(msg)

}

if(rank > length(y)){

msg <- paste0(“Trying␣to␣estimate␣”,

rank, “␣variance␣components␣when␣at␣most␣”, length(y),

“␣are␣possible␣with␣the␣data␣given.\n”)

warning(msg)

}

lm(y ∼ 0 + compm)

}
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##’ Create the half-vectorization of a matrix

##’

##’ @param x a matrix, the half-vectorization of which is desired

##’

##’ @details

##’ Returns the vector of the lower triangle of a matrix, including the 

diagonal.

##’ The upper triangle is ignored with no checking that the provided matrix

##’ is symmetric.

vech <- function(x){

x[lower.tri(x, diag=TRUE)]

}

##’ Turn a variance component relatedness matrix into its half-vectorization

##’

##’ @param x relatedness component matrix

##’ @param include.zeros logical. Whether to include all-zero rows.

##’

##’ @details

##’ This is a wrapper around the \code{vech} function for producing the

##’ half-vectorization of a matrix. The extension here is to allow for

##’ blockwise matrices.

comp2vech <- function(x, include.zeros=FALSE){

if(is.matrix(x)){

return(vech(x))

}else if(is.list(x)){

if(include.zeros){

return(vech(as.matrix(Matrix::bdiag(x))))

} else {

return(do.call(c, lapply(x, vech)))

}

} else {

msg <- paste(“Can’t␣make␣component␣into␣a␣half␣vectorization:”,

“x␣is␣neither␣a␣list␣nor␣a␣matrix.”)

stop(msg)

}

}

##’ Compute the null space of a matrix

##’

##’ @param M a matrix of which the null space is desired

##’

##’ @details

##’ The method uses the QR factorization to determine a basis for the null

##’ space of a matrix. This is sometimes also called the orthogonal

##’ complement of a matrix. As implemented, this function is identical
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##’ to the function of the same name in the MASS package.

Null <- function (M) {

tmp <- qr(M)

set <- if (tmp$rank == 0L) {

seq_len(ncol(M))

} else {

-seq_len(tmp$rank)

}

return(qr.Q(tmp, complete = TRUE)[, set, drop = FALSE])

}
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	AppendixHelpful R Functions for Determining IdentificationThe below code defines several useful functions for identification and fitting of model following the structure of Equation 1. These R (R Development Core Team, 2020) functions provide some basic error checking and some minimal roxygen2 (Wickham, Danenberg, & Eugster, 2015) documentation.require(Matrix)
##’ Determine if a variance components model is identified
##’
##’ @param … Comma-separated relatedness component matrices.
##’ @param silent logical. Whether to print messages about identification.
##’
##’ @details
##’ Returns of list of length 2. The first element is a single logical value:
##’ TRUE if the model is identified, FALSE otherwise. The second list element
##’ is the vector of non-identified parameters. For instance, a model might
##’ have 5 components with 3 of them identified and 2 of them not. The second
##’ list element will give the names of the components that are not
##’ simultaneously identified.
identifyComponentModel <- function(…, silent=FALSE){
dots <- list(…)
nam <- names(dots)
if(is.null(nam)){
nam <- paste0(‘Comp’, 1:length(dots))
}
compl <- lapply(dots, comp2vech, include.zeros=TRUE)
compm <- do.call(cbind, compl)
rank <- qr(compm)$rank
if(rank != length(dots)){
if(!silent) cat(“Component␣model␣is␣not␣identified.\n”)
jacOC <- Null(t(compm))
nidp <- nam[apply(jacOC, 1, function(x){sum(x^2)}) > 1e-17]
if(!silent) {
cat(“Non-identified␣parameters␣are␣”,
paste(nidp, collapse=“,␣”), “\n”)
}
return(list(identified=FALSE, nidp=nidp))
} else{
if(!silent) cat(“Component␣model␣is␣identified.\n”)
return(list(identified=TRUE, nidp=character(0)))
}
}
##’ Fit the estimated variance components of a model to covariance data
##’
##’ @param covmat the covariance matrix of the raw data, possibly blockwise.
##’ @param … Comma-separated relatedness component matrices.
##’
##’ @details
##’ Returns a regression (linear model fitted with \code{lm}).
##’ The coefficients of the regression are the estimated variance components.
fitComponentModel <- function(covmat, …){
dots <- list(…)
compl <- lapply(dots, comp2vech, include.zeros=TRUE)
compm <- do.call(cbind, compl)
rank <- qr(compm)$rank
y <- comp2vech(covmat, include.zeros=TRUE)
if(rank != length(dots)){
msg <- paste(“Variance␣components␣are␣not␣all␣identified.”,
“Try␣identifyComponentModel().”)
stop(msg)
}
if(rank > length(y)){
msg <- paste0(“Trying␣to␣estimate␣”,
rank, “␣variance␣components␣when␣at␣most␣”, length(y),
“␣are␣possible␣with␣the␣data␣given.\n”)
warning(msg)
}
lm(y ∼ 0 + compm)
}
##’ Create the half-vectorization of a matrix
##’
##’ @param x a matrix, the half-vectorization of which is desired
##’
##’ @details
##’ Returns the vector of the lower triangle of a matrix, including the diagonal.
##’ The upper triangle is ignored with no checking that the provided matrix
##’ is symmetric.
vech <- function(x){
x[lower.tri(x, diag=TRUE)]
}
##’ Turn a variance component relatedness matrix into its half-vectorization
##’
##’ @param x relatedness component matrix
##’ @param include.zeros logical. Whether to include all-zero rows.
##’
##’ @details
##’ This is a wrapper around the \code{vech} function for producing the
##’ half-vectorization of a matrix. The extension here is to allow for
##’ blockwise matrices.
comp2vech <- function(x, include.zeros=FALSE){
if(is.matrix(x)){
return(vech(x))
}else if(is.list(x)){
if(include.zeros){
return(vech(as.matrix(Matrix::bdiag(x))))
} else {
return(do.call(c, lapply(x, vech)))
}
} else {
msg <- paste(“Can’t␣make␣component␣into␣a␣half␣vectorization:”,
“x␣is␣neither␣a␣list␣nor␣a␣matrix.”)
stop(msg)
}
}
##’ Compute the null space of a matrix
##’
##’ @param M a matrix of which the null space is desired
##’
##’ @details
##’ The method uses the QR factorization to determine a basis for the null
##’ space of a matrix. This is sometimes also called the orthogonal
##’ complement of a matrix. As implemented, this function is identical
##’ to the function of the same name in the MASS package.
Null <- function (M) {
tmp <- qr(M)
set <- if (tmp$rank == 0L) {
seq_len(ncol(M))
} else {
-seq_len(tmp$rank)
}
return(qr.Q(tmp, complete = TRUE)[, set, drop = FALSE])
}
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