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Abstract
The incidence of type 2 diabetes (T2D) is increasing at an alarming rate world-
wide. Bariatric surgical procedures, such as the vertical sleeve gastrectomy and 
Roux-en-Y gastric bypass, are the most efficient approaches to obtain substantial 
and durable remission of T2D. The benefits of bariatric surgery are realized 
through the consequent increased satiety and alterations in gastrointestinal 
hormones, bile acids, and the intestinal microbiota. A comprehensive 
understanding of the mechanisms by which various bariatric surgical procedures 
exert their benefits on T2D could contribute to the design of better non-surgical 
treatments for T2D. In this review, we describe the classification and evolution of 
bariatric surgery and explore the multiple mechanisms underlying the effect of 
bariatric surgery on insulin resistance. Based upon our summarization of the 
current knowledge on the underlying mechanisms, we speculate that the gut 
might act as a new target for improving T2D. Our ultimate goal with this review 
is to provide a better understanding of T2D pathophysiology in order to support 
development of T2D treatments that are less invasive and more scalable.
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Core Tip: Bariatric surgery is an effective treatment for type 2 diabetes (T2D), 
providing long-term remission. Among these types of weight loss procedures, the 
vertical sleeve gastrectomy and Roux-en-Y gastric bypass are extensively performed 
worldwide, but in the United States especially. Through establishment of reduced 
caloric intake and alterations in gut hormones, bile acids, and intestinal microbes, these 
procedures also contribute to the resolution of T2D. Understanding the mechanisms 
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underlying the effects of bariatric surgery on T2D might provide new targets for more 
effective non-surgical treatments, such as medications, for T2D.
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INTRODUCTION
Obesity is a chronic disease, affecting individuals throughout the world and steadily 
escalating[1,2]. Indeed, the incidence of obesity has more than doubled from 1975 (at 
5%) to 2014 (at 13%)[3,4]. According to this trend, the number of obese people may 
account for as many as one-fifth of the world’s population in the recent upcoming 
years. Obesity is an important risk for type 2 diabetes (T2D)[3], and as such the 
alarming rise in obesity has been accompanied by an expanding burden of T2D. At 
present, the prevalence of T2D stands at 9% worldwide, but it is predicted to reach 
approximately 12% by 2025 if trends continue[5], making it imperative to address the 
problem of obesity and T2D.

Although nonsurgical intervention can lead to weight reduction and concomitant 
improvement of T2D, the magnitude is modest and the benefits are not durable[6,7]. 
Bariatric surgeries, such as the vertical sleeve gastrectomy (VSG) and Roux-en-Y 
gastric bypass (RYGB) procedures, have proven to be the most efficient treatment for 
obesity and T2D[8-11]. Moreover, compared to the currently available nonsurgical 
interventions, bariatric surgery yields better outcomes for glycemic control and 
remission of T2D[7,8,12,13]. Yet, weight loss alone is not the key mechanism by which 
these surgical procedures imperatively improve T2D. Understanding the molecular 
underpinnings of these procedures is paramount, as they are now heavily employed in 
the treatment for diabetes.

The purpose of this review is to summarize the recent advances in this field and 
highlight the mechanisms by which bariatric surgeries benefit diabetic patients. Here, 
we describe contemporary bariatric surgery procedures and their beneficial effects on 
T2D, and discuss the implication of each on future research to improve the treatment 
of T2D, particularly for future nonsurgical approaches.

EVOLUTION OF BARIATRIC SURGERY
Despite bariatric surgery having been originally developed in the 1950s, the annual 
number of bariatric surgeries performed worldwide remains relatively low. In 2019, 
833678 operations were reported (according to the International Federation for Surgery 
of Obesity Global Registry data)[14,15]. It is worth noting that this global number 
represents less than 1% of the overall eligible population with morbid obesity; as such, 
the potential for greater application of bariatric surgery is very large. During the 
period from 2010 to 2018, the proportion of RYGB procedures actually decreased (from 
55% to 17%), as did that of the adjustable gastric banding (AGB) procedure (from 40% 
to 5%-10%)[14]. By comparison, the proportion of VSG procedures rose substantially 
(from 2% to 61%)[14]. The biliopancreatic diversion (BPD) procedure currently 
accounts for approximately 1% of the overall bariatric surgeries performed[16]. Thus, 
the most commonly performed bariatric surgery worldwide is VSG, followed by 
RYGB. In terms of the T2D remission outcome, it remains unknown whether any 
difference exists between the two most prevalent procedures and the underlying 
mechanisms of both procedures remain to be fully elucidated.

CLASSIFICATION OF BARIATRIC SURGERY PROCEDURES
In line with the direct surgical effects on food intake and/or nutrient absorption, 
bariatric surgical procedures are traditionally classified as restrictive, malabsorptive, 
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or mixed operations. The restrictive-type techniques, including AGB, VSG, and vertical 
banded gastroplasty, physically decrease the size of the stomach in order to trigger 
earlier satiety during meals. The malabsorptive-type techniques, such as BPD, 
establish a bypass of the partial small bowel in order to induce bile acids (BAs) and 
food to be mixed in the distal 50-100 cm of the ileum, thereby prompting macronu-
trient malabsorption. The mixed-type procedures, such as RYGB, combine physical 
reduction of the stomach volume with a bowel bypass[17]. Due to the overall advance-
ments in surgical techniques and greater knowledge gained through related clinical 
research, several novel bariatric surgical procedures have been introduced; these 
include the ileal interposition and duodenal-jejunal bypass. However, VSG and RYGB 
still account for the majority of weight-loss surgeries performed internationally. Given 
that any reconfiguration of the gastrointestinal tract involves a complex operation, 
classifying the modalities of such procedures into restrictive, mal-absorption, or mixed 
is too simplistic; gaining a definitive understanding of the outcomes of the different 
bariatric operations will facilitate the most accurate application of each to achieve 
maximal benefit.

SURGICAL PROCEDURES
AGB
In AGB, a silicone ring is placed to encircle the upper region of the stomach and form a 
high-pressure zone above the gastric band, creating a small gastric pouch. The size of 
the gastric band itself can be adjusted by injection of sterile saline or air in a 
subcutaneous port. The goal of this approach is to decrease hunger and consequent 
caloric consumption[18,19].

Unfortunately, AGB has several risks and undesirable side effects; for example, it 
increases the risk of gastroesophageal reflux and is associated with a risk of band 
erosion[20]. Its benefits on weight loss are also relatively short-term. Thus, the pre-
valence of this technique has declined, both in the United States (where it enjoyed a 
particular popularity) and worldwide[21-24]. The rates of AGB impacts on weight loss 
and subsequent resolution of T2D remain appreciably below 50%, with 34% of patients 
experiencing excessive weight loss and  33% of patients achieving remission of T2D at 
1 year[25] (Table 1).

RYGB
In RYGB, the stomach is transected along the lesser curvature to create a small gastric 
pouch (10-30 mL volume), which is anastomosed to the segment of the intestinal 
division to create an alimentary limb (75-100 cm length) following transection of the 
jejunum, without exposure to biliopancreatic secretion[26]. The stomach remnant is 
left in situ and in continuity with the duodenal and proximal jejunum, forming a 
biliopancreatic limb that contains only digestive enzymes and preventing direct 
contact with chyme. Following transection of the jejunum, the restoration of intestinal 
continuity occurs via a structuring of the proximal stump of the small bowel that is 
anastomosed to the alimentary limb to create a common limb, where the chyme is then 
allowed to contact the digestive enzymes and go through the processes of digestion 
and absorption.

The surgical realignment of the gastrointestinal tract represents not only a profound 
anatomic alteration but a physiological one as well, changing the profiles of BAs, gut 
hormones, and even the gut microbiota. Contingent upon the patient’s body mass 
index (BMI) and/or severity of T2D, the extension of the alimentary limb length can 
contribute to a better weight reduction and more notable remission of T2D[27], 
although it is also accompanied by an increased risk of nutrient deficiency and other 
complications, like urolithiasis. The effect of RYGB on T2D has been reported to have 
remission rates of 60%[28] and 75%[29] after 1 and 2 years, respectively (Table 1), 
which are similar to those of VSG[30].

VSG
In VSG, along the great curvature transecting 70%-80% of stomach, the remnant 
stomach remains as a tubular structure. During the meal, then, the tubular stomach is 
short of accommodative ability and enhances gastric emptying[31-34].

Over the last decade, VSG has been performed as a single-stage procedure. Given 
the maintenance of the native food passage and the reduction of gastric volume, VSG 
markedly diminishes the risk of nutrient deficiency. Its relative simplicity and good 
clinical outcomes have allowed VSG to surpass RYGB in recent years as the most 
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Table 1 Randomized controlled trials of bariatric surgery vs medical treatment for type 2 diabetes

Ref. Intervention Control Follow-up in mo Diabetes remission, surgery vs control (%)

Parikh et al[30], 2014 VSG Medication 6 65 vs 0

Simonson et al[25], 2019 AGB Medication 12 33 vs 23

Cummings et al[28], 2016 RYGB Medication 12 60 vs 6

Mingrone et al[29], 2015 BPD; RYGB Medication 24 95 vs 0; 75 vs 0

AGB: Adjustable gastric banding; BPD: Biliopancreatic diversion; RYGB: Roux-en-Y gastric bypass; VSG: Vertical sleeve gastrectomy.

prevalent weight-loss surgery in the United States and worldwide[35]. On account of 
the mechanical removal of the great curvature, gastric hormone levels become 
markedly altered, the most obvious of which being the secretion of ghrelin, a hunger 
hormone produced by the X/A-like cells in the fundus of the stomach. However, the 
levels of secreted peptide-YY (PYY), which controls the blood glucose concentration, 
become increased. The rate of T2D resolution after VSG has been reported as 65%[30] 
(Table 1).

BPD
BPD consists of two distinct stages, namely, creation of a tubular gastric pouch and an 
intestinal bypass. The VSG is conducted via removal of approximately 80% of the 
stomach, after which most of the small bowel is bypassed, leading to malabsorption. 
The duodenum is divided at the first portion, followed by transection of a segment of 
the distal ileum (at 250 cm proximal to the ileocecal valve) and anastomosis to the 
proximal end of the divided duodenum. Intestinal continuity is restored by the 
ileoileostomy, at 100 cm proximal to the ileocecal valve.

Unlike other procedures, BPD not only decreases caloric consumption but also leads 
to malabsorption of some nutrients and vitamins. Owing to the malabsorption 
resulting from the bypass of the major portion of the bowel, BPD is considered the 
most effective bariatric surgery for severe obesity and T2D. A randomized trial 
showed that BPD leads to a 70% excessive weight loss by the 2-year follow-up and 
more than 90% resolution rate of T2D compared to conventional medical therapy[29]. 
Nonetheless, because of the technical complexity and associated complications, such as 
nutritional deficiency, compared with RYGB and VSG, the use of BPD has been 
declining year by year[36]. At present, BPD is mainly applied to treat patients whose 
BMI is greater than 50 kg/m2 or who have refractory T2D[12,13,29]. The 2-year 
diabetes remission rate after BPD is 95%, representing the highest remission rate of all 
bariatric surgeries[29] (Table 1).

Control of T2D by bariatric surgery
Although bariatric surgery confers the potent ability to the remission of T2D, it is only 
indicated for obese diabetic patients (BMI > 35 kg/m2). The pathogenesis of T2D is 
mainly attributable to insulin resistance and impairment of β-cell function[37]. Plenty 
of studies have investigated the mechanisms by which bariatric procedures might 
result in T2D remission via increase of insulin sensitivity and/or β cell function[38-40]. 
The resolution of T2D after bariatric procedures was traditionally thought to be the 
result of decreased caloric consumption, weight loss, and nutritional malabsorption; 
however, the remission of diabetes occurs sooner than the surgery-induced weight loss
[41,42]. Emerging evidence supports the hypothesis that bariatric procedures remit 
T2D via mechanisms that are independent of weight reduction[11,43-45]. Thus, invest-
igations of the alterations in the gastrointestinal tract, either anatomical or 
physiological, will help to provide a better understanding of the effect of bariatric 
surgery on T2D[46-48].

Lipid metabolism
Multiple mechanisms result in defective insulin secretion and response in T2D, such as 
lipotoxicity, oxidative stress, and endoplasmic reticulum (ER) stress[49]. The majority 
of patients with severe obesity present some dyslipidemia, such as hyperlipemia and 
lipoprotein abnormality, which cause excessive fat deposition in important tissues 
and/or organs, including adipose tissue and the liver, muscle, and pancreas. The 
excess accumulation of fat in the body induces chronic tissue inflammation and 
consequent tissue insulin insensitivity, which is a well-described feature of obese 
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diabetic patients[50]. Thereby, the mechanism that accelerates the improvement of 
hyperlipemia may improve tissues and/or organs functions and insulin sensitivity, 
and eventually leads to remission of T2D. Evidence is expanding that bariatric surgery 
produces marked improvement in dyslipidemia[51,52]. However, there are some 
differences in clinical effectiveness on dyslipidemia, possibly due to variance in each 
surgical anatomy. Taken together, the improvement of dyslipidemia metabolism after 
bariatric surgery may contribute to the attenuated insulin resistance and resolution of 
T2D, but the molecular mechanism warrants further investigation.

POTENTIAL MECHANISMS OF IMPROVEMENT OF T2D
Gastrointestinal hormones
Ghrelin: Ghrelin, an appetite-stimulating hormone mainly secreted from gastric X/A-
like cells (PD/1 cells in human), regulates peripheral glucose homeostasis in a pattern 
that decreases glucose-stimulated insulin release[53,54] and promotes insulin 
resistance in muscle[55], in addition to increased food intake[56,57]. In particular for 
VSG, the removal of the gastric fundus markedly blocks the major source of ghrelin. 
Thus, inhibition of ghrelin production seems to be a plausible explanation for the 
observed improved glycemia. Accumulating evidence shows that circulating ghrelin is 
decreased after VSG, but decreased or not changed at all after RYGB[58-60] (Table 2). 
Nevertheless, in the VSG mouse model, the glycemic control outcome is similar 
between ghrelin-deficient and wild-type mice[58]. Altogether, the data suggest that 
decreased ghrelin cannot completely explain the observed improved glycemic 
homeostasis after VSG.

Glucagon-like peptide: Glucagon-like peptide (GLP-1), produced from intestinal L 
cells, activates insulin secretion and reduces glucagon release in a glucose-dependent 
manner in response to nutrient uptake in the gut[61]. Despite administration at a 
superphysiological dose, GLP-1 analog only partially improves the incretin effect in 
patients with T2D[62]. Following both VSG and RYGB, the postprandial level of GLP-1 
is markedly increased, implying that GLP-1 acts as an incretin signal contributing to 
glycemic homeostasis[63,64] (Table 2). Mouse model studies comparing pharma-
cologic blockade of the GLP-1 receptor and bariatric surgeries, including both VSG 
and RYGB[65-68], have found similar responses to glycemic control in wild-type mice, 
suggesting that the action of endogenous GLP-1 does not account for the benefit of 
those bariatric procedures on T2D.

PYY: PYY, a 36-amino acid peptide, is produced by L cells and expressed in the 
pancreas and neurons in the central nervous system[69,70]. PYY was first reported in 
the early 1980s, when it was characterized as playing an important role in promoting 
gastric and pancreatic secretions and modulating the gastrointestinal tract function. In 
recent years, expanding evidence has signified that PYY can act on the Y2 receptor to 
regulate insulin sensitivity and glucose uptake. Moreover, PYY has also been shown to 
act on pancreatic islets to regulate insulin release. A lack of PYY in the gut and 
pancreas with reduced β cell mass resulted in insulin secretion disorder[71]. In 
contrast, overexpression of PYY in islets improved insulin secretion in response to 
glucose and increased β cell mass[72]. Of note, a large amount of evidence has 
emerged to indicate that the serum level of PYY is elevated following both VSG and 
RYGB[73] (Table 2). Therefore, PYY is likely to play a vital role in the bariatric surgery-
induced remission of T2D.

BAs
In response to a meal, BAs are secreted by hepatocytes and released into the duo-
denum. Although it was shown over that past decade that BAs enable micelle 
formation and stimulate nutrient absorption and emulsification, it is only now 
becoming clear that BAs serve as signaling molecules in multiple biological responses, 
including glucose metabolism. Circulating BA levels become increased after bariatric 
procedures, including both VSG and RYGB, and have been implicated in the 
regulation of glucose homeostasis (as observed in rodent models and human patients)
[74-77] (Table 2). These findings also represent a plausible explanation for the increase 
in BAs that occurs upon realignment of the gastrointestinal tract by the RYGB 
technique’s exposure of the ileum to chyme that had avoided the digestion process 
thus far. In line with this notion, when high-fat diet-induced obese rodents were 
subjected to exposure of the ileum to BAs, they achieved a level of glucose improve-
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Table 2 Several factors contributing to improved type 2 diabetes after bariatric surgery

Target Major site of secretion (anatomical 
location) VSG RYGB

Ghrelin X/A-like cells (stomach) Decrease Decrease or no change

GLP1 L cells (distal gut) Increase Increase

PYY L cells (distal gut) Increase Increase

Bile acids Hepatocytes Increase Increase

FGF-15/19 Ileum Increase Increase

Microbiota Gut Change Change

Enteroplasticity Gut Change Change

Multiple factors appear to drive the remission of type 2 diabetes after bariatric surgery, including decreased ghrelin, increased glucagon-like peptide, 
increased peptide-YY, increased bile acids, increased fibroblast growth factor-15/19, and alteration of microbiota and enteroplasticity. Data are derived 
from both human and animal studies. GLP1: Glucagon-like peptide 1; FGF: Fibroblast growth factor; PYY: Peptide-YY; RYGB: Roux-en-Y gastric bypass; 
VSG: Vertical sleeve gastrectomy.

ment that was identical to that observed in T2D patients after RYGB, suggesting that 
BAs may play a pivotal role in the effect of RYGB on glycemic control[78,79]. 
Intriguingly, an increase in circulating BAs has been found in rodents and humans 
following VSG, further suggesting that BA profile changes likely represent a 
physiological modality for T2D remission via bariatric surgery.

The increased serum BAs contribute to the improvement of impaired glucose 
homeostasis mainly through two corresponding signaling pathways, namely, those 
involving the farnesoid-X receptor (FXR) and the transmembrane G protein-coupled 
receptor 5 (TGR5)[77,80-83]. Overexpression of FXR in db/db mice improved 
metabolic disorders, indicating that FXR signaling may serve as a therapeutic target 
for maintaining metabolic homeostasis[84,85]. BAs function as a ligand for FXR, which 
can underlie the observed improvement of glucose metabolism via the FXR-related 
pathway. Compared with wild-type mice, mice that are deficient in FXR forfeit the 
ability to maintain glucose equilibrium following VSG[86]. Furthermore, it was shown 
that the increase in fibroblast growth factor-15 (FGF19 in human), a downstream 
effector of the BAs-FXR pathway, after bariatric surgery contributes to hepatic 
glycogen synthesis and reduces glycemia[87-89].

In contrast to FXR, TGR5, a G protein-coupled receptor, is expressed in multiple 
tissues, including the intestine, skeletal muscle, liver, and adipose tissue. The increased 
BAs after VSG confer the ability to remit insulin resistance in a TGR5-activation 
manner[90,91]. Compared with results from studies in wild-type mice, the 
improvement of T2D in TGR5-/- mice was severely blunted, suggesting that TGR5 
might be essential for glycemic control after VSG[90].

Gut microbiota
Over the past years, the association between the gut microbiota and altered metabolic 
processes has been recognized in both rodents and humans[92-96]. In addition, a large 
bacterial population shift has been observed following the bariatric procedures, 
including VSG and RYGB[97-100] (Table 2). Compared with results in sham operation 
models, the relative abundance of Gammaproteobacteria (Escherichia) and Verruco-
microbia (Akkermansia) is rapidly and sustainedly enhanced after RYGB[101]. In 
concert with this, the shift of the gut microbiota from the RYGB group to germ-free 
mice leads to a weight reduction, implying that gut microbiota contributes to weight 
loss[101]. Moreover, allogenic fecal microbiota transplantation using metabolic 
syndrome donors led to impairment in insulin sensitivity for the metabolic syndrome 
recipients compared with using post-RYGB donors[102]; this finding indicates that the 
alteration of intestinal microbes after RYGB can exert a positive effect by improving 
insulin resistance.

Enteroplasticity
In response to internal and external environmental stimuli, the processes of prolif-
eration, migration, death, and differentiation of epithelial cells take place in the human 
small intestine[103]. Thereby, enteroplasticity or intestinal adaptation, including 
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morphological and nervous system alterations, refers to the capacity to adapt 
functionally, as occurs in diabetes, aging, and so forth[104]. Western diet might 
contribute to alterations of enteroplasticity that result in metabolic derangement; 
hence, it is worth exploring whether bariatric surgery might lead to changes in entero-
plasticity. Increasing evidence suggests that several bariatric surgical procedures 
trigger changes of enteroplasticity[105-107] (Table 2). The intestinal morphology, 
including width and cellular proliferation, was found to be enhanced in the alimentary 
and common limbs in an RYGB rat model[108,109], and the intestinal villus height and 
surface area were found to be reduced in mice after VSG[110]. Additionally, some 
studies indicated that the hepatoportal sensor pathway plays an important role in 
glycemic control after RYGB, unlike findings after AGB[111]. Altogether, these data 
signify marked changes in enteroplasticity occurring after bariatric surgery.

CONCLUSION
The escalating pandemic of T2D continues to be a worldwide problem. Through its 
impressive efficacy, bariatric procedures are still the most effective and efficient 
durable therapy for the improvement of T2D in severe obesity. Moreover, the 
outcomes of weight-loss surgery provide novel scientific clues and a theoretical 
foundation for the gut’s potential to act as a therapeutic target for remission and 
countering of insulin resistance. Taken together, although great progress has been 
made in our understanding of the mechanisms by which bariatric surgery may 
improve T2D, the discrepancy of certain evidence is undetermined and requires 
further research efforts.
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