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Abstract
Type 2 diabetes mellitus (T2DM) is among the most remarkable public health 
concerns globally. Accumulating research evidence documents that alteration of 
gut microbiota has an indispensable role in the onset and progression of obesity 
and T2DM. A reduced microbial diversity is linked to insulin resistance and 
energy metabolism, especially for the rise of the Firmicutes/Bacteroidetes ratio. 
Changes in metabolites followed by the gut dysbacteriosis are linked to the 
presence of T2DM. Moreover, endotoxin leakage and gut permeability caused by 
gut dysbacteriosis is more of a trigger for the onset and progression of T2DM. 
Research documents that natural products are remarkable arsenals of bioactive 
agents for the discovery of anti-T2DM drugs. Many studies have elucidated that 
the possible mechanisms of the anti-T2DM effects of natural products are 
remarkably linked to its regulation on the composition of gut microflora and the 
successive changes in metabolites directly or indirectly. This review presents a 
brief overview of the gut microbiota in T2DM and several relevant mechanisms, 
including short-chain fatty acids, biosynthesis and metabolism of branched-chain 
fatty acids, trimethylamine N-oxide, bile acid signaling, endotoxin leakage, and 
gut permeability, and describes how dietary natural products can improve T2DM 
via the gut microbiota.
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INTRODUCTION
Diabetes mellitus (DM) is characterized by hyperglycemia and insufficient insulin 
secretion and/or dysfunction. Epidemiological studies have implied that the number 
of DM patients will rise from 422 million in 2018 to 592 million in 2035[1]. The 
dominant risk factor for DM is becoming more prevalent over time in both developed 
and developing regions[1,2].

Guidelines show that type 2 DM (T2DM) accounts for nearly 95% of DM types, 
which include T1DM, gestational DM, and so on[3,4]. T2DM has always been the focus 
and key point of research on DM. The incidence of T2DM is related with diminished 
secretion of insulin secretion along with insulin resistance (IR) caused by individual 
genetics and acquired environmental factors, for instance, air pollution, unhealthy 
lifestyle, and poor mental state, causing multiple organ injury and several complic-
ations[5,6]. Current studies are investigating disorders of energy metabolism, 
endoplasmic reticulum (ER) stress, oxidative stress, inflammatory response, mitocho-
ndrial dysfunction, as well as gut microbiota[7-9].

The Human Microbiome Project has been leveraged to explore how gut microbiota 
influences the development of the human diseases that have started to emerge[10]. The 
human gut harbors trillions of microorganisms, including > 1014 bacteria, which are 
mainly composed of six main phyla, i.e., Bacteroidetes, Verucomicrobia, Firmicutes, 
Proteobacteria, Fusobacteria and Actinobacteria[11]. Numerous studies have illustrated 
that the gut microflora modulates diverse cellular processes, e.g., micronutrient 
synthesis, bowel motility, and minerals and electrolytes absorption[12], and provides 
signals to activate the immune response, inflammation, and oxidative stress in many 
metabolic diseases, for instance, nonalcoholic fatty liver disease and T2DM[13,14]. 
However, the type of microbes that contribute to DM and mechanisms associated are 
still not fully understood. Therefore, a systematic search of various electronic 
databases, including Google Scholar, PubMed, Sciencedirect, and so on were 
performed with several keywords alone or in combination [diabetes, obesity, gut 
microbiota, short-chain fatty acids (SCFAs), branched-chain amino acids (BCAAs), 
inflammation, gut barrier, etc.]. Herein, we review the present studies on changes in 
the gut microflora and summarize the possible mechanism of the gut microbiota 
dysbiosis in T2DM as well as some relevant dietary natural products.

ALTERNATION OF GUT MICROBIOTA IN T2DM
It is estimated that > 80% of T2DM patients are overweight, which is recognized as the 
greatest risk factor for T2DM[15]. Apart from genetic and lifestyle factors, energy 
homeostasis disorder induced by gut microbial dysbiosis has an indispensible role in 
the onset and progression of T2DM. Many metagenome-wide association reports have 
shown remarkable correlations between variation of specific gut microbes, bacterial 
genes, and metabolic pathways in T2DM[16,17]. It has been verified that gut 
microflora is among the independent contributing factors for fat accumulation and IR, 
whereas germ-free (GF) mice, having no microbiota, had little weight gain and 
increase in body fat, and mild resistance to the diet relative to wild-type mice[18]. 
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Obese mice-derived microbiota (FMT) increased weight gain in GF mice when 
transplanted unlike FMT derived from thin mice[19]. Moreover, FMT was also carried 
out in numerous studies in humans, including obesity, ulcerative colitis, and so on
[20]. Several studies have shown that there is a high Firmicutes/Bacteroidetes ratio in 
obese mice or mice fed Western diets[21]. Larsen et al[22] found a low number of 
Firmicutes and increased Betaproteobacteria in DM, relative to nondiabetic patients, 
which were positively related with the plasma glucose contents, especially for 
Betaproteobacteria. Besides Bacteroidetes and Firmicutes, Prevotella spp., Clostridium 
coccoides, and Eubacterium rectale were more prevalent in individuals with diabetes and 
positively and remarkably linked to plasma glucose, rather than body mass index, 
indicating that these bacteria can directly influence the level of glucose tolerance[23]. 
The number of Clostridiales, Streptococcus mutans, and Lactobacillus gasseri is increased 
whereas that of Aecalibacterium prausnitzii (both butyrate-producing bacteria) and 
Roseburia intestinalis is decreased in various groups of T2DM patients. These findings 
suggest that gut microbiota dysbiosis is strongly linked to the onset and progression of 
T2DM.

METABOLITES OF GUT MICROBIOTA AFFECT ENERGY METABOLISM
SCFAs
The gut microbiota acts as a real organ, which can generate monosaccharides and 
SCFAs by hydrolyzing and fermenting dietary polysaccharides from the host, 
including acetate, propionate, and butyrate. The mechanism involving the production 
of adipose-tissue-derived satiety hormone leptin under the action of SCFAs is the most 
studied[24]. Nevertheless, recent studies have illustrated that SCFAs act against 
obesity by preventing fat accumulation. The production of SCFAs is different in obese 
and insulin-resistant subjects via regulation of metabolism in several organs and 
tissues, for instance, adipose tissue, the pancreas, and the brain[25,26]. The increased 
level of butyrate is linked to improved insulin sensitivity[27,28], highlighting the 
significance of butyrate-secreting bacteria in modulation of glycemia. By further 
analyzing stool samples from patients, Psichas et al[29] illustrated that high rates of 
colonic fermentation were closely related with high SCFA products in obese 
individuals. Therefore, the effect of SCFAs on energy metabolism is multidimensional, 
including involving lipid oxidation, appetite modulation, as well as glucose meta-
bolism (Figure 1)[24].

Several studies have shown that SCFAs trigger the secretion of Peptide YY (PYY) 
along with glucagon-like peptide 1 (GLP-1), by recognizing and stimulating G-protein-
coupled receptor (GPR)41/43 in rodent and human cell lines[30-32]. Similarly, the 
same effect and mechanisms have been documented and confirmed in vivo[33]. 
Moreover, numerous studies have demonstrated that exogenous GLP-1 and PYY 
acutely reduce food intake in humans, which has been widely used in the treatment of 
T2DM[34-38]. Therefore, SCFAs not only contribute 5%-10% of energy to the host, but 
are also recognized by endogenous ligands of GPR41/43, and act as signaling 
molecules to participate in adjustment of energy[39-41]. Kimura documented that 
GPR43-modulated adipose-insulin cascades and sympathetic activity were controlled 
by GPR41, which detected SCFAs released from gut microbiota[42]. Nevertheless, in 
GPR41/FFAR3-/- and GPR43/FFAR2-/- knockout cells, GLP-1 secretion activated by 
SCFAs was remarkably attenuated. However, unlike GPR41/ FFAR3-/- mice, 
GPR43/FFAR2-/- showed markedly downregulated GLP-1 in circulation, indicating 
that GPR43/FFAR2 plays a more important role in these effects. Confusingly, the level 
of satiety hormones at 24 wk following supplementation of inulin propionate ester at 
10 g/d was not different from those in groups treated with 10 g/d inulin alone in 
overweight adults[43], emphasizing mechanisms of crosstalk between the gut 
microflora and host. Therefore, SCFAs, as metabolites of the gut microflora, are 
important signaling molecules in the regulation of host energy metabolism. Relevant 
research on the metabolic influences of SCFA delivery or production on the host is 
urgently needed, especially the influences on satiety-inducing hormones.

Besides, in rodent receiving acute and chronic oral supplementation of SCFAs, 
besides affecting the production of satiety hormones, SCFAs could also advant-
ageously impact body weight via impacting energy expenditure[44]. Another study 
documented that a single oral administration of 1.5% AcOH with a stomach tube, in 
comparison to distilled water, elevated energy expenditure along with lipid oxidation
[45]. Similar to the above results, injection with acetate (5.2 mg/kg) elevated whole-
body oxygen consumption and decreased the body weight at 6 mo post-treatment in 
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Figure 1  Mechanisms of action of short-chain fatty acids in type 2 diabetes mellitus. The effect of short-chain fatty acids on energy metabolism is 
multidimensional, including appetite regulation, energy intake/expenditure, and lipid oxidation, as well as glucose metabolism. SCFA: Short-chain fatty acid; GLP-1: 
Glucagon-like peptide 1; PYY: Peptide YY; ER: Endoplasmic reticulum; UCP-1: Uncoupling protein-1; mTOR: Mammalian target of rapamycin.

rats[46]. Moreover, butyrate (5% w/w) prevented high-fat diet (HFD)-induced obesity 
via enhanced lipid oxidation[47]. Studies on the mechanism showed that these effects 
were linked to the UCP-1 (uncoupling protein-1) and elevation of peroxisome prolif-
erator-activated receptor-(PPAR)-γ co-activator 1α (PPARGC1A, coding for PGC1α) in 
brown adipose tissue[47]. The animal experimental data proved that SCFAs upre-
gulate genes that modulate lipid oxidation and thermogenesis, thereby eliminating 
adiposity and weight gain[24]. Human studies have indicated that colonic infusion of 
SCFA mixtures, including acetate, butyrate, and propionate, reduces lipolysis and 
elevates energy expenditure and PYY, as well as fat oxidation in overweight/obese 
individuals[48]. In addition, acute oral sodium propionate ingestion elevated resting 
expenditure of energy along with lipid oxidation in 18 healthy volunteers in contrast 
with a sodium chloride control, and these effects were independent of insulin and 
glucose contents and sympathetic nervous system activity[49]. The result from a 
randomized double-blind crossover trial proved that sodium acetate infusion into the 
distal colon (180 mmol/L) enhanced lipid oxidation relative to sodium chloride 
placebo, and the resting energy expenditure between overnight-fasted overweight and 
obese individuals was similar[44]. Jocken et al[49] showed that SCFAs reduced 
lipolysis and promoted lipid oxidation in white adipose tissue (WAT), and that antili-
polytic effect was orchestrated by FFAR3 and/or FFAR2 levels in WAT[50]. Therefore, 
these results strongly suggest that SCFAs are beneficial for weight control and 
influence energy expenditure. Research on the mechanism of action of SCFAs in DM 
has suggested that SCFAs induce GLP-1 and amylin secretion via FFA2 receptor, hence 
modulating glucose metabolism and insulin levels[51]. The Akt/mTOR pathway, ER 
stress, and release of intracellular Ca2+ play important roles in this process[51]. There is 
need to understand the pathways and regulators involved in a variety of cell models, 
for instance, human-derived adipocytes, hepatocytes, or skeletal muscle.

BCAAs
BCAAs have increasingly been studied as playing a role in diabetes[52]. BCAAs 
constitute nearly approximately 20% of the amino acids used to form proteins[53]. 
More studies have documented that plasma content elevations of BCAAs have been 
linked to obesity, as well as diabetes[54]. Previously, this phenomenon was thought as 
a consequence and not a cause of IR[55]. Nevertheless, recently, growing research 
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evidence opines that BCAAs elevations contribute to IR: (1) Exogenous BCAAs 
remarkably diminish the sensitivity to insulin, as illustrated via hyperinsulinemic 
euglycemic clamps measurements[56,57]; and (2) coadministration of BCAAs with 
HFD generally worsens the ensuing IR in rodents[58]. The presence of HFD or lipids in 
all these rodents played a critical role in this effect, and BCAAs alone elicited insigni-
ficant or no impact, illustrating that BCAAs crosstalk with fatty acids (FAs) to promote 
IR[59]. Further studies have proved that FA oxidation disorders elevated BCAAs 
contents in plasma, and aggregation of the intermediate metabolites of BCAAs, for 
instance, C3 and C5 acylcarnitines along with acetyl-CoA can inhibit complete FA 
oxidation[60]. The crosstalk of BCAAs with FAs induces energy metabolism disorder, 
including ATP production, TCA (tricarboxylic acid cycle) cycle, as well as oxidative 
phosphorylation, and leads to mitochondrial dysfunction and inflammation, which are 
critical for the progression of DM[61-63]. Inflammatory factor signaling pathways, 
including the nuclear factor (NF)-κB pathway and mammalian target of rapamycin 
complex 1 (mTORC1), might be candidate therapeutic targets in this process[54,64]. 
Moreover, BCAAs supplementation could repress stimulation of Akt2 via the 
mTORC1- and mTORC2-dependent cascades and enhanced degradation that is 
dependent on Akt2 ubiquitin-proteasomes via mTORC2 signaling, indicating that 
mTORC2 might also play an important role in this process[65]. More importantly, by 
using metagenomics and metabonomics methods, increased concentrations of BCAAs 
were linked to a gut microbiome that has an abundant biosynthetic ability for BCAAs. 
Prevotella copri coupled with Bacteroides vulgatus are recognized as the primary species 
modulating the relationship of biosynthesis of BCAAs with IR[66], indicating that gut 
microbes affect host serum metabolome along with insulin sensitivity via regulating 
the level of BCAAs (Figure 2).

Trimethylamine N-oxide
Terrestrial mammal trimethylamine N-oxide (TMAO) is derived from exogenous 
arsenals, with the TMA serving as the precursor, which is a metabolite of diverse other 
precursors, primarily choline, as well as carnitine originating from ingested foods[67]. 
Bacteria metabolize choline and L-carnitine into TMA, and flavin-containing 
monooxygenase (FMO)-3, a hepatic enzyme, oxidizes TMA into TMAO. There are two 
key steps for the generation of TMAO, illustrating that the gut microflora is an 
independent risk factor for DM[68,69]. Further analysis of the microbiota has shown 
that the primary bacterial phylum that degrades carnitine to TMA is Proteobacteria 
along with bacteria of the family Prevotellaceae, phylum Bacteroidetes. In contrast, the 
S24-7 family of Bacteroidetes (the family majorly involved in plant polysaccharides) is 
related with diminished TMAO contents[70-72].

The initial findings suggested a positive relationship of high plasma TMAO content 
with an elevated risk for major severe cardiovascular diseases including myocardial 
infarction, stroke, and atherosclerosis. More studies have documented that TMAO is 
opined to serve as a biomarker, as well as an independent predisposing factor for 
many diseases, for example, kidney failure, DM, and cancer[69]. Some research 
evidence opines that TMAO influences glucose metabolism, and remarkably higher 
median TMAO contents in plasma occur in individuals with diabetes in contrast with 
persons without DM[73,74]. A prospective mechanism connecting TMAO with IR is 
TMAO-dependent elevated concentrations of N-nitroso compounds and upregulated 
activity of FMO-3[75,76]. Research documents reduced TMAO and choline contents in 
the hepatic tissues of diabetic mice[77]. Metformin has been shown to decrease glucose 
and increase plasma TMAO[77]. TMAO measurements have low diagnostic 
significance in diabetic individuals who are obese due to the high variability of TMAO 
contents in plasma[78]. More importantly, treatment with TMAO promotes normal 
protein folding, counteracting ER stress in diabetic rats, illustrating a potentially 
beneficial impact of TMAO in DM[79]. Therefore, from the results so far, the character-
istics of TMAO in DM are still controversial.

GUT PERMEABILITY GIVES A NOVEL INSIGHT INTO T2DM
Although chronic low inflammation induced by metabolic endotoxemia in serum is a 
risk factor for T2DM, gut permeability is more of a trigger for the onset and 
progression of T2DM. The intestinal mucosal lining functions as a barrier, preventing 
viruses, toxins, and pathogenic bacteria invading from the gut epithelium into the 
circulation[80]. Recent reports have chronicled that altered bowel function of the gut 
barrier is involved in DM pathogenesis[81]. Disruption of the gut barrier is docu-
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Figure 2  Increased plasma levels of branched-chain amino acids induced by dysbiosis are closely associated with obesity and diabetes. 
The accumulation of branched-chain amino acids inhibits complete oxidation of fatty acids, induces energy metabolism disorder, including ATP production, 
tricarboxylic acid cycle, and oxidative phosphorylation, thereby causing energy metabolism disorder, and induces inflammation by targeting nuclear factor-κB and 
mammalian target of rapamycin complex 1. TCA: Tricarboxylic acid; NF-κB: Nuclear factor-κB; mTORC1: Mammalian target of rapamycin complex 1; BCAAs: 
Branched-chain amino acids.

mented in genetically obese mice, which promotes permeability of the intestinal 
mucosa, leading to lipopolysaccharide (LPS) leakage into the portal blood circulation, 
and increased metabolic endotoxemia, inflammatory cytokine concentrations, and 
pathogen colonization[82]. Tight junction protein expression reflects the disruption of 
the gut barrier, and tight junction proteins consist of zonula occludens (ZO)-1 and 
occludin, which are remarkably reduced in mice with HFD-induced obesity, thus 
resulting in inflammation, permeability of the intestines, increased metabolic 
endotoxemia, and more serious metabolic disorders[83]. Increases in endogenous 
GLP-2 production contribute to the enhancement of functions of the gut barrier during 
obesity and DM[84]. Pharmacological treatment with prebiotics or GLP-2 decreases 
gut permeability, which finally diminishes LPS contents in the plasma, as well as 
blunts the inflammatory state of ob/ob mice[84,85].

METABOLIC ENDOTOXEMIA-INDUCED CHRONIC LOW INFLAMMATION 
IN T2DM
At present, the mainstream view suggests that low-grade chronic systemic inflam-
mation contributes to the onset and progression of IR, DM, and obesity. As a 
component of the cell wall of Gram-negative bacteria, LPS is defined as a metabolic 
endotoxin, which is a trigger for the maintenance of a low-grade chronic systemic 
inflammatory state in the host, responding to HFD[86]. Based on these results, many 
studies have documented that the circulating concentration of LPS is remarkably 
linked to some specific bacterial genera[87]. The amount of Bifidobacterium is 
remarkably and negatively correlated with high portal plasma measurements of LPS 
in HFD-induced models[88]. Similarly, bacterial community structural analysis shows 
that antibiotic treatment remarkably reduces the numbers of Lactobacillus, 
Bifidobacterium, as well as Bacteroides–Prevotella in ob/ob mice, indicating that 
metabolites of gut microflora are closely linked with the incidence and prevalence of 
DM[89]. Moreover, following exposure to 0.05% (wt/wt) aglycone quercetin by oral 
perfusion, metabolic endotoxemia and cecal content of LPS in HFD-induced mice are 
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dramatically reduced, and then the fasting glycemia, inflammation, and body weight 
are also improved[64]. Growing in vitro along with in vivo research evidence suggests 
that Toll-like receptors (TLRs) are responsible for LPS-induced inflammatory 
responses[90]. TLR4 recognizes bacterial LPS, thereby triggering the expression of 
proinflammatory cytokines along with chemokines, including tumor necrosis factor 
(TNF)-α[91]. TNF-α is strongly linked to IR, promoting the onset and progression of 
DM[92]. Besides animal experimentation, clinical studies have also shown that TLR4 is 
a pivotal receptor of the natural immune system, with a core role of triggering the 
inflammatory response, including TNF-α, interleukin (IL)-6, monocyte chemoattractant 
protein (MCP)-1, and IL-1β[93]. Genetic variants in the TLR4 gene or IRAK1 and 
TIRAP genes might have an indispensable role in the onset and progression of IR and 
T2DM through disruption of the inflammatory reaction[92]. TLR5, as another member 
of the TLR family, which is mainly expressed in intestinal mucosa, has an 
indispensable role in the onset and progression of metabolic syndromes[94]. TLR5-
deficient mice exhibit hyperphagia and develop metabolic diseases, for instance, 
hyperlipidemia, hypertension, IR, and obesity[95]. TLR5 knockout mice exhibited an 
increase in body mass and epididymal fat pad size in varying degrees compared to 
their wild-type counterparts, which was linked to increased contents of serum trigly-
cerides and cholesterol, as well as increases in the proinflammatory proteins 
interferon-γ and IL-1β in adipose tissue[96]. Moreover, by transplanting the gut 
microflora from TLR5-deficient mice to their wild-type GF counterparts, the increased 
contents of proinflammatory cytokines and features of metabolic diseases, for instance, 
IR and obesity, have been documented[96]. The elevated inflammatory mediators in 
DM cause oxidative and ER stress in pancreatic islet β cells, then influence insulin 
sensitivity and glucose homeostasis, aggravating DM[97]. TLR2 can identify 
components of bacterial cell walls and lipid-containing molecules, thereby transducing 
inflammatory signaling by activating NF-κB and producing proinflammatory 
cytokines in cells[98]. More importantly, unlike TLR5-deficient mice, TLR2-deficient 
mice exhibit increased insulin sensitivity and faster clearance of glucose, accompanied 
by attenuated expression of inflammatory cytokines[99,100]. Therefore, TLRs have 
multiple effects on the expression of inflammatory cytokines in T2DM. The distri-
bution of TLRs in tissues and organs may decide their role in the onset and pro-
gression of T2DM.

INTERACTIONS BETWEEN BILE ACIDS AND GUT MICROBIOTA
As the end-product of cholesterol metabolism, bile acids (BAs) are derived from 
cholesterol catabolism in the liver and are essential for the solubilization, absorption, 
and metabolism of lipid- and fat-soluble vitamins[101], as well as xenobiotics, 
including drugs and environmental contaminants[102]. However, BAs are now 
identified as key endogenous steroids that play critical roles in regulating and 
maintaining lipid, glucose, and energy metabolism, protecting against inflammation in 
the liver, intestine, and heart, and preventing DM and obesity (Figure 3)[103]. Clinical 
data prove that dysregulation of BA homeostasis and dysbiosis can induce metabolic 
disorder, for instance, disorders of lipid, glucose, and energy metabolism, as well as 
inflammatory cytokine generation, which are closely linked with T2DM[102]. BA 
synthesis occurs via two pathways. The rate-limiting enzyme cytochrome P450 
cholesterol 7-ahydroxylase (CYP7A1) produces the majority of the BA pool, and is 
responsible for the classical pathway. There is also an alternative pathway (3%-18% of 
total BA synthesis in healthy humans), which is initiated by cytochrome P450 27-
ahydroxylase (CYP27A1)[104]. All of the products of BAs are the primary BAs 
including cholic acid (CA) and chenodexycholic acid (CDCA), which are reabsorbed 
through the enterohepatic circulation. Around 95% of primary BAs are actively 
reabsorbed through the apical sodium-dependent BA transporter (ASBT/SLC10A2) 
and secreted at the basolateral membrane by the heterodimeric organic solute 
transporters α and β[104]. Only 5% of primary BAs reach the large intestine and are 
converted into secondary BAs by the gut microbiota, for instance, deoxycholic acid 
(DCA), lithocholic acid (LCA), and ursodesoxycholic acid (UDCA) in humans, and 
DCA, LCA, muricholic acid (MCA), hyodeoxycholic acid, and murideoxycholic acid in 
mice[105]. Further research has proved that these gut bacteria have bile salt hydrolase, 
including Lactobacillus, Bifidobacterium, Firmicutes, Enterococcus, Clostridium, and Bacter-
oides, which transform primary BAs into secondary BAs at millimolar concentrations in 
the intestine, and determine BA composition in the circulating pool and total BA pool 
size[104,106]. Thus, interactions between BAs and gut bacteria remark-ably affect the 
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Figure 3  The critical role of dysbiosis/bile acids/farnesoid X receptor/TGR5 axis in diabetes mellitus. Bile acids were synthesized by cytochrome 
P450 (CYP) 7A1/CYP27A1. Gut microbiota regulates the BA pool size and composition, thereby participating in energy metabolism, glucose homeostasis, lipid 
metabolism, and inflammation of the host by activating farnesoid X receptor/TGR5 in various tissues. BA: Bile acid; CYP: Cytochrome P450; FXR: Farnesoid X 
receptor; GPBAR1: G-protein-coupled bile acid receptor 1; CA: Cholic acid; CDCA: Chenodexycholic acid; GLP-1: Glucagon-like peptide 1; DCA: Deoxycholic acid; 
LCA: Lithocholic acid; MCA: Muricholic acid.

health of the host and contribute to the pathogenesis of metabolic diseases, for 
instance, liver disease, obesity, and DM. However, it is still unclear how BA pool 
alterations affect DM.

Farnesoid X receptor (FXR) and G-protein-coupled BA receptor 1 (GPBAR1, also 
known as TGR5) play critical roles in gut microbiota-mediated BA signaling. FXR and 
TGR5 are expressed in various tissues, including the liver, intestine, kidneys, adrenal 
glands, brown/white adipose tissue, and immune cells[105]. FXR also competes for 
other nuclear receptors, for instance, PPAR and NF-κB, thereby regulating lipid and 
glucose metabolism and the inflammatory response in (patho)physiological conditions 
in humans[104,107]. By raising FXR-deficient mice in GF conditions, Gonzalez et al
[108] confirmed that the gut microflora regulates FXR signaling by acting on the 
conversion of primary BAs into secondary BAs, and by regulating their synthesis. BAs 
are natural ligands of FXR and TGR5, including agonists (CDCA, DCA, CA and LCA) 
and antagonists (MCA and possibly UDCA). Selectivity reduces the gut microflora 
production of β-MCA induced by dysbiosis in obese mice, a rodent-specific FXR 
antagonist, which reduces BA feedback regulation and increases BA synthesis in the 
liver by alleviating FXR repression in the ileum. This emphasizes that changes in the 
BA pool size and composition caused by dysbiosis are closely linked to obesity and 
DM[108,109]. Some studies have illustrated that: (1) In the intestine, FXR reduces 
postprandial glucose absorption, which is delayed in FXR-deficient mice; and (2) BAs 
regulate the production and secretion of GLP-1 via the activation of TGR5 and FXR in 
enteroendocrine L cells. BAs also control lipoprotein metabolism via hepatic FXR 
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activation. FXR reduces lipogenesis by repressing hepatic sterol responsive element 
binding protein (SREBP)-1c expression in SHP-dependent and FGF15/19-dependent 
manners[110]. FXR represses microsomal triglyceride transfer protein and apolipo-
protein B gene expression, thereby reducing very-low-density lipoprotein secretion
[111]. FXR and TGR5 are expressed in several immune cell types, including 
monocytes, macrophages, and Kupffer cells, and human dendritic cells also have a 
critical role in the onset and progression of DM and related complications. For 
example, TGR5 activation reduces HFD-induced glucose intolerance, IR, and inflam-
mation by inhibiting NLRP3 inflammasome activation via the TGR5-cyclic AMP-
protein kinase A axis in mice[112]. These results indicate that the gut microflora 
regulates the BA pool size and composition, thereby participating in energy 
metabolism, glucose homeostasis, lipid metabolism, and inflammation of the host. The 
dysbiosis/BAs/FXR/TGR5 axis might play an important role in this process.

DIETARY NATURAL PRODUCTS AND GUT MICROBIOTA
Various synthetic drugs with antidiabetic effects are in current clinical use. However, 
the application of these drugs is usually limited by their various undesirable adverse 
effects, including weight gain, hypoglycemia, fluid retention, heart failure, urinary 
tract infection, and dyspepsia[2]. In contrast, numerous studies have indicated that 
herbal medicines and their active ingredients possess antidiabetic properties with few 
adverse effects, and are worthy of investigation for clinical application. An increasing 
number of studies have illustrated that the extracts of fruits, vegetables, herbs, and 
other plant foods alleviate T2DM by modulating the gut microbiota (Table 1)[113].

Dietary fibers
Dietary fibers are compounds of natural origin present in plants. Chemically, these 
compounds are defined as nondigestible carbohydrates (with ≥ 3 monomeric units), 
for instance, polysaccharides and oligosaccharides[114]. Some prospective cohort 
studies have shown that individuals with high intake of dietary fiber are inversely 
linked to the risk of DM compared with low intake[115]. Although most dietary fibers 
belong to prebiotics, which are not digested and absorbed by the human gut and 
remain intact while passing through the gastrointestinal tract, they selectively arouse 
the growth and activity of potential beneficial bacteria in the gut. The human gut 
microflora encodes several types of carbohydrate-active enzymes, including glycoside 
hydrolases, polysaccharide lyases, glycosyltransferases, and carbohydrate esterases, 
which are capable of degrading dietary fiber and then generating small-molecular-
weight metabolites (degradation products), which may display antidiabetic effects in 
T2DM[116]. Studies on anti-T2DM activity of fibers have shown that dietary fibers 
increase the abundance of some species, for instance, Eubacterium rectale, Roseburia, 
Prevotella, Ruminococcus bromii, Bacteroides, and Bifidobacterium, and decrease the 
number of some Gram-negative bacteria, for instance, Desulfovibrio and Enterobac-
teriaceae (LPS-producing bacteria)[117]. More importantly, these changes induced by 
dietary fiber intervention enhance the production of SCFAs, which can bind to the 
GPR and enhance the level of the enteroendocrine hormones PYY and GLP-1 in gut 
epithelial L-cells, thereby improving IR, appetite regulation, and energy intake/ 
expenditure, as well as lipid oxidation[118]. The alleviating effect of pumpkin polysac-
charide in HFD-fed mice is linked with increased SCFA production and selective 
enhancement of some bacteria, for instance, Bacteroidetes, Prevotella, and Deltaproteo-
bacteria[119]. Administration of inulin can reduce the fasting blood glucose level, 
increase GLP-1 level, and alleviate glucose intolerance as well as blood lipid contents 
in rats with T2DM induced by HFD and streptozotocin[120]. SCFA-producing bacteria 
have a key role in the process, including Lachnospiraceae, Phascolarctobacterium, and 
Bacteroides[120]. A double-blind, randomized, controlled clinical trial of 60 patients 
with T2DM found that supplementation with 10 g/d inulin powder promoted gut 
health by increasing the proportion of Akkermansia muciniphila[121].

Polyphenols
Dietary polyphenols are natural compounds that occur in many plant foods, such as 
fruits and vegetables. These compounds constitute a large heterogeneous collection of 
compounds, but with structural units common to all phenolic compounds (hydro-
xylated aromatic rings or phenol rings)[122]. Numerous studies have proved that the 
beneficial effects of dietary polyphenols may reduce the risk of T2DM and/or its 
complications[123]. However, it is proved that most polyphenols are not digested and 
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Table 1 Main preclinical and human data reporting the effects of dietary natural products on gut microbiota and associated 
mechanisms in diabetes mellitus and related complications

Name Model Key findings Ref.

Pumpkin 
polysaccharide

HFD (mice) Increases SCFAs production; selectively enhances the abundance of Bilophila 
and Prevotella

Liu et al[118]

Inulin T2DM in rats induced 
by HFD and 
streptozotocin and 
clinic trial

Increases SCFA-producing bacteria including Lachnospiraceae, 
Phascolarctobacterium, Bacteroides, and Akkermansia muciniphila

Li et al[112] and Food and 
Drug Administration, HHS
[113]

Lessonia nigrescens 
ethanolic extract

T2DM mice 
(streptozotocin 
injection)

Increases the ratio of Bacteroidetes/Firmicutes in the intestine El Kaoutari et al[115]

Grape pomace 
extract

HFD (mice) Reduces the abundance of Desulfovibrio and Lactococcus, and increases the 
abundance of Allobaculum and Roseburia; improves the gut barrier function

Bowey et al[123]

Resveratrol NASH rat model Ameliorates the intestinal barrier dysfunction and inflammation Li et al[124]

Quercetin HFD (mice) Reverts gut microbiota imbalance and related endotoxemia-mediated TLR4 
pathway induction

Solon-Biet et al[61]

Berberine db/db mice High fat 
diet (mice and rats) FXR 
knockout (FXRint-/-) 
mice

Modulates the ratio of Firmicutes/Bacteroidetes; increases SCFA content in 
feces; regulates BCAAs biosynthesis and catabolism in liver and adipose 
tissue; reduces the increased expressions of inflammatory mediators and 
alleviates gut permeability by decreasing LPS level in plasma; modulates the 
bile acid cycle and subsequently the ileal FXR signaling pathway

Tesar and Kottke[129], He 
et al[130], Song et al[131], 
Wang et al[132], and Zhang 
et al[133]

Capsaicin ob/ob mice Increases the ratio of Firmicutes to Bacteroidetes and the number of Roseburia; 
decreases the levels of proinflammatory cytokines, including TNF-α and IL-6

Christodoulou et al[128]

HFD: High-fat diet; SCFAs: Short-chain fatty acids; T2DM: Type 2 diabetes mellitus; NASH: Nonalcoholic steatohepatitis; BCAAs: Branched-chain amino 
acids; FXR: Farnesoid X receptor; LPS: Lipopolysaccharide; TNF-α: Tumor necrosis factor-α; IL-6: Interleukin 6.

absorbed by the small intestine, but remain in the colon, and are metabolized by gut 
microflora including demethylation, dihydroxylation, and decarboxylation[124]. 
Focusing on the changes of the intestinal microbiota, polyphenols improve intestinal 
health by promoting the growth of beneficial bacteria and inhibiting the pathogenic 
bacteria[117]. More importantly, the main antidiabetic actions of dietary polyphenols 
include: Protection of pancreatic β-cells against stimuli-induced oxidative stress; 
inhibition of the activities of various enzymes (for instance, α-amylases, α-gluco-
sidases, and pancreatic lipase); promotion of β-cell proliferation and survival; and 
repression of advanced glycation end products formation[117]. An ethanolic extract of 
Lessonia nigrescens (rich in phenolics and flavonoids) displays its hypogly-cemic effect 
by increasing the abundance of Bacteroidetes and decreasing Firmicutes in the intestines
[118]. A recent study illustrated that the antidiabetic effects of polyphenols were also 
linked to changes in the markers of gut barrier function, for instance, ZO-1 and 
occludin[125]. Grape pomace extract (mixture of polyphenols consisting of 
anthocyanins, flavanols, and flavanol glycosides) improves fat mass gain, adipose 
tissue inflammation, impaired glucose tolerance, and IR by reducing the concen-
trations of Clostridium sensu stricto, Lactococcus, Desulfovibrionaceae, and Strepto
coccaceae, and increasing the abundance of Allobaculum, Prevotellaceae, Roseburia, and 
Erysipelotrichaceae, and improving gut barrier function[126]. Besides these extracting 
mixtures, the effects of several polyphenol monomeric compounds in T2DM/obesity 
are also closely linked to the alternation of gut microflora. Resveratrol attenuates HFD-
induced nonalcoholic steatohepatitis and ameliorates the intestinal barrier dysfunction 
and inflammation in rats[127]. Quercetin reverted gut microflora imbalance and 
related endotoxemia-mediated TLR4 pathway induction, with subsequent repression 
of inflammasome response and reticulum stress pathway activation, leading to the 
blockage of lipid metabolism gene expression deregulation in obese mice[63].

Alkaloids
Alkaloids have antimalarial, antihyperglycemic, antiasthma, anticancer, and antibac-
terial activities[128]. Many of them have been utilized in traditional or modern 
medicines for drug discovery. Recent studies have illustrated that the pharmacological 
activity of alkaloids is mainly mediated by the gut microflora[129]. Because most 
alkaloids usually exhibit low oral bioavailability, their absorption into the bloodstream 
is difficult. The gut microbiota has a variety of enzymes, consisting of β-glucuronidase, 
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Figure 4  Possible mechanisms of gut microbiota in type 2 diabetes mellitus. A variety of independent mechanisms that influence the development of 
diabetes mellitus via the gut microbiota are summarized. Short-chain fatty acids, branched-chain amino acids, endotoxin leakage, bile acid signaling, and gut 
permeability might be considered to participate in the process of type 2 diabetes mellitus. SCFAs: Short-chain fatty acids; BCAAs: Branched-chain amino acids; LPS: 
Lipopolysaccharide.

β-glucosidase, β-galactase, nitroreductase, azoreductase, 7α-hydroxylase, and protease, 
and various carbohydrates, which can metabolize alkaloids into many different 
metabolites that are closely linked to DM[130]. Capsaicin improves glucose homeo-
stasis and insulin tolerance in obese diabetic ob/ob mice by increasing the ratio of 
Firmicutes to Bacteroidetes and the number of Roseburia, which could decrease the 
contents of proinflammatory cytokines, for instance, TNF-α and IL-6[131]. Among the 
alkaloids, the most widely studied is berberine. As an isoquinoline alkaloid, berberine 
occurs in various medicinal plants, including Coptis chinensis Franch and Phellodendron 
chinense Schneid. Numerous experimental models have proved that the antiobesity 
and anti-hyperlipidemic effects of berberine are closely related to changes in the gut 
microbiome[128]. Researchers have shown that the blood level of BBR in hyperlip-
idemic patients was higher than that in healthy individuals owing to the differential 
microbiota composition[132]. Further studies have shown that the effects of berberine 
on DM are multidimensional: (1) Modulation of the ratio of Firmicutes to Bacteroidetes, 
thereby increasing SCFA content in feces[133]; (2) Regulation of BCAA biosynthesis 
and catabolism in liver and adipose tissue[134]; (3) Reduction of the increased 
expression of inflammatory mediators by decreasing LPS level in plasma and 
alleviation of gut permeability[135]; and (4) Modulation of the BA cycle and subse-
quently the ileal FXR signaling pathway[136].

In summary, numerous natural products, for instance, fruits, vegetables, and 
medicinal plants, possess prebiotic effects and have been illustrated to ameliorate 
T2DM by modulating gut microflora composition and abundance, reducing gut 
permeability, and subsequently increasing production of SCFAs and BCAAs, 
decreasing the level of LPS, and inhibiting inflammation. Current studies mainly focus 
on modulating the action of natural products and their bioactive components on the 
gut microbiota for preventing and managing T2DM. However, because the compo-
sition of natural products is so complex that the gut microflora may also influence host 
metabolism of natural products, further studies should focus on the metabolism of 
natural products and their bioactive components by the gut microbiota. This is 
important for the pharmacokinetic parameters, enhancing drug efficacy, and finding a 
novel lead compound via gut microflora-related mechanisms.

CONCLUSION
Trillions of microorganisms colonize the human gut, which are collectively termed the 
microbiome and provide us with genetic and metabolic attributes pertinent to the 
maintenance of our body homeostasis. Animal and epidemiological studies have 
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demonstrated significant differences in the intestinal microbiota composition and 
abundance between diabetic and nondiabetic individuals. Moreover, by analyzing the 
metabolic product of the gut microbiota and their effects on host metabolism, SCFAs, 
BCAAs, endotoxin leakage, BA signaling, and gut permeability might be remarkably 
linked to initiation and aggravation of T2DM (Figure 4). The effects of some natural 
products on T2DM are also related to the regulation of the gut microflora and 
subsequent changes in metabolites. However, the available data in this field remain 
limited, for instance, most are small-sample clinical studies or rodent model studies. 
We conclude that the gut microbiota influences the onset and progression of diabetes 
through a variety of independent mechanisms. Moreover, by using isolating and 
culturing techniques, and the combination of multiomics, some new molecular 
markers of metabolites and mechanisms will be identified, which are related to the 
interaction of metabolites of the gut microflora and the host. This may provide a new 
insight into the role of the gut microflora and help us to make more accurate 
predictions for the future treatment of T2DM.
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